DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

DESIGN BUILD

PROPOSAL

DO NOT UNSTAPLE THIS BOOKLET....ENTER ALL REQUIRED INFORMATION
---------------------------- EITHER BY HAND OR BY STAMP.

DATE OF OPENING : January 21, 2011 CALL ORDER : 001

CONTRACT ID : B13922-11-000-0

PCN PROJECTS AND CONTRACT NO.
------------- ------------------------------
0009542.01000 0009542

COUNTY : DEKALB

CODE__________ ISSUED TO:

1. __
2. __
3. __

PART 1 OF 2
THE CONTRACTOR SHALL RETURN ALL PARTS OF THE PROPOSAL
WITH HIS BID UNLESS BIDDING ELECTRICALLY
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

CONTRACT ID : B13922-11-000-0
DESIGN BUILD PROJECT CONSISTING OF 4.730 MILES OF
CONSTRUCTION OF COLLECTOR-DISTRIBUTOR (CD) LANES,
MODIFICATION OF GENERAL PURPOSE LANES AND RAMP IMPROVEMENTS
ON I-20/SR 402 BEGINNING AT I-285/SR 407 AND EXTENDING TO
PANOLA RD (CR 5150).
(FOS)

PROPOSAL GUARANTY : 5%

DBE GOAL : 12.00 %

<table>
<thead>
<tr>
<th>SITE</th>
<th>COMPLETION DATE</th>
<th>CONTRACT TIME</th>
<th>LIQUIDATED DAMAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>07/31/13</td>
<td>COMPLETION DATE</td>
<td>AVAILABLE DAYS</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>AVAILABLE DAYS</td>
<td></td>
</tr>
</tbody>
</table>

FAIL TO COVER MILLED AREAS - SEE SPEC PROV SEC 108
FAIL TO COMPLETE STRIPING - SEE SPEC PROV SEC 108
FAIL TO REPLACE TRAFFIC LOOPS - SEE SPEC PROV SEC 108
FAIL TO REOPEN LANES - SEE SPEC PROV SEC 108
FAIL TO RESPOND AND REMOVE INCEDENTS - SEE SPEC PROV SEC 108
FAIL TO ADHERE TO OUTAGE RESTRICTIONS - SEE SPEC PROV SEC 108
FAIL TO RESPOND AND REPAIR ITS SYTEM-SEE SPEC PROV SEC 108

NOTICE TO BIDDERS
If a DBE goal is specified, the bidder shall submit with this bid proposal a list of all proposed DBE participants. A form for this purpose is provided in this proposal. Please refer to the following specifications:

102.07 Rejection of Proposals
Disadvantaged Business Enterprise Program (Special Provision)

BIDDERS SHALL ENTER ALL UNIT PRICES, MAKE ALL EXTENSIONS AND TOTAL THE BID.
CONTRACT ID: B13922-11-000-0
PROJECT(S): 0009542.01000 0009542

<table>
<thead>
<tr>
<th>LINE NO</th>
<th>ITEM DESCRIPTION</th>
<th>APPROX. QUANTITY</th>
<th>UNIT PRICE AND UNITS</th>
<th>BID AMOUNT DOLLARS CTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-9011 TRAFFIC CONTROL WORKZONE LAW ENFORCEMENT (CONTRACTOR BIDS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158-1000 TRAINING HOURS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999-2010 DESIGN COMPLETE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999-2015 CONSTRUCTION COMPLETE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION 0001 TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER BID TOTAL ON NEXT PAGE

TOTAL BID
<table>
<thead>
<tr>
<th>ITEM</th>
<th>APPROX. QUANTITY AND UNITS</th>
<th>UNIT PRICE</th>
<th>BID AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL BID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DBE GOALS

VENDOR ID: ____________________
BIDDER'S COMPANY NAME: ____________________

PROJECT NO. & COUNTY: 0009542 DEKALB

LET NO: ____________________ LET DATE: January 21, 2011 TOTAL BID: ____________

THE REQUIRED DBE GOAL ON THIS CONTRACT IS: 12%

I PROPOSE TO UTILIZE THE FOLLOWING DBE’S:

LIST OF DBE PARTICIPANTS

<table>
<thead>
<tr>
<th>VENDOR NUMBER</th>
<th>DBE NAME/ADDRESS (CITY, STATE)</th>
<th>TYPE OF WORK</th>
<th>Race Neutral</th>
<th>Race Conscious</th>
<th>*WORK CODE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

*For Departmental use only. Do not fill in Work codes.

PLEASE NOTE: Only 60% of the participation of a DBE Supplier who does not manufacture or install the product will be counted toward the goal. See below for further instructions.
INSTRUCTIONS FOR LIST OF DBE PARTICIPANTS

If a DBE Goal is indicated, you must propose to achieve a goal that is equal or greater than the percentage required. If no goal is indicated, you may propose your own goal.

The DBE Firms to be utilized as counting toward the proposed goal must be listed on this form, along with their addresses, type of work and the amount to be paid to each of the minority firms. The amount entered will not necessarily be the contract amount, but must be the actual amount that will be paid to the DBE firm. In the case of a DBE supplier, the amount paid and 60% of that amount both will be entered; and only the 60% figure should be added to the total. An example of this is shown in the example chart:

<table>
<thead>
<tr>
<th>Vendor Number</th>
<th>Company Name And Address (City and State)</th>
<th>Type of Work</th>
<th>* Work Code</th>
<th>Race Neutral</th>
<th>Race Conscious</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABC Oil Company Atlanta, GA</td>
<td>Diesel Fuel Supplier</td>
<td></td>
<td></td>
<td></td>
<td>$80,000.00 (60% = $48,000.00)</td>
</tr>
</tbody>
</table>

* For Departmental use ONLY. Do not fill in Work Codes.

The Contractor shall indicate for each DBE and Type of Work whether the DBE Participant is Race Neutral or Race Conscious by placing a checkmark in the appropriate column.

PLEASE NOTE: For 60% of the amount paid to a DBE supplier to be eligible to count toward fulfilling the DBE goal, the supplier must be an established “regular dealer” in the product involved, and not just a broker. A “regular dealer” would normally sell the product to several customers and would usually have product inventory on hand.
Please complete and mail or FAX to:
Construction Bidding Administration
600 West Peachtree Street, NW
Suite 1113
Atlanta, Georgia 30308
TELEPHONE: (404) 631-1147
FAX: (404) 631-1275

This information shall be submitted in accordance with Specification Section 102.16

<table>
<thead>
<tr>
<th>Prime Contractor/Consultant:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address/Telephone Number:</td>
<td></td>
</tr>
<tr>
<td>Bid/Proposal Number:</td>
<td></td>
</tr>
<tr>
<td>Quote Submitted MM/YY:</td>
<td></td>
</tr>
</tbody>
</table>

49 CRF Part 26.11 requires the Georgia Department of Transportation to develop and maintain a “bid opportunity list”. The list is intended to be a listing of all firms participating or attempting to participate, on DOT assisted contracts. The list must include all firms that bid on prime contracts, or bid or quote subcontracts and materials supplies on DOT-assisted projects, including both DBEs and non-DBEs. For consulting companies this list must include all subconsultants contacting you and expressing an interest in teaming with you on a specific DOT assisted project. Prime contractors and consultants must provide information for Nos. 1, 2, 3, and 4 and must provide information they have available on Numbers 5, 5.A, 7, 8 and 9 for themselves, and their subcontractors and subconsultants.

1. Federal Tax ID Number: ____________
2. Firm Name: ________________________
3. Phone: ____________________________
4. Address: __________________________

5. Contact __________________________
5.A. Company E mail address ____________

<table>
<thead>
<tr>
<th>Federal Tax ID Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm Name:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

5. Contact __________________________
5.A. Company E mail address ____________

<table>
<thead>
<tr>
<th>Federal Tax ID Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm Name:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

5. Contact __________________________
5.A. Company E mail address ____________

<table>
<thead>
<tr>
<th>Federal Tax ID Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm Name:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

5. Contact __________________________
5.A. Company E mail address ____________
PRIME CONTRACTOR’S WORK AUTHORIZATION CERTIFICATION

Pursuant to O.C.G.A. § 13-10-91, all qualifying contractors and sub-contractors performing work within the State of Georgia on a contract with a public employer must register and participate in a federal work authorization program. Prime contractors may participate in any of the electronic verification of work authorization programs operated by the United States Department of Homeland Security or any equivalent federal work authorization program operated by the United States Department of Homeland Security to verify information of newly hired employees, pursuant to the Immigration Reform and Control Act of 1986 (“IRCA”).

The date by which a prime contractor must register and participate in a qualifying federal work authorization program depends on the number of employees in the prime contractor’s company. If the prime contractor’s company has 500 or more employees, it is required to register and participate in a qualifying federal work authorization program by July 1, 2007. If the prime contractor’s company has 100 or more employees, it is required to register for and participate in a qualifying federal work authorization program by July 1, 2008. If the prime contractor’s company has 99 employees or fewer, it is required to register for and participate in a qualifying federal work authorization program by July 1, 2009.

Certify compliance with O.C.G.A. § 13-10-91 by checking the appropriate line below:

_____ The undersigned has registered for and is participating in a qualifying federal work authorization program;

The undersigned further agrees that, should it employ or contract with any subcontractor(s) in connection with the physical performance of services within this state pursuant to this contract with a public employer, the undersigned will secure from such subcontractor(s) a verification of compliance with O.C.G.A. § 13-10-91 using the form “Subcontractor’s Work Authorization Certification” or a substantially similar form. The undersigned will maintain records of compliance and provide a copy of each subcontractor’s verification to the public employer at the time the sub-contractor is retained to perform such service.

[SIGNATURE ON NEXT PAGE]
BY: Authorized Officer or Agent

Title of Authorized Officer or Agent

Printed Name of Authorized Officer or Agent

With express authority on behalf of:

Printed Name of Prime Contractor

SUBSCRIBED AND SWORN BEFORE ME ON THIS THE
______ DAY OF ________, 20__.

Notary Public

My Commission Expires: ________
REQUEST FOR ELIGIBILITY TO BID

GEORGIA DEPARTMENT OF TRANSPORTATION
OFFICE OF CONSTRUCTION BIDDING ADMINISTRATION
600 West Peachtree St., N.W.
Atlanta, GA 30308
Email contacts: esimmons@dot.ga.gov
anstewart@dot.ga.gov
GDOT NUMBERS: (404)631-1945 Main Office CBA Fax
(404)631-1070 Sales Office Fax

LETTING DATE:

GDOT VENDOR CODE:

COMPANY NAME:

CONTACT PERSON:

EMAIL ADDRESS:

FOR OPTIMUM SERVICE, KEEP GDOT UP-TO-DATE
WITH YOUR CONTACT INFORMATION
(Mailing Address, Phone No., Fax No., E-mail Address, Primary Contact Person, etc.)

Indicate below the three digits of the Call Order Number, and your bidding status

B = Bidding Prime

(Example: 1.) 001 B 2.) 006 B 3.) 018 B etc.)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Complete this form to Request For Eligibility To Bid. The deadline to submit this form to GDOT, Office of
Construction Bidding Administration is no later than 12:00 p.m. on the day preceding the letting. ** Failure to
submit this document will result in eligibility to bid.
Failure to complete appropriate certification requirements identified below or submission of a false certification shall render the bid non-responsive.

EQUAL EMPLOYMENT OPPORTUNITY

I further certify that I have ___/have not ___ participated in a previous contract or subcontract subject to the equal opportunity clause, as required by Executive Orders 10925, 11114, or 11246, and that I have____/ have not___ filed with the Joint Reporting Committee, the Director of the Office of Federal Contract Compliance, a Federal Government contracting or administering agency, or the former President's Committee on Equal Employment Opportunity, all reports due under the applicable filing requirements.

I understand that if I have participated in a previous Contract or Subcontract subject to the Executive Orders above and have not filed the required reports that 41 CFR 60-1.7(b)(1) prevents the award of this Contract unless I submit a report governing the delinquent period or such other period specified by the Federal Highway Administration or by the Director, Office of Federal Contract Compliance, U. S. Department of Labor.

Reports and notifications required under 41 CFR 604, including reporting subcontract awards in excess of $10,000.00 should be addressed to:

Ms. Carol Gaudin
Regional Director, U. S. Department of Labor
Office of Federal Contract Compliance Programs, Region 4
Rm. 7B75
61 Forsyth St. SW
Atlanta GA 30303

EXAMINATION OF PLANS AND SPECIFICATIONS

I acknowledge that this Project will be constructed in English units.

I certify that I have carefully examined the Plans for this Project and the Standard Specifications, 2001 Edition, and the Supplemental Specifications and Special Provisions included in and made a part of this Proposal, and have also personally examined the site of the work. On the basis of the said Specifications and Plans, I propose to furnish all necessary machinery, tools, apparatus and other means of construction, and do all the work and furnish all the materials in the manner specified.

I understand the quantities mentioned are approximate only and are subject to either increase or decrease and hereby propose to perform any increased or decreased quantities of work or extra work on the basis provided for in the Specifications.
I also hereby agree that the State, or the Department of Transportation, would suffer damages in a sum equal to at least the amount of the enclosed Proposal Guaranty, in the event my Proposal should be accepted and a Contract tendered me thereunder and I should refuse to execute same and furnish bond as herein required, in consideration of which I hereby agree that, in the event of such failure on my part to execute said Contract and furnish bond within fifteen (15) days after the date of the letter transmitting the Contract to me, the amount of said Proposal Guaranty shall be and is hereby, forfeited to the State, or to the Department of Transportation, as liquidated damages as the result of such failure on my part.

I further propose to execute the Contract agreement described in the Specifications as soon as the work is awarded to me, and to begin and complete the work within the time limit provided. I also propose to furnish a Contract Bond, approved by the State Transportation Board, as required by the laws of the State of Georgia. This bond shall not only serve to guarantee the completion of the work on my part, but also to guarantee the excellence of both workmanship and materials until the work is finally accepted, as well as to fully comply with all the laws of the State of Georgia.

CONFLICT OF INTEREST

By signing and submitting this Contract I hereby certify that employees of this company or employee of any company supplying material or subcontracting to do work on this Contract will not engage in business ventures with employees of the Georgia Department of Transportation (GA D.O.T.) nor shall they provide gifts, gratuities, favors, entertainment, loans or other items of value to employees of this department.

Also, by signing and submitting this Contract I hereby certify that I will notify the Georgia Department of Transportation through its District Engineer of any business ventures entered into between employees of this company or employees of any company supplying material or subcontracting to do work on this Contract with a family member of GA D.O.T. employees.

DRUG FREE WORKPLACE

The undersigned certifies that the provisions of Code Sections 50-24-1 through 50-24-6 of the Official Code of Georgia Annotated, relating to the "Drug-free Workplace Act", have been complied with in full. The undersigned further certifies that:

1. A drug-free workplace will be provided for the Contractor's employees during the performance of the Contract; and

2. Each Contractor who hires a Subcontractor to work in a drug-free workplace shall secure from that Subcontractor the following written certification:

 "As part of the subcontracting agreement with _______(Contractor's name)______, ______(Subcontractor's name)_________ certifies to the Contractor that a drug free workplace will be provided for the Subcontractor's employees during the performance of this Contract pursuant to paragraph (7) of subsection (b) of Code Section 50-24-3."

Also, the undersigned further certifies that he will not engage in the unlawful manufacture, sale, distribution, dispensation, possession, or use of a controlled substance or marijuana during the performance of the Contract.
NON-COLLUSION CERTIFICATION

I hereby certify that I have not, nor has any member of the firm(s) or corporation(s), either directly or indirectly entered into any agreement, participated in any collusion, nor otherwise taken any action in restraint of free competitive bidding in connection with this submitted bid.

It is understood and agreed that this Proposal is one of several competitive bids made to the Department of Transportation, and in consideration of mutual agreements of the bidders, similar hereto, and in consideration of the sum of One Dollar cash in hand paid, receipt whereof is hereby acknowledged, the undersigned agrees that this Proposal shall be an option, which is hereby given by the undersigned to the Department of Transportation to accept or reject this Proposal at any time within thirty (30) calendar days from the date on which this sealed proposal is opened and read, unless a longer period is specified in the Proposal or the successful bidder agrees in writing to a longer period of time for the award, and in consideration of the premises, it is expressly covenanted and agreed that this Proposal is not subject to withdrawal by the Proposer or Bidder, during the term of said option.

I hereby acknowledge receipt of the following checked amendments of the Proposal, Plans, Specifications and/or other documents pertaining to the Contract.

Amendment Nos.: 1____ 2____ 3____ 4____ 5____. I understand that failure to confirm the receipt of amendments is cause for rejection of bids.

Witness my hand and seal this the ____ day of ______________________, 20_____.

The bidder(s) whose signature(s) appear on this document, having personally appeared before me, and being duly sworn, deposes and says that the above statements are true and correct.

Sworn to and subscribed before me this _____ day of ________________, 20_____.

(Notary Public)

My Commission expires the ________ day of ________________, 20_____.

(Federal ID No./IRS No.)

(Print Company Name)

By ___________________________(Seal)
Corporate President/Vice President or Individual Owner or Partner (Strike through all except the one which applies.)

Joint Bidder:

(Print Company Name)

By ___________________________(Seal)
Corporate President/Vice President or Individual Owner or Partner (Strike through all except the one which applies.)

Joint Bidder:

(Print Company Name)

By ___________________________(Seal)
Corporate President/Vice President or or Individual Owner or Partner (Strike through all except the one which applies.)
Listed below are modifications and additions to the 2001 State of Georgia Standard Specifications Constructions of Transportation System and the 2008 Supplemental Specifications modifying the 2001 Standard Specifications.

<table>
<thead>
<tr>
<th>Call Order Number:</th>
<th>001</th>
<th>PROPOSAL INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>County:</td>
<td>DeKalb</td>
<td></td>
</tr>
<tr>
<td>Project No(s):</td>
<td>009542</td>
<td></td>
</tr>
</tbody>
</table>

DBE Requirements
Bid Opportunity List
Prime Contractors Work Authorized Form
Federal Aid Requirements
Certification/Drug Free Workplace
Signature Page
Proposal Index
Notice to All Bidders
Federal Labor Provisions (FHWA 1273)
Notice to Contractors
Wage Rates
Standard EEO Specifications
Notice of Affirmative Action
Disadvantaged Business Enterprise Program
Prompt Payment
Buy America
Utility Conflicts
Sec. 102 - Bidding Requirements and Conditions (2)
Sec. 104 - Scope of Work
Sec. 107 - Legal Regulation and Responsibility to the Public
Sec. 108 - Prosecution and Progress (Failure or Delay in Completing Work on Time)
Sec. 150 - Traffic Control
Sec. 153 - Field Engineers Office
Sec. 161 - Control of Soil Erosion and Sedimentation
Sec. 163 - Miscellaneous Erosion Control
Sec. 165 - Maintenance of Temporary Erosion and Sedimentation Control Devices
Sec. 167 - Water Quality Monitoring
Sec. 170 - Silt Retention Barrier
Sec. 171 - Silt Fence
Sec. 400 - Hot Mix Asphaltic Concrete Construction(2)
Sec. 402 - Hot Mix Recycled Asphaltic Concrete
Sec. 413 - Bituminous Tack Coat
Sec. 424 - Bituminous Surface Treatment
Sec. 445 - Waterproofing Pavement Joints and Cracks
Sec. 500 - Concrete Structures
Sec. 550 - Storm drain Pipe, Pipe-Arch Culverts, and Side Drain Pipe
Sec. 620 - Temporary Barrier
Sec. 624 - Sound Barriers
Sec. 627 - Mechanically Stabilized Embankment Retaining Wall
Sec. 632 - Portable Changeable Message Sign
Sec. 636 - Highway Signs
Sec. 639 - Strain Poles for Overhead Sign and Signal Assemblies
Sec. 647 - Traffic Signal Installation
Sec. 648 - Traffic Impact Attenuator
Sec. 652 - Painting Traffic Stripe
Sec. 653 - Thermoplastic Traffic Stripe
Sec. 657 - Wet Reflective Preformed Pavement Markings
Sec. 658 - Polyurea Traffic Stripe
Sec. 700 - Grassing
Sec. 702 - Vine, Shrubs, And Tree Planting
NOTICE TO ALL BIDDERS

To report bid rigging activities call:

1-800-424-9071

The U.S. Department of Transportation (DOT) operates the above toll-free “hotline” Monday through Friday, 8:00 AM to 5:00 PM, Eastern Time. Anyone with the knowledge of possible bid rigging, bidder collusion, or other fraudulent activities should use the “hotline” to report such activities.

The “hotline” is part of the DOT’s continuing effort to identify and investigate highway construction contract fraud and abuse, and is operated under the direction of the DOT Inspector General. All information will be treated confidentially and caller anonymity will be respected.
Required Contract Provisions Federal-Aid Construction Contracts

I. General
II. Nondiscrimination
III. Nonsegregated Facilities
IV. Payment of Predetermined Minimum Wage
V. Statements and Payrolls
VI. Record of Materials, Supplies, and Labor
VII. Subletting or Assigning the Contract
VIII. Safety: Accident Prevention
IX. False Statements Concerning Highway Projects
X. Implementation of Clean Air Act and Federal Water Pollution Control Act
XI. Certification Regarding Debarment, Suspension Ineligibility, and Voluntary Exclusion
XII. Certification Regarding Use of Contract Funds for Lobbying

Attachments
A. Employment Preference for Appalachian Contracts (included in Appalachian contracts only)

I. GENERAL

1. These contract provisions shall apply to all work performed on the contract by the contractor's own organization and with the assistance of workers under the contractor's immediate superintendence and to all work performed on the contract by piecework, station work, or by subcontract.

2. Except as otherwise provided for in each section, the contractor shall insert in each subcontract all of the stipulations contained in these Required Contract Provisions, and further require their inclusion in any lower tier subcontract or purchase order that may in turn be made. The Required Contract Provisions shall not be incorporated by reference in any case. The prime contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with these Required Contract Provisions.

3. A breach of any of the stipulations contained in these Required Contract Provisions shall be sufficient grounds for termination of the contract.

4. A breach of the following clauses of the Required Contract Provisions may also be grounds for debarment as provided in 29 CFR 5.12:
 - Section I, paragraph 2;
 - Section IV, paragraphs 1, 2, 3, 4, and 7;
 - Section V, paragraphs 1 and 2a through 2g.

5. Disputes arising out of the labor standards provisions of Section IV (except paragraph 5) and Section V of these Required Contract Provisions shall not be subject to the general disputes clause of this contract. Such disputes shall be resolved in accordance with the procedures of the U.S. Department of Labor (DOL) as set forth in 29 CFR 5, 6, and 7. Disputes within the meaning of this clause include disputes between the contractor (or any of its subcontractors) and the contracting agency, the DOL, or the contractor's employees or their representatives.

6. **Selection of Labor**: During the performance of this contract, the contractor shall not:
a. discriminate against labor from any other State, possession, or territory of the United States (except for employment preference for Appalachian contracts, when applicable, as specified in Attachment A), or
b. employ convict labor for any purpose within the limits of the project unless it is labor performed by convicts who are on parole, supervised release, or probation.

II. NONDISCRIMINATION

(Applicable to all Federal-aid construction contracts and to all related subcontracts of $10,000 or more.)

1. **Equal Employment Opportunity:** Equal employment opportunity (EEO) requirements not to discriminate and to take affirmative action to assure equal opportunity as set forth under laws, executive orders, rules, regulations (28 CFR 35, 29 CFR 1630 and 41 CFR 60) and orders of the Secretary of Labor as modified by the provisions prescribed herein, and imposed pursuant to 23 U.S.C. 140 shall constitute the EEO and specific affirmative action standards for the contractor's project activities under this contract. The Equal Opportunity Construction Contract Specifications set forth under 41 CFR 60-4.3 and the provisions of the American Disabilities Act of 1990 (42 U.S.C. 12101 et seq.) set forth under 28 CFR 35 and 29 CFR 1630 are incorporated by reference in this contract. In the execution of this contract, the contractor agrees to comply with the following minimum specific requirement activities of EEO:
 a. The contractor will work with the State highway agency (SHA) and the Federal Government in carrying out EEO obligations and in their review of his/her activities under the contract.
 b. The contractor will accept as his operating policy the following statement:

 "It is the policy of this Company to assure that applicants are employed, and that employees are treated during employment, without regard to their race, religion, sex, color, national origin, age or disability. Such action shall include: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship, pre-apprenticeship, and/or on-the-job training."

2. **EEO Officer:** The contractor will designate and make known to the SHA contracting officers an EEO Officer who will have the responsibility for and must be capable of effectively administering and promoting an active contractor program of EEO and who must be assigned adequate authority and responsibility to do so.

3. **Dissemination of Policy:** All members of the contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action, or who are substantially involved in such action, will be made fully cognizant of, and will implement, the contractor's EEO policy and contractual responsibilities to provide EEO in each grade and classification of employment. To ensure that the above agreement will be met, the following actions will be taken as a minimum:
 a. Periodic meetings of supervisory and personnel office employees will be conducted before the start of work and then not less often than once
every six months, at which time the contractor's EEO policy and its implementation will be reviewed and explained. The meetings will be conducted by the EEO Officer.

b. All new supervisory or personnel office employees will be given a thorough indoctrination by the EEO Officer, covering all major aspects of the contractor's EEO obligations within thirty days following their reporting for duty with the contractor.

c. All personnel who are engaged in direct recruitment for the project will be instructed by the EEO Officer in the contractor's procedures for locating and hiring minority group employees.

d. Notices and posters setting forth the contractor's EEO policy will be placed in areas readily accessible to employees, applicants for employment and potential employees.

e. The contractor's EEO policy and the procedures to implement such policy will be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means.

4. **Recruitment:** When advertising for employees, the contractor will include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements will be placed in publications having a large circulation among minority groups in the area from which the project work force would normally be derived.

 a. The contractor will, unless precluded by a valid bargaining agreement, conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minority group applicants. To meet this requirement, the contractor will identify sources of potential minority group employees, and establish with such identified sources procedures whereby minority group applicants may be referred to the contractor for employment consideration.

 b. In the event the contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, he is expected to observe the provisions of that agreement to the extent that the system permits the contractor's compliance with EEO contract provisions. (The DOL has held that where implementation of such agreements have the effect of discriminating against minorities or women, or obligates the contractor to do the same, such implementation violates Executive Order 11246, as amended.)

 c. The contractor will encourage his present employees to refer minority group applicants for employment. Information and procedures with regard to referring minority group applicants will be discussed with employees.

5. **Personnel Actions:** Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken without regard to race, color, religion, sex, national origin, age or disability. The following procedures shall be followed:

 a. The contractor will conduct periodic inspections of project sites to insure that working conditions and employee facilities do not indicate discriminatory treatment of project site personnel.

 b. The contractor will periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices.
c. The contractor will periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the contractor will promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons.
d. The contractor will promptly investigate all complaints of alleged discrimination made to the contractor in connection with his obligations under this contract, will attempt to resolve such complaints, and will take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the contractor will inform every complainant of all of his avenues of appeal.

6. **Training and Promotion:**
 a. The contractor will assist in locating, qualifying, and increasing the skills of minority group and women employees, and applicants for employment.
 b. Consistent with the contractor's work force requirements and as permissible under Federal and State regulations, the contractor shall make full use of training programs, i.e., apprenticeship, and on-the-job training programs for the geographical area of contract performance. Where feasible, 25 percent of apprentices or trainees in each occupation shall be in their first year of apprenticeship or training. In the event a special provision for training is provided under this contract, this subparagraph will be superseded as indicated in the special provision.
 c. The contractor will advise employees and applicants for employment of available training programs and entrance requirements for each.
 d. The contractor will periodically review the training and promotion potential of minority group and women employees and will encourage eligible employees to apply for such training and promotion.

7. **Unions:** If the contractor relies in whole or in part upon unions as a source of employees, the contractor will use his/her best efforts to obtain the cooperation of such unions to increase opportunities for minority groups and women within the unions, and to effect referrals by such unions of minority and female employees. Actions by the contractor either directly or through a contractor's association acting as agent will include the procedures set forth below:
 a. The contractor will use best efforts to develop, in cooperation with the unions, joint training programs aimed toward qualifying more minority group members and women for membership in the unions and increasing the skills of minority group employees and women so that they may qualify for higher paying employment.
 b. The contractor will use best efforts to incorporate an EEO clause into each union agreement to the end that such union will be contractually bound to refer applicants without regard to their race, color, religion, sex, national origin, age or disability.
 c. The contractor is to obtain information as to the referral practices and policies of the labor union except that to the extent such information is within the exclusive possession of the labor union and such labor union refuses to furnish such information to the contractor, the contractor shall so certify to the SHA and shall set forth what efforts have been made to obtain such information.
d. In the event the union is unable to provide the contractor with a reasonable flow of minority and women referrals within the time limit set forth in the collective bargaining agreement, the contractor will, through independent recruitment efforts, fill the employment vacancies without regard to race, color, religion, sex, national origin, age or disability; making full efforts to obtain qualified and/or qualifiable minority group persons and women. (The DOL has held that it shall be no excuse that the union with which the contractor has a collective bargaining agreement providing for exclusive referral failed to refer minority employees.) In the event the union referral practice prevents the contractor from meeting the obligations pursuant to Executive Order 11246, as amended, and these special provisions, such contractor shall immediately notify the SHA.

8. Selection of Subcontractors, Procurement of Materials and Leasing of Equipment: The contractor shall not discriminate on the grounds of race, color, religion, sex, national origin, age or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment.
 a. The contractor shall notify all potential subcontractors and suppliers of his/her EEO obligations under this contract.
 b. Disadvantaged business enterprises (DBE), as defined in 49 CFR 23, shall have equal opportunity to compete for and perform subcontracts which the contractor enters into pursuant to this contract. The contractor will use his best efforts to solicit bids from and to utilize DBE subcontractors or subcontractors with meaningful minority group and female representation among their employees. Contractors shall obtain lists of DBE construction firms from SHA personnel.
 c. The contractor will use his best efforts to ensure subcontractor compliance with their EEO obligations.

9. Records and Reports: The contractor shall keep such records as necessary to document compliance with the EEO requirements. Such records shall be retained for a period of three years following completion of the contract work and shall be available at reasonable times and places for inspection by authorized representatives of the SHA and the FHWA.
 a. The records kept by the contractor shall document the following:
 1. The number of minority and non-minority group members and women employed in each work classification on the project;
 2. The progress and efforts being made in cooperation with unions, when applicable, to increase employment opportunities for minorities and women;
 3. The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minority and female employees; and
 4. The progress and efforts being made in securing the services of DBE subcontractors or subcontractors with meaningful minority and female representation among their employees.
 b. The contractors will submit an annual report to the SHA each July for the duration of the project, indicating the number of minority, women, and non-minority group employees currently engaged in each work classification required by the contract work. This information is to be reported on Form FHWA-1391. If on-the-job training is being required by special provision, the contractor will be required to collect and report training data.
III. NONSEGREGATED FACILITIES

(Applicable to all Federal-aid construction contracts and to all related subcontracts of $10,000 or more.)

a. By submission of this bid, the execution of this contract or subcontract, or the consummation of this material supply agreement or purchase order, as appropriate, the bidder, Federal-aid construction contractor, subcontractor, material supplier, or vendor, as appropriate, certifies that the firm does not maintain or provide for its employees any segregated facilities at any of its establishments, and that the firm does not permit its employees to perform their services at any location, under its control, where segregated facilities are maintained. The firm agrees that a breach of this certification is a violation of the EEO provisions of this contract. The firm further certifies that no employee will be denied access to adequate facilities on the basis of sex or disability.

b. As used in this certification, the term "segregated facilities" means any waiting rooms, work areas, restrooms and washrooms, restaurants and other eating areas, timeclocks, locker rooms, and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing facilities provided for employees which are segregated by explicit directive, or are, in fact, segregated on the basis of race, color, religion, national origin, age or disability, because of habit, local custom, or otherwise. The only exception will be for the disabled when the demands for accessibility override (e.g. disabled parking).

c. The contractor agrees that it has obtained or will obtain identical certification from proposed subcontractors or material suppliers prior to award of subcontracts or consummation of material supply agreements of $10,000 or more and that it will retain such certifications in its files.

IV. PAYMENT OF PREDETERMINED MINIMUM WAGE

(Applicable to all Federal-aid construction contracts exceeding $2,000 and to all related subcontracts, except for projects located on roadways classified as local roads or rural minor collectors, which are exempt.)

1. General:

a. All mechanics and laborers employed or working upon the site of the work will be paid unconditionally and not less often than once a week and without subsequent deduction or rebate on any account (except such payroll deductions as are permitted by regulations (29 CFR 3) issued by the Secretary of Labor under the Copeland Act (40 U.S.C. 276c)) the full amounts of wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment. The payment shall be computed at wage rates not less than those contained in the wage determination of the Secretary of Labor (hereinafter "the wage determination") which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the contractor or its subcontractors and such laborers and mechanics.
The wage determination (including any additional classifications and wage rates conformed under paragraph 2 of this Section IV and the DOL poster (WH-1321) or Form FHWA-1495) shall be posted at all times by the contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers. For the purpose of this Section, contributions made or costs reasonably anticipated for bona fide fringe benefits under Section 1(b)(2) of the Davis-Bacon Act (40 U.S.C. 276a) on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of Section IV, paragraph 3b, hereof. Also, for the purpose of this Section, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs, which cover the particular weekly period, are deemed to be constructively made or incurred during such weekly period. Such laborers and mechanics shall be paid the appropriate wage rate and fringe benefits on the wage determination for the classification of work actually performed, without regard to skill, except as provided in paragraphs 4 and 5 of this Section IV.

b. Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein, provided, that the employer's payroll records accurately set forth the time spent in each classification in which work is performed.

c. All rulings and interpretations of the Davis-Bacon Act and related acts contained in 29 CFR 1, 3, and 5 are herein incorporated by reference in this contract.

2. Classification:

a. The SHA contracting officer shall require that any class of laborers or mechanics employed under the contract, which is not listed in the wage determination, shall be classified in conformance with the wage determination.

b. The contracting officer shall approve an additional classification, wage rate and fringe benefits only when the following criteria have been met:

1. the work to be performed by the additional classification requested is not performed by a classification in the wage determination;
2. the additional classification is utilized in the area by the construction industry;
3. the proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination; and
4. with respect to helpers, when such a classification prevails in the area in which the work is performed.

c. If the contractor or subcontractors, as appropriate, the laborers and mechanics (if known) to be employed in the additional classification or
their representatives, and the contracting officer agree on the classification and wage rate (including the amount designated for fringe benefits where appropriate), a report of the action taken shall be sent by the contracting officer to the DOL, Administrator of the Wage and Hour Division, Employment Standards Administration, Washington, D.C. 20210. The Wage and Hour Administrator, or an authorized representative, will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary.

d. In the event the contractor or subcontractors, as appropriate, the laborers or mechanics to be employed in the additional classification or their representatives, and the contracting officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the contracting officer shall refer the questions, including the views of all interested parties and the recommendation of the contracting officer, to the Wage and Hour Administrator for determination. Said Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary.

e. The wage rate (including fringe benefits where appropriate) determined pursuant to paragraph 2c or 2d of this Section IV shall be paid to all workers performing work in the additional classification from the first day on which work is performed in the classification.

3. Payment of Fringe Benefits:
 a. Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the contractor or subcontractors, as appropriate, shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly case equivalent thereof.
 b. If the contractor or subcontractor, as appropriate, does not make payments to a trustee or other third person, he/she may consider as a part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program, provided, that the Secretary of Labor has found, upon the written request of the contractor, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the contractor to set aside in a separate account assets for the meeting of obligations under the plan or program.

4. Apprentices and Trainees (Programs of the U.S. DOL) and Helpers:
 a. Apprentices:
 A. Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the DOL, Employment and Training Administration, Bureau of Apprenticeship and Training, or with a State apprenticeship agency recognized by the Bureau, or if a person is employed in his/her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the
program, but who has been certified by the Bureau of Apprenticeship and Training or a State apprenticeship agency (where appropriate) to be eligible for probationary employment as an apprentice.

B. The allowable ratio of apprentices to journeyman-level employees on the job site in any craft classification shall not be greater than the ratio permitted to the contractor as to the entire work force under the registered program. Any employee listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated above, shall be paid not less than the applicable wage rate listed in the wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor or subcontractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyman-level hourly rate) specified in the contractor's or subcontractor's registered program shall be observed.

C. Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice's level of progress, expressed as a percentage of the journeyman-level hourly rate specified in the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator for the Wage and Hour Division determines that a different practice prevails for the applicable apprentice classification, fringes shall be paid in accordance with that determination.

D. In the event the Bureau of Apprenticeship and Training, or a State apprenticeship agency recognized by the Bureau, withdraws approval of an apprenticeship program, the contractor or subcontractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the comparable work performed by regular employees until an acceptable program is approved.

b. Trainees:
 A. Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the DOL, Employment and Training Administration.
 B. The ratio of trainees to journeyman-level employees on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and
Training Administration shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed.

C. Every trainee must be paid at not less than the rate specified in the approved program for his/her level of progress, expressed as a percentage of the journeyman-level hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed on the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeyman-level wage rate on the wage determination which provides for less than full fringe benefits for apprentices, in which case such trainees shall receive the same fringe benefits as apprentices.

D. In the event the Employment and Training Administration withdraws approval of a training program, the contractor or subcontractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

c. Helpers:

 Helpers will be permitted to work on a project if the helper classification is specified and defined on the applicable wage determination or is approved pursuant to the conformance procedure set forth in Section IV.2. Any worker listed on a payroll at a helper wage rate, who is not a helper under a approved definition, shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed.

5. Apprentices and Trainees (Programs of the U.S. DOT):

Apprentices and trainees working under apprenticeship and skill training programs which have been certified by the Secretary of Transportation as promoting EEO in connection with Federal-aid highway construction programs are not subject to the requirements of paragraph 4 of this Section IV. The straight time hourly wage rates for apprentices and trainees under such programs will be established by the particular programs. The ratio of apprentices and trainees to journeymen shall not be greater than permitted by the terms of the particular program.

6. Withholding:

The SHA shall upon its own action or upon written request of an authorized representative of the DOL withhold, or cause to be withheld, from the contractor or subcontractor under this contract or any other Federal contract with the same
prime contractor, or any other Federally-assisted contract subject to Davis-Bacon prevailing wage requirements which is held by the same prime contractor, as much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the SHA contracting officer may, after written notice to the contractor, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased.

7. Overtime Requirements:

No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers, mechanics, watchmen, or guards (including apprentices, trainees, and helpers described in paragraphs 4 and 5 above) shall require or permit any laborer, mechanic, watchman, or guard in any workweek in which he/she is employed on such work, to work in excess of 40 hours in such workweek unless such laborer, mechanic, watchman, or guard receives compensation at a rate not less than one-and-one-half times his/her basic rate of pay for all hours worked in excess of 40 hours in such workweek.

8. Violation:

Liability for Unpaid Wages; Liquidated Damages: In the event of any violation of the clause set forth in paragraph 7 above, the contractor and any subcontractor responsible thereof shall be liable to the affected employee for his/her unpaid wages. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory) for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer, mechanic, watchman, or guard employed in violation of the clause set forth in paragraph 7, in the sum of $10 for each calendar day on which such employee was required or permitted to work in excess of the standard work week of 40 hours without payment of the overtime wages required by the clause set forth in paragraph 7.

9. Withholding for Unpaid Wages and Liquidated Damages:

The SHA shall upon its own action or upon written request of any authorized representative of the DOL withhold, or cause to be withheld, from any monies payable on account of work performed by the contractor or subcontractor under any such contract or any other Federal contract with the same prime contractor, or any other Federally-assisted contract subject to the Contract Work Hours and Safety Standards Act, which is held by the same prime contractor, such sums as may be determined to be necessary to satisfy any liabilities of such contractor or subcontractor for unpaid wages and liquidated damages as provided in the clause set forth in paragraph 8 above.
V. STATEMENTS AND PAYROLLS

(Applicable to all Federal-aid construction contracts exceeding $2,000 and to all related subcontracts, except for projects located on roadways classified as local roads or rural collectors, which are exempt.)

1. Compliance with Copeland Regulations (29 CFR 3):

 The contractor shall comply with the Copeland Regulations of the Secretary of Labor which are herein incorporated by reference.

2. Payrolls and Payroll Records:
 a. Payrolls and basic records relating thereto shall be maintained by the contractor and each subcontractor during the course of the work and preserved for a period of 3 years from the date of completion of the contract for all laborers, mechanics, apprentices, trainees, watchmen, helpers, and guards working at the site of the work.
 b. The payroll records shall contain the name, social security number, and address of each such employee; his or her correct classification; hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalent thereof of the types described in Section 1(b)(2)(B) of the Davis Bacon Act); daily and weekly number of hours worked; deductions made; and actual wages paid. In addition, for Appalachian contracts, the payroll records shall contain a notation indicating whether the employee does, or does not, normally reside in the labor area as defined in Attachment A, paragraph 1.
 c. Each contractor and subcontractor shall furnish, each week in which any contract work is performed, to the SHA resident engineer a payroll of wages paid each of its employees (including apprentices, trainees, and helpers, described in Section IV, paragraphs 4 and 5, and watchmen and guards engaged on work during the preceding weekly payroll period). The payroll submitted shall set out accurately and completely all of the information required to be maintained under paragraph 2b of this Section V. This information may be submitted in any form desired. Optional Form WH-347 is available for this purpose and may be purchased from the Superintendent of Documents (Federal stock number 029-005-0014-1), U.S. Government Printing Office, Washington, D.C. 20402.
The prime contractor is responsible for the submission of copies of payrolls by all subcontractors.

d. Each payroll submitted shall be accompanied by a "Statement of Compliance," signed by the contractor or subcontractor or his/her agent who pays or supervises the payment of the persons employed under the contract and shall certify the following:

1. that the payroll for the payroll period contains the information required to be maintained under paragraph 2b of this Section V and that such information is correct and complete;

2. that such laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in the Regulations, 29 CFR 3;

3. that each laborer or mechanic has been paid not less that the applicable wage rate and fringe benefits or cash equivalent for the classification of worked performed, as specified in the applicable wage determination incorporated into the contract.

e. The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH-347 shall satisfy the requirement for submission of the “Statement of Compliance” required by paragraph 2d of this Section V.

f. The falsification of any of the above certifications may subject the contractor to civil or criminal prosecution under 18 U.S.C. 1001 and 31 U.S.C. 231.

g. The contractor or subcontractor shall make the records required under paragraph 2b of this Section V available for inspection, copying, or transcription by authorized representatives of the SHA, the FHWA, or the DOL, and shall permit such representatives to interview employees during working hours on the job. If the contractor or subcontractor fails to submit the required records or to make them available, the SHA, the FHWA, the DOL, or all may, after written notice to the contractor, sponsor, applicant, or owner, take such actions as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12.

VI. RECORD OF MATERIALS, SUPPLIES, AND LABOR

1. On all Federal-aid contracts on the National Highway System, except those which provide solely for the installation of protective devices at railroad grade crossings, those which are constructed on a force account or direct labor basis, highway beautification contracts, and contracts for which the total final construction cost for roadway and bridge is less than $1,000,000 (23 CFR 635) the contractor shall:
a. Become familiar with the list of specific materials and supplies contained in Form FHWA-47, "Statement of Materials and Labor Used by Contractor of Highway Construction Involving Federal Funds," prior to the commencement of work under this contract.

b. Maintain a record of the total cost of all materials and supplies purchased for and incorporated in the work, and also of the quantities of those specific materials and supplies listed on Form FHWA-47, and in the units shown on Form FHWA-47.

c. Furnish, upon the completion of the contract, to the SHA resident engineer on Form FHWA-47 together with the data required in paragraph 1b relative to materials and supplies, a final labor summary of all contract work indicating the total hours worked and the total amount earned.

2. At the prime contractor's option, either a single report covering all contract work or separate reports for the contractor and for each subcontract shall be submitted.

VII. SUBLETTING OR ASSIGNING THE CONTRACT

1. The contractor shall perform with its own organization contract work amounting to not less than 30 percent (or a greater percentage if specified elsewhere in the contract) of the total original contract price, excluding any specialty items designated by the State. Specialty items may be performed by subcontract and the amount of any such specialty items performed may be deducted from the total original contract price before computing the amount of work required to be performed by the contractor's own organization (23 CFR 635).

a. "Its own organization" shall be construed to include only workers employed and paid directly by the prime contractor and equipment owned or rented by the prime contractor, with or without operators. Such term does not include employees or equipment of a subcontractor, assignee, or agent of the prime contractor.

b. "Specialty Items" shall be construed to be limited to work that requires highly specialized knowledge, abilities, or equipment not ordinarily available in the type of contracting organizations qualified and expected to bid on the contract as a whole and in general are to be limited to minor components of the overall contract.

c. The contract amount upon which the requirements set forth in paragraph 1 of Section VII is computed includes the cost of material and manufactured products which are to be purchased or produced by the contractor under the contract provisions.

d. The contractor shall furnish (a) a competent superintendent or supervisor who is employed by the firm, has full authority to direct performance of the work in accordance with the contract requirements, and is in charge of all construction operations (regardless of who performs the work) and (b) such other of its own organizational resources (supervision, management, and engineering services) as the SHA contracting officer determines is necessary to assure the performance of the contract.

e. No portion of the contract shall be sublet, assigned or otherwise disposed of except with the written consent of the SHA contracting officer, or authorized representative, and such consent when given shall
VIII. **SAFETY: ACCIDENT PREVENTION**

1. In the performance of this contract the contractor shall comply with all applicable Federal, State, and local laws governing safety, health, and sanitation (23 CFR 635). The contractor shall provide all safeguards, safety devices and protective equipment and take any other needed actions as it determines, or as the SHA contracting officer may determine, to be reasonably necessary to protect the life and health of employees on the job and the safety of the public and to protect property in connection with the performance of the work covered by the contract.

2. It is a condition of this contract, and shall be made a condition of each subcontract, which the contractor enters into pursuant to this contract, that the contractor and any subcontractor shall not permit any employee, in performance of the contract, to work in surroundings or under conditions which are unsanitary, hazardous or dangerous to his/her health or safety, as determined under construction safety and health standards (29 CFR 1926) promulgated by the Secretary of Labor, in accordance with Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 333).

3. Pursuant to 29 CFR 1926.3, it is a condition of this contract that the Secretary of Labor or authorized representative thereof, shall have right of entry to any site of contract performance to inspect or investigate the matter of compliance with the construction safety and health standards and to carry out the duties of the Secretary under Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 333).

IX. **FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS**

In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by engineers, contractors, suppliers, and workers on Federal-aid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, the following notice shall be posted on each Federal-aid highway project (23 CFR 635) in one or more places where it is readily available to all persons concerned with the project:

NOTICE TO ALL PERSONNEL ENGAGED ON FEDERAL-AID HIGHWAY PROJECTS

18 U.S.C. 1020 reads as follows:

"Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of the work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or
Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or

Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 1, 1916, (39 Stat. 355), as amended and supplemented;

Shall be fined not more that $10,000 or imprisoned not more than 5 years or both."

X. IMPLEMENTATION OF CLEAN AIR ACT AND FEDERAL WATER POLLUTION CONTROL ACT

(Applicable to all Federal-aid construction contracts and to all related subcontracts of $100,000 or more.)

By submission of this bid or the execution of this contract, or subcontract, as appropriate, the bidder, Federal-aid construction contractor, or subcontractor, as appropriate, will be deemed to have stipulated as follows:

1. That any facility that is or will be utilized in the performance of this contract, unless such contract is exempt under the Clean Air Act, as amended (42 U.S.C. 1857 et seq., as amended by Pub.L. 91-604), and under the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq., as amended by Pub.L. 92-500), Executive Order 11738, and regulations in implementation thereof (40 CFR 15) is not listed, on the date of contract award, on the U.S. Environmental Protection Agency (EPA) List of Violating Facilities pursuant to 40 CFR 15.20.

2. That the firm agrees to comply and remain in compliance with all the requirements of Section 114 of the Clean Air Act and Section 308 of the Federal Water Pollution Control Act and all regulations and guidelines listed there under.

3. That the firm shall promptly notify the SHA of the receipt of any communication from the Director, Office of Federal Activities, EPA, indicating that a facility that is or will be utilized for the contract is under consideration to be listed on the EPA List of Violating Facilities.

4. That the firm agrees to include or cause to be included the requirements of paragraph 1 through 4 of this Section X in every nonexempt subcontract, and further agrees to take such action as the government may direct as a means of enforcing such requirements.

XI. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY AND VOLUNTARY EXCLUSION

1. Instructions for Certification - Primary Covered Transactions:

(Applicable to all Federal-aid contracts - 49 CFR 29)

a. By signing and submitting this proposal, the prospective primary participant is providing the certification set out below.

b. The inability of a person to provide the certification set out below will not necessarily result in denial of participation in this covered transaction.
The prospective participant shall submit an explanation of why it cannot provide the certification set out below. The certification or explanation will be considered in connection with the department or agency's determination whether to enter into this transaction. However, failure of the prospective primary participant to furnish a certification or an explanation shall disqualify such a person from participation in this transaction.

c. The certification in this clause is a material representation of fact upon which reliance was placed when the department or agency determined to enter into this transaction. If it is later determined that the prospective primary participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause of default.

d. The prospective primary participant shall provide immediate written notice to the department or agency to whom this proposal is submitted if any time the prospective primary participant learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances.

e. The terms "covered transaction," "debarred," "suspended," "ineligible," "lower tier covered transaction," "participant," "person," "primary covered transaction," "principal," "proposal," and "voluntarily excluded," as used in this clause, have the meanings set out in the Definitions and Coverage sections of rules implementing Executive Order 12549. You may contact the department or agency to which this proposal is submitted for assistance in obtaining a copy of those regulations.

f. The prospective primary participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency entering into this transaction.

g. The prospective primary participant further agrees by submitting this proposal that it will include the clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," provided by the department or agency entering into this covered transaction, without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions.

h. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant may decide the method and frequency by which it determines the eligibility of its principals. Each participant may, but is not required to, check the nonprocurement portion of the "Lists of Parties Excluded From Federal Procurement or Nonprocurement Programs" (Nonprocurement List) which is compiled by the General Services Administration.

i. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause.
The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

j. Except for transactions authorized under paragraph f of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause or default.

* * * * *

Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion--Primary Covered Transactions

1. The prospective primary participant certifies to the best of its knowledge and belief, that it and its principals:
 a. Are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from covered transactions by any Federal department or agency;
 b. Have not within a 3-year period preceding this proposal been convicted of or had a civil judgment rendered against them for commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, State or local) transaction or contract under a public transaction; violation of Federal or State antitrust statutes or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, or receiving stolen property;
 c. Are not presently indicted for or otherwise criminally or civilly charged by a governmental entity (Federal, State or local) with commission of any of the offenses enumerated in paragraph 1b of this certification; and
 d. Have not within a 3-year period preceding this application/proposal had one or more public transactions (Federal, State or local) terminated for cause or default.

2. Where the prospective primary participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

* * * * *

1. Instructions for Certification - Lower Tier Covered Transactions:

(Applicable to all subcontracts, purchase orders and other lower tier transactions of $25,000 or more - 49 CFR 29)

a. By signing and submitting this proposal, the prospective lower tier is providing the certification set out below.
b. The certification in this clause is a material representation of fact upon which reliance was placed when this transaction was entered into. If it is later determined that the prospective lower tier participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department, or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

c. The prospective lower tier participant shall provide immediate written notice to the person to which this proposal is submitted if at any time the prospective lower tier participant learns that its certification was erroneous by reason of changed circumstances.

d. The terms "covered transaction," "debarred," "suspended," "ineligible," "primary covered transaction," "participant," "person," "principal," "proposal," and "voluntarily excluded," as used in this clause, have the meanings set out in the Definitions and Coverage sections of rules implementing Executive Order 12549. You may contact the person to which this proposal is submitted for assistance in obtaining a copy of those regulations.

e. The prospective lower tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency with which this transaction originated.

f. The prospective lower tier participant further agrees by submitting this proposal that it will include this clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions.

g. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant may decide the method and frequency by which it determines the eligibility of its principals. Each participant may, but is not required to, check the Nonprocurement List.

h. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

i. Except for transactions authorized under paragraph e of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

* * * * *
Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion—Lower Tier Covered Transactions:

0. The prospective lower tier participant certifies, by submission of this proposal, that neither it nor its principals is presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participation in this transaction by any Federal department or agency.

1. Where the prospective lower tier participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

* * * * *

VII. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING

(Applicable to all Federal-aid construction contracts and to all related subcontracts which exceed $100,000 - 49 CFR 20)

1. The prospective participant certifies, by signing and submitting this bid or proposal, to the best of his or her knowledge and belief, that:

a. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.

b. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, "Disclosure Form to Report Lobbying," in accordance with its instructions.

2. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by 31 U.S.C. 1352. Any person who fails to file the required certification shall be subject to a civil penalty of not less than $10,000 and not more than $100,000 for each such failure.

3. The prospective participant also agrees by submitting his or her bid or proposal that he or she shall require that the language of this certification be included in all lower tier subcontracts, which exceed $100,000 and that all such recipients shall certify and disclose accordingly.

© FHWA

United States Department of Transportation - Federal Highway Administration - Infrastructure
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Required Contract Provisions Federal-Aid Construction Contracts

1. Subsections IV and V; Modify the following wording below the subheading to read as follows:

“(Applicable to all Federal-aid construction contracts exceeding $2,000 and to all related subcontracts.)”

2. Subsections V.2.b.; Delete the wording referencing “social security number” in the first sentence and Substitute “and the last four digits of the social security number”.

APPENDIX A
NOTICE TO CONTRACTORS
COMPLIANCE WITH TITLE VI OF THE CIVIL RIGHTS ACT OF 1964
FOR
FEDERAL-AID CONTRACTS

During the performance of this Contract, the Contractor, for itself, its assignees and successors in interest (hereinafter referred to as the “Contractor”), agrees as follows:

1. Compliances with Regulations: The Contractor will comply with the Regulations of the Department of Transportation relative to nondiscrimination in Federally-assisted programs of the Department of Transportation (Title 49, Code of Federal Regulations, Part 21, hereinafter referred to as the “Regulations”), which are herein incorporated by reference and made a part of the Contract.

2. Nondiscrimination: The Contractor, with regard to the work performed by it afterward and prior to completion of the contract work, will not discriminate on the ground of race, color, national origin, disability, sex, or age in the selection and retention of subcontracts including procurements of materials and leases of equipment. This will be done in accordance with Title VI of the Civil Rights Act of 1964 and other Non-Discrimination Authorities i.e., Section 504 of the 1973 Rehabilitation Act, the 1973 Federal-Aid Highway Act, the 1975 Age Discrimination Act, and the Americans with Disabilities Act of 1990. The Contractor will not participate either directly or indirectly in the discrimination prohibited by Section 21.5 of the Regulations, including employment practices when contract covers a program set forth in Appendix B of the Regulations. In addition, the Contractor will not participate either directly or indirectly in discrimination prohibited by 23 CFR 710.405 (b).

3. Solicitations for subcontracts, including procurements of materials and equipment: In all solicitations, either by competitive bidding or negotiation made by the Contractor for work to be performed under a subcontract, including procurements of materials or equipment, each potential subcontractor or supplier shall be notified by the Contractor of the Contractor’s obligations under this Contract and the Regulations relative to nondiscrimination on the ground of race, color, national origin, disability, sex or age.
4. **Information and Reports:** The Contractor will provide all information and reports required by the Regulations, or orders and instructions issued pursuant thereto, and will permit access to its books, records, accounts, other sources of information, and its facilities as may be determined by the Department of Transportation or the Federal Highway Administration to be pertinent to ascertain compliance with such Regulations, orders and instructions. Where any information required of a Contractor is in the exclusive possession of another who fails or refuses to furnish this information, the Contractor shall so certify to the Department of Transportation, or the Federal Highway Administration as appropriate, and shall set forth what efforts it has made to obtain the information.

5. **Sanctions for Noncompliance:** In the event of the Contractor’s noncompliance with the nondiscrimination provisions of this Contract, the Department of Transportation shall impose such Contract sanctions as it or the Federal Highway Administration may determine to be appropriate, including, but not limited to:

 (a) withholding of payments to the Contractors under the Contract until the Contractor complies, and/or

 (b) Cancellation, termination or suspension of the Contract, in whole or in part.

6. **Incorporation of Provisions:** The Contractor will include the provisions of paragraph (1) through (6) in every subcontract, including procurements of materials and leases of equipment, unless exempt by the Regulations, orders or instruction issued pursuant thereto. The Contractor will take such action with respect to any subcontract or procurement as the Department of Transportation or the Federal Highway Administration may direct as a means of enforcing such provisions including sanctions for noncompliance. Provided, however, that in the event a Contractor becomes involved in, or is threatened with, litigation with a subcontractor or supplier as result of such direction, the Contractor may request the State to enter into such litigation to protect the interests of the State, and, in addition, the Contractor may request the United States to enter into such litigation to protect the interest of the United States.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

U. S. Department of Labor

GENERAL WAGE DECISION NO. GA080305 06/26/2009 GA305

State: GEORGIA
County(ies): ATKINSON

Construction Type: Highway

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Number Publication Date
0 06/26/2009

SUGA 2009-001 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.55 0.00</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41 0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43 1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50 0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50 0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.86 0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.20 1.01</td>
</tr>
<tr>
<td>OPERATOR: BULDOZER</td>
<td>15.75 0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.89 0.00</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78 1.03</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20 1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90 1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.23 0.00</td>
</tr>
</tbody>
</table>

WELDER – Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080306 06/26/2009 GA306

State: GEORGIA
County(ies): BALDWIN

Construction Type: Highway

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; and other major bridges).
SUGA 2009-002 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER (FORM WORK ONLY)</td>
<td>12.45</td>
<td>2.71</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.07</td>
<td>2.40</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.40</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.01</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.70</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.03</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>10.96</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDER – Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080307 06/26/2009 GA307

State: GEORGIA

County(ies): FANNIN

Construction Type: Highway

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; and other major bridges).

SUGA 2009-003 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER (FORM WORK ONLY)</td>
<td>12.02</td>
<td>2.55</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: ASPHALT RAKER</td>
<td>11.40</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.34</td>
<td>0.89</td>
</tr>
<tr>
<td>LABORER: FLAGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
</tbody>
</table>
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

OPERATOR: BACKHOE/EXCAVATOR .. 12.06 0.00
OPERATOR: BLADE/GRADER ... 13.90 1.40
OPERATOR: BULLDOZER ... 13.48 1.67
OPERATOR: CRANE .. 15.56 3.95
OPERATOR: MECHANIC .. 15.78 1.13
OPERATOR: SWEEPER ... 13.20 1.40
OPERATOR: ROLLER ... 11.86 1.34
TRUCK DRIVER .. 12.36 1.40

WELDER – Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080308 06/26/2009 GA308

State: GEORGIA

Construction type: Highway

County(ies): LAURENS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; and other major bridges).

Modification Number Publication Date
0 06/26/2009

SUGA 2009-004 05/22/2009

RATES FRINGES

CARPENTER (FORM WORK ONLY) .. 12.05 0.00
CEMENT MASON/CONCRETE FINISHER .. 11.07 2.40
LABORER: COMMON OR GENERAL ... 8.41 0.00
LABORER: FLAGGER ... 8.43 1.39
LABORER: PIPELAYER .. 8.50 0.00
OPERATOR: ASPHALT PAVER .. 14.50 0.86
OPERATOR: BACKHOE/EXCAVATOR ... 11.40 0.00
OPERATOR: BLADE/GRADER ... 13.90 1.40
OPERATOR: BULLDOZER ... 13.01 0.00
OPERATOR: CRANE .. 15.38 0.00
OPERATOR: MECHANIC ... 15.78 1.03
OPERATOR: SWEEPER ... 13.20 1.40
OPERATOR: ROLLER .. 11.90 1.34
TRUCK DRIVER .. 12.55 0.00

WELDER – Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION No. GA080309 06/26/2009 GA309

State: GEORGIA

Construction type: Highway

County(ies): RANDOLPH

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; other major bridges).

Modification Number Publication Date
00 06/26/2009

SUGA 1990-005 05/01/1990

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.55</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.86</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>15.75</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.89</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
</tr>
<tr>
<td>OPERATOR: SWEeper</td>
<td>13.20</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.23</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080310 06/26/2009 GA310

State: GEORGIA

Construction type: Highway

County(ies): TOWNS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; other major bridges).
SUGA2009-006 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.02</td>
<td>2.55</td>
</tr>
<tr>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>11.40</td>
<td>1.39</td>
</tr>
<tr>
<td>9.19</td>
<td>1.40</td>
</tr>
<tr>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>12.06</td>
<td>0.00</td>
</tr>
<tr>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>13.48</td>
<td>1.67</td>
</tr>
<tr>
<td>15.56</td>
<td>3.95</td>
</tr>
<tr>
<td>15.78</td>
<td>1.13</td>
</tr>
<tr>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>12.06</td>
<td>1.31</td>
</tr>
<tr>
<td>12.36</td>
<td>1.40</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080311 06/26/2009 GA311

State: GEORGIA

Construction Type: Highway

County(ies): WHITE

Construction description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

SUGA 2009-007 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.02</td>
<td>2.55</td>
</tr>
<tr>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>11.40</td>
<td>1.39</td>
</tr>
<tr>
<td>9.50</td>
<td>1.13</td>
</tr>
<tr>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>14.50</td>
<td>0.86</td>
</tr>
</tbody>
</table>
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

<table>
<thead>
<tr>
<th>OPERATOR: BACKHOE/EXCAVATOR</th>
<th>12.06</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.48</td>
<td>1.67</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.56</td>
<td>3.95</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.13</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.86</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>12.36</td>
<td>1.40</td>
</tr>
</tbody>
</table>

WELDERS: Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080312 06/26/2009 GA312

State: GEORGIA

Construction type: Highway

County(ies): WILCOX

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Number Publication Date
0 06/26/2009

SUGA2009-008 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.45</td>
<td>2.71</td>
</tr>
<tr>
<td>11.07</td>
<td>2.40</td>
</tr>
<tr>
<td>8.41</td>
<td>0.00</td>
</tr>
<tr>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>11.40</td>
<td>0.00</td>
</tr>
<tr>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>13.01</td>
<td>0.00</td>
</tr>
<tr>
<td>14.70</td>
<td>0.00</td>
</tr>
<tr>
<td>15.78</td>
<td>1.03</td>
</tr>
<tr>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>11.90</td>
<td>1.34</td>
</tr>
<tr>
<td>10.96</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS: Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080313 06/26/2009 GA313

State: GEORGIA

Construction Type: Highway

County(ies): APPLING AND BACON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Number Publication Date
0 06/26/2009

SUGA2009-009 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.55 0.00</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41 0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43 1.39</td>
</tr>
<tr>
<td>LABOR: PIPELAYER</td>
<td>8.50 0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50 0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.86 0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90 1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>15.75 0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.89 0.00</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78 1.03</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20 1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90 1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.23 0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080314 6/26/2009 GA314

State: GEORGIA

Construction type: Highway

County(ies): BANKS, FRANKLIN, GILMER, GORDON, HABERSHAM, HART, LUMPKIN, MORGAN, POLK, RABUN, STEPHENS AND UNION

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009
SUGA 2009-010 05/22/2009
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

RATES FRINGES

CARPENTER: (FORM WORK ONLY) ... 12.02 2.55
CEMENT MASON/CONCRETE FINISHER .. 12.03 0.00
LABORER: ASPHALT RAKER .. 11.40 1.39
LABORER: COMMON OR GENERAL .. 9.25 1.57
LABORER: FLAGGER ... 8.43 1.39
LABORER: PIPELAYER ... 8.50 0.00
OPERATOR: ASPHALT PAVER ... 14.50 0.86
OPERATOR: BACKHOE/EXCAVATOR 12.06 0.00
OPERATOR: BLADE/GRADER ... 13.90 1.40
OPERATOR: BULLDOZER .. 13.48 1.67
OPERATOR: CRANE .. 15.56 3.95
OPERATOR: MECHANIC ... 15.78 1.13
OPERATOR: SWEEPER .. 13.20 1.40
OPERATOR: ROLLER .. 11.86 1.34
TRUCK DRIVER ... 12.36 1.40

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080315 6/26/2009 GA315

State: GEORGIA

Construction type: Highway

County(ies): BEN HILL, BERRIEN, CALHOUN, CAMDEN, CLAY, CLINCH, COFFEE, COLQUITT, COOK, DECATUR, GRADY, IRWIN, JEFF DAVIS, MITCHELL, PIERCE, QUITMAN, TELFAIR, THOMAS, TIFT, TURNER, WARE AND WAYNE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-011 05/22/2009

RATES FRINGES

CEMENT MASON/CONCRETE FINISHER ... 11.55 0.00
LABORER: COMMON OR GENERAL .. 8.41 0.00
LABORER: FLAGGER ... 8.43 1.39
LABORER: PIPELAYER ... 8.50 0.00
OPERATOR: ASPHALT PAVER ... 14.50 0.86
OPERATOR: BACKHOE/EXCAVATOR 11.86 0.00
OPERATOR: BLADE/GRADER ... 13.90 1.40
OPERATOR: BULLDOZER .. 15.75 0.00
OPERATOR: CRANE .. 13.89 0.00
GENERAL WAGE DECISION NO. GA080316 6/26/2009 GA316

State: GEORGIA

Construction type: Highway

County(ies): BLECKLEY, CRISP, DODGE, DOOLY, MACON, PEACH, PULASKI, PUTNAM, SCHLEY, SUMTER, TALBOT, TAYLOR, TROUP, WEBSTER AND WILKINSON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-012 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER (FORM WORK ONLY)</td>
<td>12.45</td>
<td>2.71</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.07</td>
<td>2.40</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.40</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.01</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.70</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.03</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>10.96</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080317 6/26/2009 GA317

State: GEORGIA

Construction type: Highway

County(ies): BULLOCH, CANDLER, EMANUEL, EVANS, GLASCOCK, HANCOCK, JEFFERSON, JENKINS, JOHNSON, LINCOLN, MONTGOMERY, TATTNALL, TOOMBS, TREUTLEN, WARREN AND WASHINGTON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-013 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.52</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.06</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>11.69</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.07</td>
<td>3.95</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.13</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.86</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>12.31</td>
<td>1.40</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080318 6/26/2009 GA318

State: GEORGIA

Construction type: Highway

County(ies): CHARLTON, EARLY, MILLER AND SEMINOLE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-014 05/22/2009
GENERAL WAGE DECISION NO. GA080319 6/26/2009 GA319

State: GEORGIA

Construction type: Highway

County(ies): CHATTOOGA AND ELBERT,

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Description</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.55</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.86</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>15.75</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.89</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.03</td>
</tr>
<tr>
<td>OPERATOR: SWEeper</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.23</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. SUGA 2009-015 05/22/2009

<table>
<thead>
<tr>
<th>Description</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER (FORM WORK ONLY)</td>
<td>12.02</td>
<td>2.55</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.25</td>
<td>1.57</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.06</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.48</td>
<td>1.67</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.56</td>
<td>3.95</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.13</td>
</tr>
<tr>
<td>OPERATOR: SWEeper</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.86</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>12.36</td>
<td>1.40</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080320 6/26/2009 GA320

State: GEORGIA

Construction type: Highway

County(ies): GREENE AND JACKSON,

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-016 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER (FORM WORK ONLY)</td>
<td>12.02</td>
<td>2.55</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: ASPHALT RAKER</td>
<td>11.40</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.25</td>
<td>1.57</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE</td>
<td>12.06</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.48</td>
<td>1.67</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.56</td>
<td>3.95</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.13</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.86</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>12.36</td>
<td>1.40</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080321 6/26/2009 GA321

State: GEORGIA

Construction type: Highway

County(ies): SCREVEN, TALIAFERRO, WHEELER AND WILKES

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-017 05/22/2009
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

<table>
<thead>
<tr>
<th>Craft</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.03</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.52</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.06</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>11.69</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.07</td>
<td>3.95</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.13</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.86</td>
<td>1.34</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>12.31</td>
<td>1.40</td>
</tr>
</tbody>
</table>

GENERAL WAGE DECISION NO. GA080322 6/26/2009 GA322

State: GEORGIA

Construction type: Highway

County(ies): STEWART AND UPSON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: 0 Publication Date: 06/26/2009

SUGA 2009-018 05/22/2009

<table>
<thead>
<tr>
<th>Craft</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER (FORM WORK ONLY)</td>
<td>12.45</td>
<td>2.71</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.07</td>
<td>2.40</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.41</td>
<td>0.00</td>
</tr>
<tr>
<td>LABORER: FLAGGER</td>
<td>8.43</td>
<td>1.39</td>
</tr>
<tr>
<td>LABORER: PIPELAYER</td>
<td>8.50</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>14.50</td>
<td>0.86</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.40</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BLADE/GRADER</td>
<td>13.90</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.01</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.70</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: MECHANIC</td>
<td>15.78</td>
<td>1.03</td>
</tr>
<tr>
<td>OPERATOR: SWEEPER</td>
<td>13.20</td>
<td>1.40</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.90</td>
<td>1.34</td>
</tr>
</tbody>
</table>
GENERAL WAGE DECISION NO. GA080323 6/26/2009 GA323

State: GEORGIA

Construction type: Highway
County(ies): BAKER

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-019 05/22/2009

RATES FRINGES
Carpenter (including form work) .. 12.04 0.00
Cement Mason/concrete finisher .. 12.30 0.00
Ironworker, reinforcing ... 11.80 1.85
Laborer: common or general .. 8.54 0.00
Operator: asphalt paver ... 12.00 0.00
Operator: asphalt spreader ... 10.36 1.57
Operator: backhoe/excavator .. 11.90 0.00
Operator: bulldozer .. 12.50 1.34
Operator: crane .. 14.49 0.00
Operator: grader/blade ... 12.00 0.00
Operator: loader ... 11.43 0.00
Operator: screed .. 13.38 1.63
Operator: screed .. 10.94 1.35
Truck driver .. 11.05 1.22

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080324 6/26/2009 GA324

State: GEORGIA

Construction type: Highway
County(ies): BARROW

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).
GENERAL WAGE DECISION NO. GA080325 7/24/2009 GA325

State: GEORGIA
Construction type: Highway
County(ies): BRANTLEY

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
<tr>
<td>1</td>
<td>06/26/2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUGA 2009-021 05/22/2009</th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>8.72</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>7.25</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.33</td>
<td>1.36</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.79</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>13.38</td>
<td>4.99</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080326 6/26/2009 GA326

State: GEORGIA

Construction type: Highway

County(ies): BROOKS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-022 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>8.54</td>
<td>0.00</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>12.71</td>
<td>1.99</td>
</tr>
<tr>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080327 7/24/2009 GA327

State: GEORGIA

Construction type: Highway

County(ies): BRYAN

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
<tr>
<td>1</td>
<td>07/24/2009</td>
</tr>
</tbody>
</table>

SUGA 2009-023 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.19</td>
<td>0.26</td>
</tr>
<tr>
<td>8.72</td>
<td>0.00</td>
</tr>
<tr>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>7.25</td>
<td>0.00</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>13.33</td>
<td>1.36</td>
</tr>
<tr>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>14.79</td>
<td>0.00</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>9.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080328 6/26/2009 GA328

State: GEORGIA

Construction type: Highway

County(ies): BUTTS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
</tbody>
</table>

SUGA 2009-024 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01</td>
<td>2.37</td>
</tr>
<tr>
<td>12.07</td>
<td>0.00</td>
</tr>
<tr>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>9.41</td>
<td>1.63</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.36</td>
<td>1.57</td>
</tr>
</tbody>
</table>
GENERAL WAGE DECISION NO. GA080329 6/26/2009 GA329

State: GEORGIA

Construction type: Highway
County(ies): CATOOSA

Modification Date Publication Date
0 06/26/2009

SUGA 2009-025 05/22/2009

RATES FRINGES
CARPENTER, (Including form work)...11.29 0.52
CEMENT MASON/CONCRETE FINISHER ..11.66 0.52
IRONWORKER, REINFORCING...11.80 1.85
LABORER: COMMON OR GENERAL...8.66 0.52
OPERATOR: ASPHALT PAVER...12.00 0.00
OPERATOR: ASPHALT SPREADER...10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR...14.79 0.51
OPERATOR: BULLDOZER...13.68 1.72
OPERATOR: CRANE..13.57 0.53
OPERATOR: GRADER/BLADE...12.00 0.00
OPERATOR: LOADER..11.43 0.00
OPERATOR: ROLLER...10.92 1.35
OPERATOR: SCREED..13.38 1.63
TRUCK DRIVER..10.99 0.00

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080330 7/24/2009 GA330

State: GEORGIA

Construction type: Highway
County(ies): CHATHAM

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009
1 07/24/2009

SUGA 2009-026 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work) ... 13.19</td>
<td>0.26</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER .. 8.72</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING ... 11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL .. 7.25</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER ... 12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER .. 10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR ... 13.33</td>
<td>1.36</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER ... 13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE ... 14.79</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE ... 12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER ... 11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER ... 10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED ... 13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER ... 9.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080331 6/26/2009 GA331

State: GEORGIA

Construction type: Highway
County(ies): CHATTAAHOOCHEE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-027 05/22/2009
<table>
<thead>
<tr>
<th>Occupation</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpenter (Including form work)</td>
<td>12.01</td>
<td>2.37</td>
</tr>
<tr>
<td>Cement Mason/Concrete Finisher</td>
<td>12.07</td>
<td>0.00</td>
</tr>
<tr>
<td>Ironworker, Reinforcing</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>Laborer: Common or General</td>
<td>9.41</td>
<td>1.63</td>
</tr>
<tr>
<td>Operator: Asphalt Paver</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Operator: Asphalt Spreader</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>Operator: Backhoe/Excavator</td>
<td>13.67</td>
<td>1.62</td>
</tr>
<tr>
<td>Operator: Bulldozer</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>Operator: Crane</td>
<td>15.33</td>
<td>1.75</td>
</tr>
<tr>
<td>Operator: Grader/Blade</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>Operator: Loader</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Operator: Roller</td>
<td>11.83</td>
<td>1.60</td>
</tr>
<tr>
<td>Operator: Screed</td>
<td>13.38</td>
<td>4.99</td>
</tr>
<tr>
<td>Truck Driver</td>
<td>13.38</td>
<td>4.99</td>
</tr>
</tbody>
</table>

Welders - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080332 6/26/2009 GA332

State: GEORGIA

Construction type: Highway

County(ies): COWETA

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: Publication Date

0 06/26/2009

SUGA 2009-028 05/22/2009
State: GEORGIA

Construction type: Highway

County(ies): DADE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-029 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>11.49</td>
<td>0.52</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.28</td>
<td>0.49</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.68</td>
<td>0.52</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>14.79</td>
<td>0.51</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.30</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>10.99</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080334 6/26/2009 GA334

State: GEORGIA

Construction type: Highway

County(ies): DAWSON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-030 05/22/2009
CARPENTER, (Including form work) ... 12.01 2.37
CEMENT MASON/CONCRETE FINISHER ... 12.07 0.00
IRONWORKER, REINFORCING ... 11.80 1.85
LABORER: COMMON OR GENERAL ... 8.28 1.61
OPERATOR: ASPHALT PAVER ... 12.00 0.00
OPERATOR: ASPHALT SPREADER ... 10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR ... 13.67 1.62
OPERATOR: BULLDOZER .. 13.68 1.72
OPERATOR: CRANE .. 15.33 1.75
OPERATOR: GRADER/BLADE .. 12.00 0.00
OPERATOR: LOADER .. 11.00 0.00
OPERATOR: ROLLER .. 11.83 1.60
OPERATOR: SCREED ... 13.38 1.63
TRUCK DRIVER ... 13.38 4.99

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080335 6/26/2009 GA335

State: GEORGIA

Construction type: Highway
County(ies): DEKALB

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-031 05/22/2009

CARPENTER, (Including form work) ... 12.01 2.37
CEMENT MASON/CONCRETE FINISHER ... 12.07 0.00
IRONWORKER, REINFORCING ... 11.80 1.85
LABORER: COMMON OR GENERAL ... 9.25 0.00
OPERATOR: ASPHALT PAVER ... 12.00 0.00
OPERATOR: ASPHALT SPREADER ... 10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR ... 13.67 1.62
OPERATOR: BULLDOZER .. 13.68 1.72
OPERATOR: CRANE .. 15.33 1.75
OPERATOR: GRADER/BLADE .. 12.00 0.00
OPERATOR: LOADER .. 11.00 0.00
OPERATOR: ROLLER .. 11.83 1.60
OPERATOR: SCREED ... 13.38 1.63
TRUCK DRIVER ... 13.38 4.99

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080336 6/26/2009 GA336

State: GEORGIA
Construction type: Highway
County(ies): DOUGHERTY

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
</tbody>
</table>

SUGA 2009-032 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>12.30</td>
<td>0.00</td>
</tr>
<tr>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>8.54</td>
<td>0.00</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>11.42</td>
<td>0.00</td>
</tr>
<tr>
<td>11.42</td>
<td>0.00</td>
</tr>
<tr>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080337 6/26/2009 GA337

State: GEORGIA
Construction type: Highway
County(ies): ECHOLS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
</tbody>
</table>

SUGA 2009-033 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RATES | **FRINGES**
---|---
CARPENTER, (Including form work) | 12.04 | 0.00
CEMENT MASON/CONCRETE FINISHER | 12.00 | 1.32
IRONWORKER, REINFORCING | 11.80 | 1.85
LABORER: COMMON OR GENERAL | 8.54 | 0.00
OPERATOR: ASPHALT PAVER | 12.00 | 0.00
OPERATOR: ASPHALT SPREADER | 10.36 | 1.57
OPERATOR: BACKHOE/EXCAVATOR | 12.71 | 1.99
OPERATOR: BULLDOZER | 12.50 | 1.34
OPERATOR: CRANE | 14.49 | 0.00
OPERATOR: GRADER/BLADE | 12.00 | 0.00
OPERATOR: LOADER | 11.43 | 0.00
OPERATOR: ROLLER | 10.99 | 1.34
OPERATOR: SCREED | 13.38 | 1.63
TRUCK DRIVER | 11.05 | 1.22

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080338 7/24/2009 GA338

State: GEORGIA

Construction type: Highway

County(ies): EFFINGHAM

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date	Publication Date
0 | 06/26/2009
1 | 07/24/2009

SUGA 2009-034 05/22/2009

RATES	**FRINGES**
CARPENTER, (Including form work) | 13.19 | 0.26
CEMENT MASON/CONCRETE FINISHER | 8.72 | 0.00
IRONWORKER, REINFORCING | 11.80 | 1.85
LABORER: COMMON OR GENERAL | 7.25 | 0.00
OPERATOR: ASPHALT PAVER | 12.00 | 0.00
OPERATOR: ASPHALT SPREADER | 10.36 | 1.57
OPERATOR: BACKHOE/EXCAVATOR | 13.33 | 1.36
OPERATOR: BULLDOZER | 13.68 | 1.72
OPERATOR: CRANE | 14.79 | 0.00
OPERATOR: GRADER/BLADE | 12.00 | 0.00
OPERATOR: LOADER | 11.43 | 0.00
OPERATOR: ROLLER | 10.92 | 1.35
OPERATOR: SCREED | 13.38 | 1.63
TRUCK DRIVER | 9.00 | 0.00

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080339 6/26/2009 GA339

State: GEORGIA
Construction type: Highway
County(ies): FAYETTE

Construction Description:
HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-035 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.01</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.07</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.41</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.67</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.33</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.83</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>13.38</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080340 6/26/2009 GA340

State: GEORGIA
Construction type: Highway
County(ies): FLOYD

Construction Description:
HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-036 05/22/2009
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

RATES FRINGES
CARPENTER………………………..……………………………………………..11.75 0.66
CEMENT MASON/CONCRETE FINISHER .. 11.39 0.47
IRONWORKER, REINFORCING………………………………………………...11.80 1.85
LABORER: COMMON OR GENERAL ... 8.25 0.02
OPERATOR: ASPHALT PAVER .. 12.00 0.00
OPERATOR: ASPHALT SPREADER .. 10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR ... 14.79 0.51
OPERATOR: BULLDOZER .. 13.68 1.72
OPERATOR: CRANE .. 13.37 0.00
OPERATOR: GRADER/BLADE ... 12.00 0.00
OPERATOR: LOADER .. 11.43 0.00
OPERATOR: ROLLER .. 10.92 1.35
OPERATOR: SCREED .. 13.38 1.63
TRUCK DRIVER .. 13.38 1.81

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080341 6/26/2009 GA341

State: GEORGIA
Construction type: Highway
County(ies): FORSYTH

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-037 05/22/2009

RATES FRINGES
CARPENTER, (Including form work)……………………………………………..12.01 2.37
CEMENT MASON/CONCRETE FINISHER .. 12.07 0.00
IRONWORKER, REINFORCING………………………………………………...11.80 1.85
LABORER: COMMON OR GENERAL ... 9.25 2.02
OPERATOR: ASPHALT PAVER .. 12.00 0.00
OPERATOR: ASPHALT SPREADER .. 10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR ... 13.67 1.62
OPERATOR: BULLDOZER .. 13.68 1.72
OPERATOR: CRANE .. 15.33 1.75
OPERATOR: GRADER/BLADE ... 12.00 0.00
OPERATOR: LOADER .. 11.00 0.00
OPERATOR: ROLLER .. 11.83 1.60
OPERATOR: SCREED .. 13.38 1.63
TRUCK DRIVER.. 13.38 4.99

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080342 6/26/2009 GA342

State: GEORGIA

Construction type: Highway
County(ies): FULTON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-038 05/22/2009

RATES FRINGES
CARPENTER, (Including form work) ... 12.13 1.60
CEMENT MASON/CONCRETE FINISHER .. 12.05 0.52
IRONWORKER, REINFORCING ... 11.80 1.85
LABORER: COMMON OR GENERAL .. 9.27 0.56
OPERATOR: ASPHALT PAVER ... 12.00 0.00
OPERATOR: ASPHALT SPREADER .. 10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR ... 15.31 0.00
OPERATOR: BULLDOZER ... 13.68 1.72
OPERATOR: CRANE ... 15.87 1.04
OPERATOR: GRADER/BLADE ... 12.00 0.00
OPERATOR: LOADER .. 11.00 0.00
OPERATOR: ROLLER .. 11.83 1.60
OPERATOR: SCREED .. 13.38 1.63
TRUCK DRIVER ... 13.38 4.99

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080343 7/24/2009 GA343

State: GEORGIA

Construction type: Highway
County(ies): GLYNN

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009
1 07/24/2009

SUGA 2009-039 05/22/2009

74
Carpenter (Including form work)………………………..12.75 2.90
Cement Mason/Concrete Finisher………………………..12.07 0.00
Ironworker, Reinforcing………………………….11.80 1.85
Laborer: Common or General…………………….9.17 0.00
Operator: Asphalt Paver……………………12.00 0.00
Operator: Asphalt Spreader……………………10.36 1.57
Operator: Backhoe/Excavator………………….13.67 1.62
Operator: Bulldozer……………………13.68 1.72
Operator: Crane……………………………………15.33 1.75
Operator: Grader/Blade……………………12.00 0.00
Operator: Loader…………………………………..11.00 0.00
Operator: Roller…………………………………..11.83 1.60
Operator: Screed…………………………………..13.38 1.63
Truck Driver………………………………………13.38 4.99
Welders - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080344 6/26/2009 GA344

State: GEORGIA

Construction type: Highway
County(ies): GWINNETT

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
06/26/2009

SUGA 2009-040 05/22/2009

Carpenter, (Including form work)………………………..12.75 2.90
Cement Mason/Concrete Finisher………………………..12.07 0.00
Ironworker, Reinforcing………………………….11.80 1.85
Laborer: Common or General…………………….9.17 0.00
Operator: Asphalt Paver……………………12.00 0.00
Operator: Asphalt Spreader……………………10.36 1.57
Operator: Backhoe/Excavator………………….13.67 1.62
Operator: Bulldozer……………………13.68 1.72
Operator: Crane……………………………………15.33 1.75
Operator: Grader/Blade……………………12.00 0.00
Operator: Loader…………………………………..11.00 0.00
Operator: Roller…………………………………..11.83 1.60
Operator: Screed…………………………………..13.38 1.63
Truck Driver………………………………………13.38 4.99
Welders - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080345 6/26/2009 GA345

State: GEORGIA

Construction type: Highway

County(ies): HALL

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: 0
Publication Date: 06/26/2009

SUGA 2009-041 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>10.31</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.33</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.79</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>9.75</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>12.01</td>
</tr>
<tr>
<td>WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL WAGE DECISION NO. GA080346 6/26/2009 GA346

State: GEORGIA

Construction type: Highway

County(ies): HARRIS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: 0
Publication Date: 06/26/2009

SUGA 2009-042 05/22/2009
<table>
<thead>
<tr>
<th>Craft</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>INSTALLER - GUARDRAIL</td>
<td>8.93</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>7.45</td>
<td>1.11</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>10.88</td>
<td>1.27</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080347 6/26/2009 GA347

State: GEORGIA

Construction type: Highway

County(ies): HOUSTON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-043 05/22/2009

<table>
<thead>
<tr>
<th>Craft</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.54</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.71</td>
<td>1.99</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080348 6/26/2009 GA348

State: GEORGIA

Construction type: Highway
County(ies): LANIER

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-044 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER ..</td>
<td>12.04</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING ..</td>
<td>11.80</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.54</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER ..</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.71</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER ..</td>
<td>12.50</td>
</tr>
<tr>
<td>OPERATOR: CRANE ..</td>
<td>14.49</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE ..</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER ...</td>
<td>11.43</td>
</tr>
<tr>
<td>OPERATOR: ROLLER ..</td>
<td>10.92</td>
</tr>
<tr>
<td>OPERATOR: SCREED ..</td>
<td>13.38</td>
</tr>
<tr>
<td>TRUCK DRIVER ...</td>
<td>11.05</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080349 7/24/2009 GA349

State: GEORGIA

Construction type: Highway
County(ies): LONG

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009
1 07/24/2009

SUGA 2009-045 05/22/2009

78
<table>
<thead>
<tr>
<th>Occupation</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>8.72</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>7.25</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.33</td>
<td>1.36</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.79</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>9.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080350 6/26/2009 GA350

State: GEORGIA

Construction type: Highway

County(ies): LOWNDES

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: 0
Publication Date: 06/26/2009

SUGA 2009-046 05/22/2009

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.54</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.71</td>
<td>1.99</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080351 6/26/2009 GA351

State: GEORGIA

Construction type: Highway
County(ies): MCDUFFIE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-047 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>10.31</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.33</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.79</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>9.75</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.34</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080352 6/26/2009 GA352

State: GEORGIA

Construction type: Highway
County(ies): MONROE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-048 05/22/2009

80
<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>10.16</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.71</td>
<td>1.99</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080353 6/26/2009 GA353

State: GEORGIA

Construction type: Highway

County(ies): MURRAY

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: 0 Publication Date: 06/26/2009

SUGA 2009-049 05/22/2009

<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>11.40</td>
<td>0.54</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.90</td>
<td>0.50</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.58</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>14.79</td>
<td>0.51</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.37</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.13</td>
<td>1.81</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080354 6/26/2009 GA354

State: GEORGIA
Construction type: Highway
County(ies): ROCKDALE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
</tbody>
</table>

SUGA 2009-050 05/22/2009

<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.01</td>
<td>2.37</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.07</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.41</td>
<td>1.63</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.67</td>
<td>1.62</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.33</td>
<td>1.75</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.83</td>
<td>1.60</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>13.38</td>
<td>4.99</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080355 6/26/2009 GA355

State: GEORGIA
Construction type: Highway
County(ies): TERRELL

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Modification Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>06/26/2009</td>
</tr>
</tbody>
</table>

SUGA 2009-051 05/22/2009
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

<table>
<thead>
<tr>
<th>Craft/Operator Description</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.30</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.54</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.90</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080356 6/26/2009 GA356

State: GEORGIA

Construction type: Highway

County(ies): TWIGGS

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

- **Modification Date:** 0
- **Publication Date:** 06/26/2009

SUGA 2009-052 05/22/2009

<table>
<thead>
<tr>
<th>Craft/Operator Description</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>10.16</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.71</td>
<td>1.99</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080357 6/26/2009 GA357

State: GEORGIA

Construction type: Highway
County(ies): WALKER

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-053 05/22/2009

<table>
<thead>
<tr>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.08</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>10.80</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.68</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>14.79</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.30</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>10.99</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080358 6/26/2009 GA358

State: GEORGIA

Construction type: Highway
County(ies): WHITFIELD

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-054 05/22/2009

84
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>11.40</td>
<td>0.54</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>11.90</td>
<td>0.50</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.58</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>14.79</td>
<td>0.51</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>13.37</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.13</td>
<td>1.81</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080359 6/26/2009 GA359

State: GEORGIA
Construction type: Highway
County(ies): BARTOW, CARROLL, CHEROKEE, CLAYTON, COBB, DOUGLAS, HARALSON, HEARD, HENRY, JASPER AND LAMAR

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date: 0
Publication Date: 06/26/2009

<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.01</td>
<td>2.37</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.07</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.41</td>
<td>1.63</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.67</td>
<td>1.62</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.33</td>
<td>1.75</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.83</td>
<td>1.60</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>13.38</td>
<td>4.99</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080360 6/26/2009 GA360

State: GEORGIA

Construction type: Highway

County(ies): BIBB, CRAWFORD AND JONES

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-056 05/22/2009

<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.00</td>
<td>1.32</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>10.16</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>12.71</td>
<td>1.99</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREAM</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080361 6/26/2009 GA361

State: GEORGIA

Construction type: Highway

County(ies): BURKE, CLARKE AND COLUMBIA

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-057 05/22/2009
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>10.31</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.00</td>
<td>0.15</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.33</td>
<td>1.36</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.79</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>9.75</td>
<td>0.19</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.34</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080362 6/26/2009 GA362

State: GEORGIA

Construction type: Highway
County(ies): LEE AND WORTH

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
06/26/2009 06/26/2009

SUGA 2009-058 05/22/2009

<table>
<thead>
<tr>
<th></th>
<th>RATES</th>
<th>FRINGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.04</td>
<td>0.00</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.30</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.54</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>11.90</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>12.50</td>
<td>1.34</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.49</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>10.92</td>
<td>1.35</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.05</td>
<td>1.22</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

GENERAL WAGE DECISION NO. GA080363 7/24/2009 GA363

State: GEORGIA

Construction type: Highway

County(ies): LIBERTY AND MCINTOSH

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009
1 07/24/2009

SUGA 2009-059 05/22/2009

RATES FRINGES

CARPENTER ... 11.75 0.66
CEMENT MASON/CONCRETE FINISHER 8.72 0.00
IRONWORKER, REINFORCING ... 11.80 1.85
LABORER: COMMON OR GENERAL ... 7.25 0.00
OPERATOR: ASPHALT PAPER ... 12.00 0.00
OPERATOR: ASPHALT SPREADER 10.36 1.57
OPERATOR: BACKHOE/EXCAVATOR 13.33 1.36
OPERATOR: BULLDOZER ... 13.68 1.72
OPERATOR: CRANE .. 14.79 0.00
OPERATOR: GRADER/BLADE .. 12.00 0.00
OPERATOR: LOADER ... 11.43 0.00
OPERATOR: ROLLER ... 10.92 1.35
OPERATOR: SCREED .. 13.38 1.63
TRUCK DRIVER ... 9.00 0.00
WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

GENERAL WAGE DECISION NO. GA080364 6/26/2009 GA364

State: GEORGIA

Construction type: Highway

County(ies): MADISON, OCONEE, OGLETORPE AND RICHMOND

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-060 05/22/2009
General Wage Decision No. GA080365 6/26/2009 GA3625

State: GEORGIA

Construction type: Highway

County(ies): MARION AND MUSCOGEE

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

<table>
<thead>
<tr>
<th>Craft Description</th>
<th>Rate</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER</td>
<td>11.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>10.31</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>8.00</td>
<td>0.15</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.33</td>
<td>1.36</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>14.79</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.43</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>9.75</td>
<td>0.19</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>11.34</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
GENERAL WAGE DECISION NO. GA080366 6/26/2009 GA366

State: GEORGIA

Construction type: Highway

County(ies): MERIWETHER, NEWTON, PAULDING, PICKENS, PIKE, SPALDING AND WALTON

Construction Description: HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects, and railroad construction; bascule, suspension, and spandrel arch bridges; bridges designed for commercial navigation; bridges involving marine construction; other major bridges).

Modification Date Publication Date
0 06/26/2009

SUGA 2009-062 05/22/2009

<table>
<thead>
<tr>
<th>Classification</th>
<th>Rates</th>
<th>Fringes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTER, (Including form work)</td>
<td>12.01</td>
<td>2.37</td>
</tr>
<tr>
<td>CEMENT MASON/CONCRETE FINISHER</td>
<td>12.07</td>
<td>0.00</td>
</tr>
<tr>
<td>IRONWORKER, REINFORCING</td>
<td>11.80</td>
<td>1.85</td>
</tr>
<tr>
<td>LABORER: COMMON OR GENERAL</td>
<td>9.41</td>
<td>1.63</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT PAVER</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ASPHALT SPREADER</td>
<td>10.36</td>
<td>1.57</td>
</tr>
<tr>
<td>OPERATOR: BACKHOE/EXCAVATOR</td>
<td>13.67</td>
<td>1.62</td>
</tr>
<tr>
<td>OPERATOR: BULLDOZER</td>
<td>13.68</td>
<td>1.72</td>
</tr>
<tr>
<td>OPERATOR: CRANE</td>
<td>15.33</td>
<td>1.75</td>
</tr>
<tr>
<td>OPERATOR: GRADER/BLADE</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: LOADER</td>
<td>11.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OPERATOR: ROLLER</td>
<td>11.83</td>
<td>1.60</td>
</tr>
<tr>
<td>OPERATOR: SCREED</td>
<td>13.38</td>
<td>1.63</td>
</tr>
<tr>
<td>TRUCK DRIVER</td>
<td>13.38</td>
<td>4.99</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29 CFR 5.5(a)(1)(ii)).
1. As used in these specifications:
 a. “Covered area” means the geographical area described in the solicitation from which this contract resulted;
 b. “Director” means Director, Office of Federal Contract Compliance Programs, United States Department of Labor, or any person to whom the Director delegated authority;
 d. “Minority” includes:
 i. Black (all persons having origins in any of the Black African racial groups not of Hispanic origin);
 ii. Hispanic (all persons of Mexican, Puerto Rican, Cuban, Central or South American or other Spanish Culture or origin, regardless of race);
 iii. Asian and Pacific Islander (all persons having origins in any of the original peoples of the Far East, Southeast Asia, the Indian Subcontinent, or the Pacific Islands); and
 iv. American Indian or Alaskan Native (all persons having origins in any of the original peoples of North America and maintaining identifiable tribal affiliations through membership and participation or community identification).

2. Whenever the Contractor, or any Subcontractor at any tier, subcontracts a portion of the work involving any construction trade, it shall physically include in each subcontract in excess of $10,000 the provisions of these specifications and the Notice which contains the applicable goals for minority and female participation and which is set forth in the solicitations from which this contract resulted.

3. If the Contractor is participating (pursuant to 41 CFR 60-4.5) in a Hometown Plan approved by the U.S. Department of Labor in the covered area either individually or through an association, its affirmative action obligations on all work in the Plan area (including goals and timetables) shall be in accordance with that Plan for those trades which have unions participating in the Plan. Contractors must be able to demonstrate their participation in and compliance with the provisions of any such Hometown Plan. Each Contractor or Subcontractor participating in an approved Plan is individually required to comply with its obligations under the EEO clause, and to make a good faith effort to achieve each goal under the Plan in each trade in which it has employees. The overall good faith performance by other Contractors or Subcontractors toward a goal in an approved Plan does not excuse any covered Contractor’s or Subcontractor’s failure to take good faith efforts to achieve the Plan goals and timetables.

4. The Contractor shall implement the specific affirmative action standards provided in paragraphs 7a through p of these specifications. The goals set forth in the solicitation from which this contact resulted are expressed as percentages of the total hours of employment and training of minority and female utilization the Contractor should reasonably be able to achieve in each construction trade in which it has employees in the covered area. The Contractor is expected to make substantially uniform progress toward its goals in each craft during the period specified.
5. Neither the provisions of any collective bargaining agreement, nor the failure by a union with whom the Contractor has a collective bargaining agreement, to refer either minorities or women shall excuse the Contractor’s obligations under these specifications, Executive Order 11246, nor the regulations promulgated pursuant thereto.

6. In order for the non-working training hours of apprentices and trainees to be counted in meeting the goals, such apprentices and trainees must be employed by the Contractor during the training period, and the Contractor must have made a commitment to employ the apprentices and trainees at the completion of their training, subject to the availability of employment opportunities. Trainees must be trained pursuant to training programs approved by the U.S. Department of Labor.

7. The Contractor shall take specific affirmative actions to ensure equal employment opportunity. The evaluation of the Contractor’s compliance with these specifications shall be based upon its effort to achieve maximum results from its actions. The Contractor shall document these efforts fully, and shall implement affirmative action steps at least as extensive as the following:

 a. Ensure and maintain a working environment free of harassment, intimidation, and coercion at all sites, and in all facilities at which the Contractor’s employees are assigned to work. The Contractor, where possible, will assign two or more women to each construction project. The Contractor shall specifically ensure that all foremen, superintendents, and other on-site supervisory personnel are aware of and carry out the Contractor’s obligation to maintain such a working environment, with specific attention to minority or female individuals working at such sites or in such facilities.

 b. Establish and maintain a current list of minority and female recruitment sources, provide written notification to minority and female recruitment sources and to community organizations when the Contractor or its unions have employment opportunities available, and maintain a record of the organization’s responses.

 c. Maintain a current file of the names, addresses and telephone numbers of each minority and female off-the-street applicant and minority or female referral from a union, a recruitment source or community organization and of what action was taken with respect to each such individual. If such individual was sent to the union hiring hall for referral and was not referred back to the Contractor by the union or, if referred, not employed by the Contractor, this shall be documented in the file with the reason therefore, along with whatever additional actions the Contractor may have taken.

 d. Provide immediate written notification to the Director when the union or unions with which the Contractor has a collective bargaining agreement has not referred to the Contractor a minority person or woman sent by the Contractor, or when the Contractor has other information that the union referral process has impeded the Contractor’s efforts to meet its obligations.

 e. Develop on-the-job training opportunities and/or participate in training programs for the area which expressly include minority and women, including upgrading programs and apprenticeship and trainee programs relevant to the Contractor’s employment needs, especially those programs funded or approved by the Department of Labor. The Contractor shall provide notice of these programs to the sources compiled under 7b above.

 f. Disseminate the Contractor’s EEO policy by providing the notice of the policy to unions and training programs and requesting their cooperation in assisting the Contractor in meeting its EEO obligations; by including it in any policy manual and collective bargaining agreement; by publicizing it in the company newspaper, annual report, etc.; by specific review of the policy with all management personnel and with all minority and female employees at least once a year, and by posting the company EEO policy on bulletin boards accessible to all employees at each location where construction work is performed.
g. Review, at least annually, the company’s EEO policy and affirmative action obligations under these specifications with all employees having any responsibility for hiring, assignment, layoff, termination or other employment decisions including specific review of these items with onsite supervisory personnel such as Superintendents, General Foremen, etc. prior to the initiation of construction work at any job site. A written record shall be made and maintained identifying the time and place of these meetings, persons attending, subject matter discussed, and disposition of the subject matter.

h. Disseminate the Contractor’s EEO policy externally by including it in any advertising in the news media, specifically including minority and female news media, and providing written notification to and discussing the Contractor’s EEO policy with other Contractors and Subcontractors with whom the Contractor does or anticipates doing business.

i. Direct its recruitment efforts, both oral and written, to minority, female and community organization, to schools with minority and female students and to minority and female recruitment and training organizations serving the Contractor’s area and employment needs. Not later than one month prior to the date for the acceptance of applications for apprenticeship or other training by any recruitment source, the Contractor shall send written notification to organizations such as the above, describing the openings, screening procedures, and test to be used in the selection process.

j. Encourage present minority and female employees to recruit other minority persons and women and, where reasonable, provide after school, summer and vacation employment to minority and female youth both on the site and in other areas of a Contractor’s workforce.

k. Validate all tests and other selection requirements where there is an obligation to do so under 41 CFR Part 60-3.

l. Conduct, at least annually, an inventory and evaluation of all minority and female personnel for promotional opportunities and encourage these employees to seek or to prepare for, through appropriate training, etc. such opportunities.

m. Ensure that seniority practices, job classifications, work assignments and other personnel practices, do not have a discriminatory effect by continually monitoring all personnel and employment related activities to ensure that the EEO policy and the Contractor’s obligations under these specifications are being carried out.

n. Ensure that all facilities and company activities are non-segregated except that separate or single-user toilet and necessary changing facilities shall be provided to assure privacy between the sexes.

o. Document and maintain a record of all solicitations of offers for subcontracts from minority and female construction contractors and suppliers, including circulation of solicitations to minority and female contractor associations and other business associations.

p. Conduct a review, at least annually of all supervisors’ adherence to and performance under the Contractor’s EEO policies and affirmative action obligations.

8. Contractors are encouraged to participate in voluntary associations which assist in fulfilling one or more of their affirmative action obligations (7a through p). The efforts of a contractor association, joint contractor-union, contractor-community, or other similar group of which the contractor is a member and participant, may be asserted as fulfilling any one or more of its obligations under 7a through p of these Specifications provided that the contractor actively participates in the group, makes every effort to assure that the group has a positive impact on the employment of minorities and women in the industry, ensures that the concrete
benefits of the program are reflected in the Contractor’s minority and female workforce participation, makes a good faith effort to meet its individual goals and timetables, and can provide access to documentation which demonstrates the effectiveness of actions taken on behalf of the Contractor. The obligation to comply, however, is the Contractor’s and failure of such a group to fulfill an obligation shall not be a defense for the Contractor’s noncompliance.

9. A single goal for minorities and a separate single goal for women have been established. The Contractor, however, is required to provide equal employment opportunity and to take affirmative action for all minority groups, both male and female, and all women, both minority and non-minority. Consequently, the Contractor may be in violation of the Executive Order if a particular group is employed in a substantially disparate manner (for example, even though the Contractor has achieved its goals for women generally, the Contractor may be in violation of the Executive Order if a specific minority group of women is underutilized).

10. The Contractor shall not use the goals and timetables or affirmative action standards to discriminate against any person because of race, color, religion, sex, or national origin.

11. The Contractor shall not enter into any subcontract with any person or firm debarred from Government contracts pursuant to Executive Order 11246.

12. The Contractor shall carry out such sanctions and penalties for violation of these specifications and of the Equal Opportunity Clause, including suspension, termination and cancellation of existing subcontracts as may be imposed or ordered pursuant to Executive Order 11246, as amended, and its implementing regulations, by the Office of Federal Contract Programs. Any contractor who fails to carry out such sanctions and penalties shall be in violation of these specifications and Executive Order 11246, as amended.

13. The Contractor, in fulfilling its obligations under these specifications, shall implement specific affirmative action steps, at least as extensive as those standards prescribed in paragraph 7 of these specifications, so as to achieve maximum results from its efforts to ensure equal employment opportunity. If the Contractor fails to comply with the requirements of the Executive Order, the implementing regulations, or these specifications, the Director shall proceed in accordance with 41 CFR 60-4.8.

14. The Contractor shall designate a responsible official to monitor all employment related activity to ensure that the company EEO policy is being carried out, to submit reports relating to the provisions hereof as may be required by the Government and to keep records. Records shall at least include for each employee the name, address, telephone numbers, construction trade, union affiliation if any, employee identification number when assigned, social security number, race, sex, status (e.g., mechanic, apprentice, trainee, helper, or laborer), dates of changes in status, hours worked per week in the indicated trade, rate of pay, and locations at which the work was performed. Records shall be maintained in an easily understandable and retrievable form; however, to the degree that existing records satisfy this requirement, contractors shall not be required to maintain separate records.

15. Nothing herein provided shall be construed as a limitation upon the application of other laws which establish different standards of compliance or upon the application of requirements for the hiring of local or other area residents (e.g., those under the Public Works Employment Act of 1977 and the Community Development Block Grant Program).
NOTICE OF REQUIREMENT FOR AFFIRMATIVE ACTION TO ENSURE EQUAL EMPLOYMENT OPPORTUNITY (EXECUTIVE ORDER 11246) (43 FR 14895)

1. The Offeror’s or Bidder’s attention is called to the “Equal Opportunity Clause” and the “Standard Federal Equal Employment Opportunity Construction Contract Specifications” set forth herein.

2. The goals and timetables for minority and female participation expressed in percentage terms for the Contractor’s aggregate workforce in each trade on all construction work in the covered areas, are as follows:

GOALS FOR FEMALE PARTICIPATION

APPENDIX A

(43 FR 19473)

The following goals and timetables for female utilization shall be included in all Federal and federally assisted construction contracts and subcontracts in excess of $10,000. The goals are applicable to the contractor’s aggregate on-site construction workforce whether or not part of that workforce is performing work on a Federal or federally-assisted construction contract or subcontract. Area covered: Goals for Women apply nationwide.

Goals and timetables

<table>
<thead>
<tr>
<th>Timetable</th>
<th>Goals (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1-78 to 3-31-79</td>
<td>3.1</td>
</tr>
<tr>
<td>4-1-79 to 3-31-80</td>
<td>5.0</td>
</tr>
<tr>
<td>4-1-80 Until Further Notice</td>
<td>6.9</td>
</tr>
</tbody>
</table>

GOALS FOR MINORITY PARTICIPATION

Appendix B-80

Until further notice, the following goals for minority utilization in each construction craft and trade shall be included in all Federal or federally assisted construction contracts and subcontracts in excess of $10,000 to be performed in the respective geographical areas. The goals are applicable to each nonexempt contractor’s total onsite construction workforce, regardless of whether or not part of that workforce is performing work on a Federal, federally assisted or non-federally related project, contact or subcontract.
Construction contractors which are participating in an approved Hometown Plan (see 41 CFR 60-4-5) are required to comply with the goals of the Hometown Plan with regard to construction work they perform in the areas covered by the Hometown Plan. With regard to all their other covered construction work, such contractors are required to comply with the applicable SMSA or EA goal contained in this appendix B-80.

<table>
<thead>
<tr>
<th>State</th>
<th>Goal (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia:</td>
<td></td>
</tr>
<tr>
<td>035 Augusta, GA:</td>
<td></td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>0600 Augusta, GA-SC</td>
<td>27.2</td>
</tr>
<tr>
<td>GA Columbia; GA Richmond, SC Aiken;</td>
<td></td>
</tr>
<tr>
<td>Non-SMSA Counties</td>
<td>32.8</td>
</tr>
<tr>
<td>GA Burke; GA Emanuel; GA Glascock; GA Jefferson;</td>
<td></td>
</tr>
<tr>
<td>GA Jenkins; GA Lincoln; GA McDuffie, GA Talleferro;</td>
<td></td>
</tr>
<tr>
<td>GA Warren; GA Wilkes; SC Allendale; SC Bamburg;</td>
<td></td>
</tr>
<tr>
<td>SC Barnwell; SC Edgefield; SC McCormick;</td>
<td></td>
</tr>
<tr>
<td>036 Atlanta, GA:</td>
<td></td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>0520 Atlanta, GA</td>
<td>21.2</td>
</tr>
<tr>
<td>GA Butts; GA Cherokee; GA Clayton; GA Cobb; GA DeKalb; GA Douglas; GA Fayette, GA Forsyth; GA Fulton; GA Gwinnett; GA Henry; GA Newton; GA Paulding; GA Rockdale; GA Walton</td>
<td></td>
</tr>
<tr>
<td>Non-SMSA Counties</td>
<td>19.5</td>
</tr>
<tr>
<td>GA Banks; GA Barrow; GA Bartow; GA Carroll; GA Clarke; GA Coweta; GA Dawson; GA Elbert; GA Fannin; GA Floyd; GA Franklin; GA Gilmer; GA Gordon; GA Greene; GA Habersham; GA Hall; GA Haralson; GA Hart; GA Heard; GA Jackson; GA Jasper; GA Lamar; GA Lampkin; GA Madison; GA Morgan; GA Oconee, GA Oglethorpe; GA Pickins, GA Pike; GA Polk; GA Rabun; GA Spalding; GA Stephens; GA Towns; GA; Union; GA Upson White</td>
<td></td>
</tr>
<tr>
<td>037 Columbus, GA:</td>
<td></td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>1800 Columbus, GA – AL</td>
<td>29.6</td>
</tr>
<tr>
<td>Al Russell; GA Chattahoochee; GA Columbus</td>
<td></td>
</tr>
</tbody>
</table>
Non-SMSA Counties ... 31.6
 Al Chambers; AJ Lee; GA Harris; GA Marion; GA
Meriwether; GA Quitman; GA Schley; GA
Stewart; GA Sumter; GA Talbot; GA Troup;
GA Webster

038 Macon, GA:
 SMSA Counties:
 4680 Macon, GA ... 27.5
 GA Bibb; GA Houston; GA Jones; GA Twiggs
 Non-SMSA Counties ... 31.7
 GA Baldwin; GA Bleckley; Crawford; GA Crisp;
 GA Dodge; GA Dooly; GA Hancock; GA Johnson;
 GA Laurens; GA Macon; GA Monroe; GA Peach;
 GA Pulaski; GA Putman; GA Taylor; GA Telfair;
 GA Treutlan; GA Washington; GA Wheeler;
 GA Wilcox; GA Wilkinson

039 Savannah, GA:
 SMSA Counties:
 7520 Savannah, GA .. 30.6
 GA Bryan; GA Chatham; GA Effingham
 Non-SMSA Counties ... 29.8
 GA Appling; GA Atkinson;
 GA Bacon, GA Bulloch; GA Candler; GA
 Coffee; GA Evans; GA Jeff Davis; GA Liberty;
 GA Long; GA McIntosh; GA Montgomery; GA
 Screven; GA Tattnall; GA Toombs; GA Wayne;
 SC Beaufort; SC Hampton; SC Jasper

040 Albany, GA:
 SMSA Counties:
 0120 Albany, GA ... 32.1
 GA Dougherty; GA Lee
 Non-SMSA Counties ... 31.1
 GA Baker; GA Ben Hill; GA Berrien; GA
 Brooks; GA Calhoun; GA Clay; GA Clinch;
 GA Colquitt; GA Cook; GA Decatur; GA
 Early; GA Echols; GA Grady; GA Irwin; GA
 Lanier; GA Lowndes; GA Miller; GA Mitchell;
 GA Randolph; GA Seminole; GA Terrell; GA
 Thomas; GA Tift; GA Turner; GA Worth

Florida:
041 Jacksonville FL:
 Non-SMSA Counties .. 22.2
 GA Brantley; GA Camden; GA Charlton; GA Glynn; GA Pierce; GA Ware
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
DISADVANTAGED BUSINESS ENTERPRISE PROGRAM
CRITERIA FOR ACCEPTABILITY

The purpose of this special provision is to establish criteria for acceptability of DBE firms for work performed on this contract. The intent is to ensure all participation counted toward fulfillment of the DBE goals is (1) real and substantial, (2) actually performed by viable, independent DBE owned firms, and (3) in accordance with the spirit of the applicable laws and regulations.

The policy of the Georgia Department of Transportation is to ensure compliance with Title VI of the Civil Rights Act of 1964, 49 Code of Federal Register, Part 26 and related statutes and regulations in all program activities.

To this end the Georgia Department of Transportation shall not discriminate on the basis of race, color, sex or national origin in the award, administration and performance of any Georgia Department of Transportation assisted contract or in the administration of its Disadvantaged Business Enterprise Program. The Georgia Department of Transportation shall take all necessary and reasonable steps to ensure nondiscrimination.

DBE payments and commitments for Federal-aid projects shall be separate and distinct and cannot be transferred or combined in any matter.

The DBE Goal specified in the contract will be a percentage representing the DBE Race Conscious Participation. The Contractor will strive to achieve an additional percentage, cumulatively amounting but not limited to 2 percent in his/her contracts for all projects during the course of the current State Fiscal Year, in order to meet the overall Georgia Department of Transportation DBE goal.
DBE PROCEDURES: The Contractor shall develop techniques to facilitate DBE participation in subcontracting activities. These techniques include:

(A) Arranging solicitations, time for the presentation of quotes, quantities, specifications, and delivery schedules to facilitate the participation of DBEs.

(B) Providing assistance to DBEs in overcoming barriers such as the inability obtaining bonding, financing, or technical assistance.

DBE DIRECTORY: The Department has available a directory or source list to facilitate identifying DBEs with capabilities relevant to general contracting requirements and to particular solicitations. The Department will make the directory available to bidders and proposers in their efforts to meet the DBE requirements. The directory or listing includes firms which the Department has certified to be eligible DBEs in accordance with 49 CFR Part 26.

GOAL FOR PARTICIPATION: If a percentage goal for DBE participation in this contract is set forth elsewhere in this proposal, the Contractor shall complete the DBE GOALS Form included in the proposal. The Contractor is encouraged to make every effort to achieve the goal set by the Department. However, if the Contractor cannot find sufficient DBE participants to meet the goal established by the Department, the Department will consider for award a proposal with less participation than the established goal if:

(A) The bidder can demonstrate no greater participation could be obtained. This should be well documented by demonstrating the Contractor’s actions through good faith efforts.

The following is a list of types of actions which the Department will consider as part of the Contractor’s good faith efforts to obtain DBE participation. This is not intended to be a mandatory checklist nor intended to be exclusive or exhaustive. Other factors or types of efforts may be relevant in appropriate cases.

(1) Soliciting through all reasonable and available means (e.g. attendance at pre-bid meetings, advertising and/or written notices) the interest of all certified DBEs who have the capability to perform the work of the contract. The Contractor must solicit this interest within sufficient time to allow the DBEs to respond to the
solicitation. The Contractor must determine with certainty if the DBEs are interested by taking appropriate steps to follow up initial solicitations.

(2) Selecting portions of the work to be performed by DBEs in order to increase the likelihood the DBE goals will be achieved. This includes, where appropriate, breaking out contract work items into economically feasible units to facilitate DBE participation, even when the Contractor might otherwise prefer to perform these work items with its own forces.

(3) Providing interested DBEs with adequate information about the plans, specifications, and requirements of the contract in a timely manner to assist DBEs participants in responding to a solicitation.

(4) (a) Negotiating in good faith with interested DBEs.
Contractor(s) are responsible to make a portion of the work available to DBE subcontractors and suppliers and to select those portions of the work or material needs consistent with the available DBE subcontractors and suppliers, so as to facilitate DBE participation. Evidence of such negotiation includes the names, addresses, and telephone numbers of DBEs that were considered; a description of the information provided regarding the plans and specifications for the work selected for subcontracting; and evidence as to why additional agreements could not be reached for DBEs to perform the work.

(b) Contractor(s) using good business judgment would consider a number of factors in negotiating with subcontractors, including DBE subcontractors, and would take a firm’s price and capabilities as well as contract goals into consideration. However, the fact there may be some additional costs involved in finding and using DBEs is not in itself sufficient reason for a bidder’s failure to meet the contract DBE goal, as long as such costs are reasonable. Also,
the ability or desire of a Contractor to perform the work of a contract with its own organization does not relieve the Contractor of the responsibility to make good faith efforts. Contractors are not, however, required to accept higher quotes from DBEs if the price difference is excessive or unreasonable.

(5) Not rejecting DBEs as being unqualified without sound reasons based on a thorough investigation of their capabilities. The Contractor’s standing within its industry, membership in specific groups, organizations, or associations and political or social affiliations (for example union vs. nonunion employee status) are not legitimate causes for the rejection or non solicitation of bids in the Contractor’s efforts to meet the project goal.

(6) Making efforts to assist interested DBEs in obtaining bonding, lines of credit, or insurance as required by the contractor.

(7) Making efforts to assist interested DBEs in obtaining necessary equipment, supplies, materials, or related assistance or services.

(8) Effectively using the services of available minority/women community organizations; minority/women Contractors’ groups; local, state, and Federal minority/women business assistance offices; and other organizations as allowed on a case-by-case basis to provide assistance in the recruitment and placement of DBE’s.

(B) The participation proposed by the low bidder is not substantially less than the participation proposed by the other bidders on the same contract.

If no percentage goal is set forth in the proposal, the contractor may enter a proposed DBE participation. This voluntary DBE participation will count as race neutral DBE participation. Prime Contractor shall report race-neutral participation in accordance with the DBE Monthly Report requirements shown in this document.

To be eligible for award of this contract,

All bidders will be required to submit the following information to the Department by the close of business on the 3rd working day following opening of the bid as a matter of bidder responsibility.
(1) The names and addresses of DBE firms committed to participate in the Contract;
(2) A description of the work each DBE will perform;
(3) The dollar amount of the participation of each DBE firm participating;
(4) Written documentation of the bidder’s commitment to use a DBE subcontractor whose participation it submits to meet a contract goal;
(5) Written confirmation from the DBE committed to participating in the contract, as provided in the prime contractor’s commitment.
(6) If the contract goal is not met, evidence of good faith efforts must be provided.

Failure by a bidder to furnish the above information may subject the bid to disqualification. Also failure by the bidder to submit satisfactory evidence of good faith efforts may subject the bid to disqualification.

Award of a contract by the Department to a Prime Contractor who has listed DBE participants with the bid may not constitute final approval by the Department of the listed DBE. The Department reserves the right to approve or disapprove a Disadvantaged firm after a review of the Disadvantaged firm’s proposal participation. Payment to the Contractor under the contract may be withheld until final approval of the listed DBEs is granted by the Department.

If the Contractor desires to substitute a DBE in lieu of those listed in the proposal, a letter of concurrence shall be required from the listed DBE prior to approval of the substitution, unless this requirement is waived by the Department.

Agreements between bidder and a DBE in which promises not to provide Subcontracting quotations to other bidders are prohibited.

DEFINITION: For the purposes of this provision, the following definitions will apply:

Disadvantaged Business Enterprise or DBE means a for-profit small business concern –

1. Ensuring at least 51 percent owned by one or more individuals who are both socially and economically disadvantaged or, in the case of a corporation, in which 51 percent of the stock is owned by one or more such individuals; and
(2) Whose management and daily business operations are controlled by one or more of the socially and economically disadvantaged individuals who own the business.

Good Faith Efforts means efforts to achieve a DBE goal or other requirement of this part which, by their scope, intensity, and appropriateness to the objective, can reasonably be expected to fulfill the program requirement.

Joint Venture means an association of a DBE firm and one or more other firms to carry out a single, for-profit business enterprise, for which the parties combine their property, capital, efforts, skills and knowledge, and in which the DBE is responsible for a distinct, clearly defined portion of the work of the contract and whose share in the capital contribution, control, management, risks, and profits of the joint venture are commensurate with its ownership interest.

Socially and Economically Disadvantaged Individual means any individual who is a citizen (or lawfully admitted permanent resident) of the United States and who is –

(1) Any individual who the Department finds to be a socially and economically disadvantaged individual on a case-by-case basis.

(2) Any individual in the following groups, members of which are reputedly presumed to be socially and economically disadvantaged.

 (i) “Black Americans,” which includes persons having origins, in any of the Black racial groups of Africa;

 (ii) “Hispanic Americans,” which includes persons of Mexican, Puerto Rican, Cuban, Dominican, Central or South American, or other Spanish or Portuguese culture or origin, regardless of race;

 (iii) “Native Americans,” which includes persons who are American Indians, Eskimos, Aleuts, or Native Hawaiians;

 (iv) “Asian-Pacific Americans,” which includes persons whose origins are from Japan, China, Taiwan, Korea, Burma (Myanmar), Vietnam, Laos, Cambodia (Kampuchea), Thailand, Malaysia, Indonesia, the Philippines, Brunei, Samoa, Guam, the U.S. Trust Territories of the Pacific Islands (Republic of Palau), the
Commonwealth of the Northern Mariana Islands, Macao, Fiji, Tonga, Kiribati, Juvalu, Nauru, Federated States of Micronesia, or Hong Kong;

(v) “Subcontinent Asian Americans,” which includes persons whose origins are from India, Pakistan, Bangladesh, Bhutan, the Maldives Islands, Nepal or Sri Lanka;

(vi) Women;

(vii) Any additional groups whose members are designated as socially and economically disadvantaged by the SBA, at such time as the SBA designation becomes effective.

(3) GDOT will presume that such persons are socially and economically disadvantaged only to the extent permitted by applicable federal law.

Race-conscious measure is one focused specifically on assisting only DBEs, including women-owned DBEs.

Race-neutral measure is one being, or can be, used to assist all small businesses. For the purposes of this part, race-neutral includes gender-neutrality.

DISCRIMINATION PROHIBITED: No person shall be excluded from participation in, denied the benefits of, or otherwise discriminated against in connection with the award and performance of this contract on the grounds of race, color, sex or national origin.

The following assurance becomes a part of this contract and must be included in and made a part of each subcontract the prime contractor enters into with their subcontractors (49 CFR 26.13):

“The contractor, and/or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The contractor shall carry out applicable requirements of 49 CFR Part 26 in the award and administration of DOT – assisted contracts. Failure by the contractor to carry out these requirements is (breach) of this contract which may result in the termination of this contract or such other remedy as the Department deems appropriate.
Failure to Achieve Requirements: Periodic reviews shall be made by the Department to determine the extent of compliance with the requirements set forth in this provision. If the Contractor is found to be in noncompliance, further payments for any work performed may be withheld until corrective action is taken. If corrective action is not taken, it may result in termination of this contract.

Participation will be counted toward fulfillment of the DBE goal as follows:

(A) When a DBE participates in a contract, the Contractor counts only the value of the work actually performed by the DBE toward DBE goals.

1. Count the entire amount of the portion of a construction contract (or other contract not covered by paragraph (A) (2) of this section) performed by the DBE’s own forces. Include the cost of supplies and materials obtained by the DBE for the work of the contract, including supplies purchased or equipment leased by the DBE (except supplies and equipment the DBE subcontractor purchases or leases from the prime contractor or its affiliate).

2. Count the entire amount of fees or commissions charged by a DBE firm for providing a bona fide service, such as professional, technical consultant, or managerial services, or for providing bonds or insurance specifically required for the performance of a DOT-assisted contract, toward DBE goals, provided the Department determines the fee is reasonable and not excessive as compared with fees customarily allowed for similar services.

3. When a DBE subcontracts part of the work of its contract to another firm, the value of the subcontracted work may be counted toward DBE goals only if the DBE’s subcontractor is itself a DBE. Work that a DBE subcontracts to a non-DBE firm does not count toward DBE goals.

(B) When a DBE performs as a participant in a joint venture, count a portion of the total dollar value of the contract equal to the distinct, clearly defined portion of
the work of the contract the DBE performs with own forces toward DBE goals.

(C) Count expenditures to a DBE contractor toward DBE goals only if the DBE is performing a commercially useful function on that contract.

(1) A DBE performs a commercially useful function when responsible for execution of the work of the contract and carrying out responsibilities by actually performing, managing, and supervising the work involved. To perform a commercially useful function, the DBE must also be responsible, with respect to materials and supplies used on the contract, for negotiating price, determining quality and quantity, ordering the material, and installing (where applicable) and paying for the material itself.

(2) A DBE does not perform a commercially useful function if their role is limited to being an extra participant in a transaction, contract, or project through which funds are passed in order to obtain the appearance of DBE participation.

(3) If a DBE does not perform or exercise responsibility for at least 30 percent of the total cost of their contract with their own work force, or the DBE subcontracts a greater portion of the work of a contract than would be expected on the basis of normal industry practice for the type of work involved, the Department will presume the DBE is not performing a commercially useful function.

(4) When a DBE is presumed not to be performing a commercially useful function as provided in paragraph (C) (3) of this section, the DBE may present evidence to rebut this presumption.

(5) The Department’s decisions on commercially useful function matters are subject to review by the US DOT, but are administratively appealable to the US DOT.

(D) The following factors are to be used in determining whether a DBE trucking company is performing a commercially useful function:

(1) The DBE must be responsible for the management and
supervision of the entire trucking operation for which they are responsible on a particular contract, and there cannot be a contrived arrangement for the purpose of meeting DBE goals.

(2) The DBE must itself own and operate at least one fully licensed, insured, and operational truck used on the contract.

(3) The DBE receives credit for the total value of the transportation services it provides on the contract using trucks it owns, insures, and operates using drivers it employs.

(4) The DBE may lease trucks from another DBE firm, including an owner/operator who is certified as a DBE. The DBE who leases trucks from another DBE receives credit for the total value of the transportation services the lessee DBE provided on the contract.

(5) The DBE may also lease trucks from a non-DBE and is entitled to credit only for the fee or commission it receives as a result of the lease arrangement. The DBE does not receive credit for the total value of the transportation services provided by the lessee, since these services are not provided by a DBE.

(6) For purposes of this paragraph (D), a lease must indicate the DBE has exclusive use of and control over the truck. This does not preclude the leased truck from working for others during the term of the lease with the consent of the DBE, so long as the lease gives the DBE absolute priority for use of the leased truck. Leased trucks must display the name and identification number of the DBE.

(E) Count expenditures with DBEs for materials or supplies toward DBE goals as provided in the following:

(1) (i) If the materials or supplies are obtained from a DBE manufacturer, count 100 percent of the cost of the materials or supplies toward DBE goals.

(ii) For purposes of this paragraph, a manufacturer is a firm that operates or maintains a factory or establishment that produces, on the premises, the materials, supplies, articles, or equipment required under the contract and of the general character
described by the specifications.

(2) (i) If the materials or supplies are obtained from a DBE regular dealer, count 60 percent of the cost of the materials or supplies toward DBE goals.

(ii) For purposes of this section, a regular dealer is a firm owning, operating, or maintaining a store, warehouse, or other establishment in which the materials, supplies, articles or equipment of the general character described by the specifications and required under the contract are bought, kept in stock, and regularly sold or leased to the public in the usual course of business.

(A) To be a regular dealer, the firm must be an established, regular business engaging, as its principal business and under its own name, in the purchase and sale or lease of the products in question.

(B) A person may be a regular dealer in such bulk items as petroleum products, steel, cement, gravel, stone, or asphalt without owning, operating, or maintaining a place of business as provided in this paragraph (E)(2)(ii) if the person both owns and operates distribution equipment for the products. Any supplementing of regular dealers’ own distribution equipment shall be by a long-term lease agreement and not on an ad hoc or contract-by-contract basis.

(C) Packagers, brokers, manufacturers’ representatives, or other persons who arrange or expedite transactions are not regular dealers within the meaning of this paragraph (E)(2).

(3) With respect to materials or supplies purchased from a DBE which is neither a manufacturer nor a regular dealer, count the entire amount of fees or commissions charged for assistance in the procurement of the materials and supplies, or fees or transportation charges for the delivery of materials or supplies required on a job site, toward DBE goals, provided you determine the fees to be reasonable and not excessive as compared with fees customarily allowed for similar services. Do not count any portion of the cost of the materials and supplies themselves toward DBE goals, however.
(4) Do not count the participation of a DBE subcontractor toward the prime contractor’s DBE achievements until the amount being counted toward the goal has been paid to the DBE.

(5) No participation will be counted not in compliance with Special Provision entitled “Criteria for Acceptability” which is a part of this contract or with any provisions included in 49 CFR Part 26.

(6) If the contract amount overrun, the contractor will not be required to increase the dollar amount of DBE participation. If the contract amount under runs, the contractor will not be allowed to under run the dollar amount of DBE participation except when the DBE subcontracted items themselves under run.

REPORTS

A: The contractor shall submit a “DBE Participation Report” on this contract monthly which shall include the following:

1. The name of each DBE participating in the contract.
2. A description of the work to be performed, materials, supplies, and services provided by each DBE.
3. Whether each DBE is a supplier, subcontractor, owner/operator, or other.
4. The dollar value of each DBE subcontract or supply agreement.
5. The actual payment to date of each DBE participating in the contract.
6. The report shall be updated by the Prime Contractor whenever the approved DBE has performed a portion of the work that has been designated for the contract. Copies of this report should be transmitted promptly to the Engineer. Failure to submit the report within 30 calendar days following the end of the month may cause payment to the contractor to be withheld.
7. The Prime Contractor shall notify the Project Engineer at least 24 hours prior to the time the DBE commences working on the project. The DBE must furnish supervision of the DBE portion of the work, and the person responsible for this supervision must report to the Project Engineer when they begin work on the project. They must also inform the Project Engineer when their forces will be doing work on the project.
B. In order to comply with 49 CFR 26.11, the Prime Contractor shall submit documentation regarding all payments made from the Prime to all DBE subcontractors on federal aid projects in the form of copies of cancelled checks or notarized electronic documentation which validates said payments made on the DBE Monthly Participation Reports. This information shall be required monthly and submitted with the DBE Monthly Participation Report.

C. Failure to respond within the time allowed in the request will be grounds for withholding all payments on all Contracts.

SUBSTITUTION OF DBEs: The Contractor shall make reasonable efforts to replace a DBE Subcontractor unable to perform work for any reason with another DBE. The Department shall approve all substitutions of Subcontractors in order to ensure the substitute firms are eligible DBEs.

CERTIFICATION OF DBEs: To ensure the DBE Program benefits only firms owned and controlled by Disadvantaged Individuals, the Department shall certify the eligibility of DBEs and joint ventures involving DBEs named by bidders.

Questions concerning DBE Certification/Criteria should be directed to the EEO Office at (404) 631-1972.
SPECIAL PROVISION

PROMPT PAYMENT:

Prime Contractors, who sublet a portion of their work, shall pay their subcontractors for satisfactory performance of their contracts no later than 10 calendar days from receipt of each payment made to them.

Any delay or postponement of payment among the parties may take place only for good cause with prior written approval from the Department.

If the contractor is found to be in noncompliance with these provisions, it shall constitute a breach of contract and further payments for any work performed may be withheld until corrective action is taken. If corrective action is not taken, it may result in termination of the contract.

All subcontract agreements shall contain this requirement.
REQUIRED CONTRACT PROVISIONS FOR FEDERAL-AID CONTRACTS

BUY AMERICA

Revised: March 25, 1992
Revised: January 7, 1994
Revised: June 9, 1995
First Use 2001 Specifications: November 1, 2002

All manufacturing processes for steel and iron materials and steel and iron coatings permanently incorporated into this project must occur in the United States of America. However, pig iron and processed, pelletized, or reduced iron ore used in the production of these products may be manufactured outside the United States.

This requirement, however, does not prevent a minimal use of foreign materials and coatings, provided the cost of materials and coatings used does not exceed one-tenth of one percent (0.1 percent) of the total contract cost or $2,500.00, whichever is greater.

NOTE: Coatings include: epoxy coating, galvanizing, painting and any other coating that protects or enhances the value of the material.

CONVICT PRODUCED MATERIALS

March 25, 1992
Revised: September 6, 1993
First Use 2001 Specifications: November 1, 2002

Materials produced by convict labor after July 1, 1991, may not be used for Federal-Aid highway construction projects unless it meets the following criteria:

1. The materials must be produced by convicts who are on parole, supervised release or probation from a prison; or,

2. If produced in a qualified prison facility, the amount of such materials produced in any 12-month period shall not exceed the amount produced in such facility for such construction during the 12-month period ending July 1, 1987. A qualified prison is defined as one producing convict made materials prior to July 1, 1987.
Utility conflicts

Utility companies having known facilities that conflict with the construction of this project will be directed by the Department to adjust or relocate their facilities and will be notified of the contract award.

Conform to all the requirements of the Specifications as they relate to cooperation with utility owners and the protection of utility installations that exist on the project. Refer to the requirements of Section 107, Legal Regulations and Responsibility to the Public, with particular attention to Subsection 107.21.

Coordinate the work with any work to be performed by others in any right of way clearance and arrange a schedule of operations that will allow for completion of the Project within the specified contract time. Where stage construction is required, notify the utility owner when each stage of work is completed and the site is available for utility work to proceed.

Information concerning utility facilities known to exist within the project limits, including the list of owners, is available for reference.

Under Georgia Code Section 32-6-171, utilities are required to remove or relocate their facilities. The Department is required to give the utility at least 60 days written notice directing the removal, relocation, or adjustment and the utility owner is required to begin work within the time specified in the utility’s work plan or revised work plan.

Upon request, copies of all agreements with utility companies having facilities on this project will be made available for examination by the Contractor at the Department's District Office. Utility Adjustment Schedules, when submitted to the Department by the utilities, will be made available to the Contractor after the Notice to Contractors has been posted by the Office of Construction Bidding Administration. The Utility Adjustment Schedules are available on the Office of Construction Bidding Administration’s web site. Utility Adjustment Schedules may be included with the Utility Special Provision in the Contract Proposal on select projects. The Contractor is responsible for considering in its bid all existing and proposed utility locations and the removals, relocations, and adjustments specified in the Utility’s Work Plan.

For this Project, Utility Owners that are required to remove, relocate, or adjust their facility to accommodate the construction of this Project may be liable to the Contractor.
for damages or delay costs resulting from the Utility Owner’s failure to clear conflicts within the time specified in the approved Utility Work Plan. If the Utility Owner is unable to submit and obtain Department approval of a revised Work Plan or fails to complete the removal, relocation, or adjustment of its facilities in accordance with the approved Work Plan, the Utility Owner may be liable to the Department, or the Contractor, for damages or delay costs.

In accordance with Subsection 105.06 of the Specifications, the Department is not liable for payment of any claims due to utility delays, inconvenience or damage sustained by the Contractor due to interference of any utilities or appurtenances, or the operation of moving them.

Whenever the Contractor considers that it is or will be entitled to damages or delay costs from the Utility Owner in accordance with O.C.G.A. 32-6-171, the Contractor shall provide written notice to the Utility Owner and the Department within ten (10) days from the time of the dispute or potential dispute is identified. The Contractor shall follow the Procedures for Utility Damages or Delay Costs outlined in the latest edition of The Utility Accommodation Policy and Standards Manual. Failure to follow the above will result in waiver of the Contractor’s claim against the Utility Owner for damages or delay costs.

In accordance with Subsection 107.21.G delays by utilities will continue to be considered by the Department in charging Contract Time. For purposes of applying provisions of this paragraph, railroads and the Metropolitan Atlanta Rapid Transit Authority (MARTA) are considered utilities.
Delete Subsection 102.01 and Substitute the following:

102.01 Prequalification of Bidders
Before submitting a bid in excess of $2,000,000, the Bidder shall have been prequalified with the Department and received a Certificate of Qualification in accordance with the Rules and Regulations approved and adopted by the State Transportation Board. Bidders submitting bids of $2,000,000 or less may be exempt from prequalification requirements. In addition, the aggregate total amount a Non-prequalified Bidder may have under contract shall not exceed $4,000,000. Bidders intending to consistently submit Proposals shall prequalify at least once a year. However, qualifications may be changed during that period upon the submission of additional favorable reports or upon unsatisfactory performance. In addition, the Department reserves the right at any time to require the Contractor to furnish a current financial and experience statement.

Delete Subsection 102.03 and Substitute the following:

102.03 Contents of Proposal Forms
The Department will make available to the prospective Bidder a Void for Bidding Proposal Form which may be accessed on the Office of Construction Bidding Administration web page. This form will state the location and description of the contemplated construction and will show the approximate estimate of the various quantities and kinds of work to be performed or materials to be furnished, and will have a schedule of Items for which Unit Bid prices are invited. The Proposal Form will state the time in which The Work must be completed, the amount of the Proposal Guaranty, and the date of the opening of Proposals. The Form will also include any Special Provisions or requirements that vary from or are not contained in the Specifications. Also included with each Proposal Form will be a Non-Collusion Certificate, Construction Contractors Bid Opportunity List, and Request For Eligibility To Bid. All papers contained in the Proposal Form are considered a part thereof and must not be detached or altered. The Plans, Specifications, and other documents designated in the Proposal Form will be considered a part of the Proposal whether attached or not.

Delete Subsection 102.06 and Substitute the following:

102.06 Preparation of Proposal
The Bidder shall submit its Proposal on the form furnished by the Department (GADOT). The blank spaces on the Proposal shall be filled in correctly for each Pay Item (except alternate items) and the Bidder shall write in ink the Unit Price or a Lump Sum Price as called for in the Proposal for each Pay Item listed therein. In addition, the Bidder shall also show the products of the respective Unit Prices and quantities and the total amount of the Bid by adding the amounts of all Bid Items. In the event of a discrepancy in any of the figures, the Unit Price will govern and the Bid will be recalculated.
In addition, the Bidder shall submit a technical proposal which shall include, but is not limited to, the design build firm’s detailed project schedule (including all submittals shown in Table 4-1 of Special Provision 999, and estimated review periods, and in other areas of Special Provision 999 where submittals are mentioned), permit requirements, expected Released for Construction, total contract time, mobilization assumptions, a detailed Maintenance of Traffic (MOT) plan, construction staging assumptions, as well as, a detailed estimate with all material quantities and price assumptions used to form the basis of the bid. The Bidder shall also clearly document all assumptions in this technical proposal. There are no page limit restrictions for the technical proposal.

In the case of Alternate items, Unit Prices shall be entered for only one alternate.

The Contractor’s Preliminary Baseline Schedule submission shall not limit, modify or alter GDOT’s ability to review and approve the Preliminary Baseline Schedule, and selection of a Contractor shall not be deemed to be acceptance or approval of Contractor’s Preliminary Baseline Schedule.

The Non-Collusion Certificate on the Department’s standard form included in the Proposal shall be executed.

The Certificate of Current Capacity shall be executed under oath and substantiated by the report of Status of Contracts on Hand.

The Construction Contractors Bid Opportunity List standard form shall be completed with the required information.

The Prime Contractor’s Work Authorization Certification/ E Verify Certification shall be completed with the required information.

The Bidder shall notify the GADOT Office of Construction Bidding Administration by transmitting the completed Request For Eligibility To Bid Form D. O. T. RFETB for each Letting Call Order Number in which the Bidder intends to submit a bid by no later than 12:00 p.m. the day preceding the letting.

If the Proposal is made by an individual, its name and post office address shall be shown; if by a partnership, the name and post office address of one member of the partnership shall be shown; if by a corporation, the Proposal shall show the name, title and business address of the officer signing the Proposal. The Bidder’s Proposal shall be signed in ink or by Digital Signature by the individual, by one or more members of a partnership, or by one or more of the officers of a corporation, whichever is applicable. In the event of a joint venture, the Proposal shall be signed in ink or by Digital Signature by each individual involved, by each partnership through one or more of its members, or by each corporation through one or more officers of the corporation, whichever is applicable. Proposals not properly signed may be disqualified and rejected.

All bids shall be submitted using the GADOT/AASHTO (American Association of State Highway and Transportation Officials) Electronic Bidding System (Expedite). When submitting a bid electronically, the Bidder’s Proposal shall consist of the Bid pages generated by the Expedite software including the Cover page, Bid Item pages, Disadvantaged Business Enterprise (DBE) pages (if applicable), Miscellaneous Data pages and the Signature page. By submitting a bid electronically, the Bidder acknowledges all requirements included in the proposal, amendments, plans, Standard Specifications, and Supplemental Specifications are a part of the Bid and Contract.

The electronic bid shall be submitted by one of the following methods:

A. **Hand delivery of the electronic bid to the Department at the place specified in the Notice To Contractors.**

 The bid shall include the 3 ½ inch (90 mm) electronic diskette or CD Rom or USB Drive and the Bid pages described in paragraph seven, above.

B. **Electronic Bid Submission via the Internet and Bid Express™.**

 (Note: The Bidder shall secure an account and a valid Digital Signature from Bid Express™ (www.bidx.com) in order to use this method.)

Instructions for preparing and submitting bids by these two methods are as follows:

A. **Hand Delivery of Bid to the Department**

 2. Electronic bids shall be prepared through the use of a computer controlled printer.
3. The Bidder shall sign the electronic bid in the appropriate areas.

4. When installing the Bid program the Bidder shall enter their vendor code in the following format: 2DO900. Before running the electronic bidding programs, the Bidder shall read the on-line help documentation for the Expedite software.

5. **Zero (0) is considered to be a valid bid. The Bidder shall not enter 0 in any Unit Price field unless zero is the intended bid for that item.**

6. All addenda shall be included in the electronic bid submitted.

7. For “Joint Bids” the Bidder shall select **tools** from the Windows Expedite menu and mark the electronic bid as “Joint Bid”.

8. The Bidder shall select **tools** and then **check bid** to check the bid and assure there are no errors prior to printing the electronic bid. After final printing, the Bidder may make changes to the electronic bid by indicating the changes in ink and initialing prior to submitting the bid.

9. Once the Bidder has completed the bid and made all desired changes, the diskette/CD Rom/USB Drive, a printout of the Cover sheet, Bid Item pages, DBE pages (if applicable), Miscellaneous Data pages, and Signature page shall be submitted to the Department. In case of a discrepancy between the diskette and the hard copy of the Bid Item pages, the hard copy will govern.

10. Electronic Bid pages shall be 8 ½ inch (216 mm) horizontal by 11 inch (279 mm) vertical. Bid information shall be placed across the horizontal width on each page.

11. The paper used for an electronic bid shall be of sufficient quality and durability to maintain clear and concise images and to withstand frequent handling.

12. If originally printed on continuous roll paper, electronic bids shall be separated before submitting the Bid to the Department.

13. All computer printed characters shall be legible. The Electronic Bid pages shall be submitted in the bid envelope provided.

14. The diskette shall be submitted in a separate sealed envelope from the Bid pages. The Bidder shall submit all electronic bids on one diskette/CD Rom/USB Drive. The envelope containing the diskette shall include the Bidders name and the Letting Call Order Numbers for which electronic bids are submitted.

B. Electronic Bid Submission Via The Internet And Bid Express™

2. When installing the Bid program the Bidder shall enter their vendor code in the following format: 2DO900. Before running the electronic bidding programs, the Bidder shall read the on-line help documentation for the Expedite software.

3. **Zero (0) is considered to be a valid bid. The Bidder shall not enter 0 in any Unit Price field unless zero is the intended bid for that item.**

4. All addenda shall be included in the electronic bid submitted.

5. **“Joint Bids” are allowed with Electronic Bid Submission via the Internet and Bid Express™**

6. The Bidder shall select **tools** and then **check bid** from the Windows Expedite menu to check the bid and assure there are no errors prior to submitting the electronic bid. The electronic bid may be changed and resubmitted electronically to Bid Express™ as many times as desired prior to the advertised cutoff time specified in the Notice To Contractors. The last bid submitted for a given Letting Call Order Number prior to the cutoff time will be the Bid.

7. The Bidder shall make no claim against the Department in the event it is unable to submit its bid to Bid Express™ and/or Bid Express™ is unable to submit the bid(s) to the Department. The Department reserves the right to postpone the public reading of bids in the event of technical difficulties.

C. A fully executed Proposal Guaranty and Power of Attorney for each Letting Call Order Number bid shall be submitted by one of the following methods:

1. Delivery to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 noon on the day prior to the Bid Opening. Each Proposal Guaranty shall be clearly and legibly marked with the Letting Call Order Number.
2. Electronic submission via the Internet and Bid Express™ by the time and date set in the Notice To Contractors for submission of Proposals.

The Proposal Guaranty for a “Joint Bid” shall include the names of all Joint Venture parties involved in the bid.

Delete Subsection 102.07 and Substitute the following:

102.07 Rejection of Proposals

Proposals may be rejected as irregular if their consideration is conditioned upon the acceptance or rejection of other Proposals submitted by the same Bidder, if the Prime Contractor’s Work Authorization Certification/ E Verify Certification is not completed, if the Request For Eligibility To Bid D.O.T (Form RFETB) has not been submitted, if the Certificate of Current Capacity is not executed under Oath and substantiated, if a Unit Price is not shown for each Pay Item, or if they fail to comply with the EBS bidding requirements. In the case of alternate items, Unit Prices shall be entered for only one alternate. The Department reserves the right to disqualify and reject any Proposal that is not properly signed in accordance with the requisite of Subsection 102.06.

A. **Collusion**

Any and all Proposals will be rejected if the Department believes that collusion exists among the Bidders and no participant in such collusion may submit future Proposals for the same work. The Department reserves the right to review and to refuse to consider any Proposal if the Bidder fails to execute the Non-Collusion Certificate.

B. **Single Proposals**

Only one Proposal from any person, partnership, or corporation under the same or different names shall be submitted on any Project.

C. **Unbalanced Bids**

Proposals may be rejected if any of the Unit Prices are obviously unbalanced. The Department will decide whether any Unit Prices are unbalanced either excessively above or below a reasonable cost analysis value determined by the Engineer, particularly if these unbalanced amounts are substantial and contrary to the interest of the Department.

D. **Omissions and Alterations**

Proposals may be rejected as irregular if they show any omissions, alterations of form, additions or conditions not called for, unauthorized alternate bids, erasures or changes not initialed, or other irregularities.

E. **Debts**

The Department reserves the right to reject Proposals from Bidders who have not paid or satisfactorily settled all legal debts due on other Contracts at the time Proposals are received.

F. **Technicalities**

The Department reserves the right to reject any and all Proposals and to waive technicalities at any time before the Contract has been signed by the Department.

G. **Non-Prequalified Bidders**

Proposals submitted in excess of $2,000,000 by non-prequalified contractors under Rule 672-5 of the Department’s Rules and Regulations Governing the Prequalification of Prospective Bidders will be disqualified and rejected.

H. **Failure to List Disadvantaged Business Enterprise (DBE) Participants**

If the contract has an established DBE goal, the Department reserves the right to reject and disqualify any proposal if the bidder has failed to list bona fide DBE participants with sufficient participation to achieve at least the established goal. The Department may consider for award a proposal with less participation than the established goal if both:

- The bidder can demonstrate that no greater participation could be obtained and;
- The participation proposed by the low bidder is not substantially less than the participation proposed by the other bidders on the same contract.
I. Failure to Submit Prime Contractor’s Work Authorization Certification/E Verify Certification
 - No Proposal will be considered without submission of the completed Prime Contractor’s Work Authorization/E Verify Certification for each Letting Call Order Number by no later than the 12:00 p.m. the day preceding the letting.

J. Failure to Submit Request For Eligibility To Bid
 No Proposal will be considered without submission of the completed Request For Eligibility To Bid Form for each Letting Call Order Number by no later than the deadline 12:00 p.m. the day prior to the letting.

K. Technical proposal
 A technical proposal will be considered non-responsive if the proposal does not contain the information noted in paragraph 2 of section 102.06, and any other information necessary to clearly demonstrate those assumptions used to form the basis of the bid.
 The technical proposal may be considered non-responsive if the bid or technical proposal contains any deviations from those items specified in the Scope (999.1.03) and applicable portions of the Plans Package.

Delete Subsection 102.09 and Substitute the following:

102.09 Delivery of Proposals
Each Proposal, together with the Proposal Guaranty, shall be submitted in a sealed envelope so marked as to identify its contents without being opened (See Section 102.06 A), unless submitted electronically via the Internet and Bid Express (See Section 102.06 B). In addition, six (6) copies of the Bidder’s technical proposal and one (1) cd or dvd containing an electronic copy of the Bidder’s technical proposal shall be submitted in a sealed envelope so marked to identify the contents without being opened. Proposal forms are not transferable. Proposals will be received until the time and date set in the Notice To Contractors and shall be in the hands of the officials indicated by that time. Proposals received after the advertised cutoff time established for submission of Proposals will be returned unopened to the Bidder.
Delete Subsection 102.10 and Substitute the following:

102.10 Withdrawal or Revision of Proposals

Any Bidder may withdraw his Proposal by submitting, by telegram, letter, or facsimile transmission received prior to the advertised cutoff time specified in the Notice To Contractors and verified by the Department, a DEPARTMENT OF TRANSPORTATION BID PROPOSAL WITHDRAWAL FORM, completed by an authorized officer of the company, whose signature is legally binding upon said company.

Any Bidder may submit a Bid change, by telegram, letter, or facsimile transmission received prior to the advertised cutoff time specified in the Notice To Contractors and verified by the Department, completed by an authorized officer of the company, whose signature is legally binding upon said company. In which case, the Department will change the Bid at the time of opening and at such time will announce that a change was received.

Add the following:

102.15 Submittal of “Prime Contractor’s Work Authorization Certification/ E Verify Certification”

All Bidders for each Letting Call Number shall submit the completed “Prime Contractor’s Work Authorization Certification/E Verify Certification” to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 noon on the day prior to the Bid Opening as a matter of Bidder responsibility.

If the “Prime Contractor’s Work Authorization Certification/E Verify Certification” is not delivered to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 p.m. on the day prior to the Bid Opening, the Bid will be subject to rejection.

Add the following:

102.16 Submittal of “Request For Eligibility To Bid”

All Bidders for each Letting Call Number shall submit the completed “Request For Eligibility To Bid Form D. O. T. RFETB” to the GADOT Office of Construction Bidding Administration, Room 1113, by no later than 12:00 p.m. on the day prior to the Bid Opening.

If the “Request For Eligibility To Bid Form D. O. T. RFETB” is not received by the GADOT Office of Construction Bidding Administration, Room 1113, by no later than 12:00 p.m. on the day prior to the Bid Opening, the Bid will be subject to rejection.

Add the following:

102.17 Submittal of “Certificate of Current Capacity” and “Status of Contracts on Hand”

The apparent low Bidder for each Letting Call Number shall submit the executed “Certificate of Current Capacity” and the “Status of Contracts on Hand” to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 noon on the first working day after the Bid Opening.

If the “Certificate of Current Capacity” and the ‘Status of Contracts on Hand’ are not delivered to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 noon on the first working day after the Bid Opening, the Bid may be subject to disqualification.
Add the following:

102.18 Submittal of “Construction Contractors Bid Opportunity List”

All Bidders for each Letting Call Number shall submit the completed “Construction Contractors Bid Opportunity List” to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 noon on the third working day after the Bid Opening as a matter of Bidder responsibility.

If the “Construction Contractors Bid Opportunity List” is not delivered to the GADOT Office of Construction Bidding Administration, Room 1113, in a sealed envelope by 12:00 noon on the third working day after the Bid Opening, the Bid may be subject to rejection.

Office of Construction Bidding Administration
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

SECTION 102-Bidding Requirements and Conditions

The use of the Electronic Bid Bond Form in Expedite will be accepted by the Department for compliance with the Notice To Contractors requirement to utilize the “Bid Bond Form DOT 564-Rev. Dec. 13, 2004”.

Office of Contract Administration
Delete Subsection 107.23 and Substitute the following:

107.23 Environmental Considerations

A. Construction

Erosion control measures shall be installed, to the greatest practical extent, prior to clearing and grubbing. Particular care shall be exercised along stream buffers, wetlands, open waters and other sensitive areas to ensure that these areas are not adversely affected.

Construction equipment shall not cross streams, rivers, or other waterways except at temporary stream crossing structures approved by the Engineer.

Construction activities within wetland areas are prohibited except for those within the construction limits as shown on the Plans and as specified in Subsection 107.23.E.

All sediment control devices (except sediment basins) installed on a project shall, as a minimum, be cleaned of sediment when one half the capacity, by height, depth or volume, has been reached. Sediment basins shall be cleaned of sediment when one-third the capacity by volume has been reached.

B. Bridge Construction Over Waterways

Construction waste or debris, from bridge construction or demolition, shall be prevented from being allowed to fall or be placed into wetlands, streams, rivers or lakes.

Excavation, dewatering, and cleaning of cofferdams shall be performed in such a manner as to prevent siltation. Pumping from cofferdams to a settling basin or a containment unit will be required if deemed necessary by the Engineer.

Operations required within rivers or streams, i.e. jetting or spudding, shall be performed within silt containment areas, cofferdams, silt fence, sediment barriers or other devices to minimize migration of silt off the project.

C. Borrow and Excess Material Pits

Specific written environmental clearance from the Engineer will be required for any sites not included in the Plans as excess material or borrow areas. No work other than testing shall be started at any potential excess material or borrow site not shown on the plans prior to receiving said environmental clearance from the Engineer.

The Engineer will require a written notice from the Contractor requesting environmental clearance studies and written permission from the property owner at least six weeks prior to intended use of the site. The Department will not begin studies on such sites before a Notice to Proceed is issued.

The Engineer will inform the Contractor in writing as to the granting or denial of environmental clearance. If denied, the Contractor may, at no expense to the Department, seek to obtain permits or pursue other remedies that might otherwise render the site(s) acceptable.

Sites included in the Plans have environmental clearance and shall be used only for the purpose(s) specified in the Plans or other contract documents. Should the Contractor wish to expand or utilize said sites for any purpose other than that provided for in the Plans or other contract documents, specific written environmental clearance as noted above shall be obtained.
D. Control of Pollutants

Pollutants or potentially hazardous materials, such as fuels, lubricants, lead paint, chemicals or batteries, shall be transported, stored, and used in a manner to prevent leakage or spillage into the environment. The Contractor shall also be responsible for proper and legal disposal of all such materials.

Equipment, especially concrete or asphalt trucks, shall not be washed or cleaned-out on the Project except in areas where unused product contaminants can be prevented from entering waterways.

E. Temporary Work in Wetlands Outside of the Construction Limits within the Right-Of-Way and Easement Areas

Temporary work in wetlands (that are not delineated with orange barrier fence) will be subject to the following requirements:

1. Temporary work in wetlands shall be accomplished by using temporary structures, timber, concrete, soil with geotextile fabric, or other suitable matting. The area shall not be grubbed.

2. Soil matting shall be protected from erosion in accordance with the Specifications.

3. Whenever temporary work is required in Saltwater Marsh Wetlands, all temporary structures and/or matting shall be removed in their entirety prior to Final Acceptance of the Project. Matted and compressed soils shall be backfilled to their original ground elevation with material meeting the requirements of Section 212 – Granular Embankment.

4. Whenever temporary work is required in Freshwater Wetlands, all temporary structures and/or matting (exclusive of soil matting to be retained in the final roadway section) shall be removed in their entirety prior to Final Acceptance of the Project.

Once the temporary materials have been removed, the area shall be covered by Excelsior or Straw blankets according to Section 713 of the Specifications. The grassing and ground preparation referenced in Subsection 713.3.03, “Preparation”, will not be applicable to this Work.

5. The Engineer shall be notified so that a field inspection may be conducted to certify that the temporary materials were properly removed and that the area was properly restored. The Contractor shall be responsible for any corrective action required to complete this Work.

6. There will be no separate measurement or payment for this Work. The cost associated with this work shall be included in the overall Bid submitted.

F. Environmentally Sensitive Areas

Some archaeological sites, historic sites, wetlands, streams, open waters and protected animal and plant species habitats within the Right-Of-Way and easement areas may be designated as ENVIRONMENTALLY SENSITIVE AREAS (ESAs). These areas are shown on the Plan sheets and labeled “ESA” (e.g. ESA – Historical Boundary, ESA – Wetland Boundary). The Contractor shall install orange barrier fence as delineated in the Plans.

The Contractor shall not perform any construction related activities within areas delineated in the Plans with orange barrier fence, unless specifically stated otherwise in the Plans. This includes but is not limited to construction activities such as clearing and grubbing, borrowing, wasting, grading, filling, staging, parking, sediment basins, and equipment storage. Also, all archaeological sites, historic sites, wetlands, streams and protected habitats beyond the Right-of-Way and easement areas are deemed to be ENVIRONMENTALLY SENSITIVE AREAS and shall not be disturbed in any way.

The orange barrier fence shall remain in place until such time the Engineer directs the fence to be removed. The cost of this work shall be included in the Bid price submitted for barrier fence which will be paid for in accordance with Specification 643.
Section 108—Prosecution and Progress

Delete the fifth paragraph from Subsection 108.01 and substitute the following:

No Subcontracts, or transfer of Contract, shall in any case release the Prime Contractor of his/her liability under the Contract and Bonds. No Subcontractor shall commence work in advance of the written approval of the Subcontract by the Department. Except for certain items exempted by the State Transportation Board, each Subcontractor shall be prequalified or registered with the Department. Each Subcontract for a Registered Subcontractor shall not exceed $1,000,000.00 and Subcontracts for Prequalified Contractors shall not exceed their current capacity. Prequalified or Registered Subcontractors shall be qualified or registered with the Department in accordance with Chapter 672-5 of the Rules and Regulations Governing the Prequalification of Prospective Bidders adopted by the State Transportation Board.
Delete subsection 108.08 in its entirety and substitute the following:

108.08 Failure or Delay in Completing Work on Time

Time is an essential element of the Contract, and any delay in the prosecution of The Work may inconvenience the public, obstruct traffic, or interfere with business. In addition to the aforementioned inconveniences, any delay in completion of The Work will always increase the cost of engineering. For this reason, it is important that The Work be pressed vigorously to completion. Should the Contractor or, in case of default, the Surety fail to complete The Work within the time stipulated in the Contract or within such extra time that may be allowed, charges shall be assessed against any money due or that may become due the Contractor in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Original Contract Amount</th>
<th>Daily Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>From More Than</td>
<td>To and Including</td>
</tr>
<tr>
<td>$0</td>
<td>$500,000</td>
</tr>
<tr>
<td>$500,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>$1,000,000</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>$2,000,000</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>$5,000,000</td>
<td>$10,000,000</td>
</tr>
<tr>
<td>$10,000,000</td>
<td>$20,000,000</td>
</tr>
<tr>
<td>$20,000,000</td>
<td>$40,000,000</td>
</tr>
<tr>
<td>$40,000,000</td>
<td>——</td>
</tr>
</tbody>
</table>

For each Calendar Day or Available Day, as specified, that any work shall remain uncompleted after the contract time specified for the completion of the Work required by the Contract, the sum specified in the Contract will be deducted from any money due the Contractor, not as a penalty, but as liquidated damages; provided however, that due account shall be taken of any adjustment of the contract time for completion of the work granted under the provisions of Subsection 108.07.E.

The Department may waive such portions of the liquidated damages as may accrue after the work is in condition for safe and convenient use by the traveling public.

A. Liquidated Damages

The amount of such charges is hereby agreed upon as fixed liquidated damages due the Department after the expiration of the time for completion specified in the Contract. The Contractor and his Surety shall be liable for liquidated damages in excess of the amount due the Contractor on the final payment.
These fixed liquidated damages are not established as a penalty but are calculated and agreed upon in advance by the Department and the Contractor due the uncertainty and impossibility of making a determination as to the actual and consequential damages which are incurred by the Department as a result of the failure on the part of the Contractor to complete The Work on time.

1. **Deduction From Partial Payments**: Liquidated damages, as they accrue, will be deducted from periodic partial payments.

2. **Deduction From Final Payment**: The full amount of liquidated damages will be deducted from final payment to the Contractor and/or his Surety.

3. **No Liquidated Damages Charged for Delay by the Department**: In case of default of the Contract and the subsequent completion of The Work by the Department as hereinafter provided, the Contractor and his Surety shall be liable for the liquidated damages under the Contract, but no liquidated damages shall be chargeable for any delay in the final completion of The Work by the Department due to any unreasonable action, negligence, omission, or delay of the Department. In any suit for the collection of or involving the assessment of liquidated damages, the reasonableness of the amount shall be presumed. The liquidated damages referred to herein are intended to be and are cumulative and shall be in addition to every other remedy now or hereafter enforceable at law, in equity, by statute, or under the Contract.

B. No Waiver of Department’s Rights

Permitting the Contractor to continue and finish The Work or any part of it after the expiration of the time allowed for completion or after any extension of time, shall not operate as a waiver of the rights of the Department under the Contract.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SUPPLEMENTAL SPECIFICATION

Section 109—Measurement and Payment

109.01 Measurement and Quantities
The method of measurement and computations to be used in determination of quantities of material furnished and of work performed under the Contract will be those methods generally recognized as conforming to good engineering practice.

Unless otherwise specified, longitudinal measurements for area computations will be made along the surface, and no deductions will be made for individual fixtures having an area of 9 ft² (1 m²) or less. Unless otherwise specified, transverse measurements for area computations will be the neat dimensions shown on the Plans or ordered in writing by the Engineer.

Where payment is to be made by the square yard (square meter) for a specified thickness, the length will be measured on the surface along the centerline and the pay width shall be that width specified on the plans for the Final surface of the completed section. Intermediate courses shall be placed at a width sufficient to support successive courses with no detriment to the stability of the successive courses. The width of material required beyond the pay width will not be eligible for payment and shall be considered incidental to the work.

Structures will be measured according to neat lines shown on the Plans or as altered to fit field conditions.

All items which are measured by the linear foot (linear meter), such as pipe culverts, guard rail, underdrains, etc., will be measured parallel to the base or foundation upon which such structures are placed, unless otherwise shown on the Plans.

In computing volumes of excavation, the average end area method or other acceptable methods will be used.

The term “gage,” when used in connection with the measurement of steel plates, will mean the U.S. Standard Gage.

The term “ton” will mean the short ton consisting of 2,000 pounds avoirdupois. The term “megagram” will mean one metric ton, equivalent to 1,000 kg. Any commodity paid for by weight shall be weighed on scales that have been approved as specified below and which are furnished at the expense of the Contractor or Supplier. Weighing and measuring systems including remote controls shall be subject to type-approval by the Department of Transportation. The manufacture, installation, performance, and operation of such devices located in Georgia shall conform to, and be governed by, the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act, the Georgia Weights and Measures Regulations, as amended and adopted, the current edition of the National Bureau of Standards Handbook 44, and these Specifications. Weighing and measuring systems located outside Georgia which are utilized for weighing materials to be used in Department work shall be manufactured, installed, approved, and operated in accordance with applicable laws and regulations for the state in which the scales are located.

All weighing, measuring, and metering devices used to measure quantities for payment shall be suitable for the purpose intended and will be considered to be “commercial devices.” Commodity scales located in Georgia shall be certified before use for accuracy, condition, etc., by the Weights and Measures Division of the Georgia Department of Agriculture, its authorized representative, or the Georgia Department of Transportation Office of Materials and Research. Scales located outside Georgia shall be certified in accordance with applicable laws and regulations for the state in which the scales are located. The Georgia Department of Transportation Office of Materials and Research may certify the scales. This certification shall have been made within a period of not more than one year prior to date of use for weighing commodity.

All equipment and all mechanisms and devices attached thereto or used in connection therewith shall be constructed, assembled, and installed for use so that they do not facilitate the perpetration of fraud. Any scale component or mechanism, which if manipulated would alter true scale values (including manual zero setting mechanisms) shall not be accessible to the scale operator. Such components and mechanisms that would otherwise be accessible to the scale operator shall be enclosed.
Section 109—Measurement and Payment

Provisions shall be made for security seals where appropriate on equipment and accessories. A security seal shall be affixed to any adjustment mechanism designed to be sealed. Scale or accessory devices shall not be used if security seals have been broken or removed.

Any certified scale or scale component which has been repaired, dismantled, or moved to another location shall again be tested and certified before it is eligible for weighing.

Whenever materials that are paid for based on weight are from a source within the State, the scales shall be operated by and the weights attested to by signature and seal of a duly authorized Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted. When such materials originate from another state that has a certified or licensed weigher program, the scales shall be operated by a weigher who is certified by that state in accordance with applicable laws, and weight ticket recordation shall be in accordance with Standard Operating Procedure 15.

When materials are paid for based on weight and originate from another state which has no program for certifying or licensing weighers, the materials shall be weighed on scales located in the State of Georgia by a Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted.

No scale shall be used to measure weights greater than the scale manufacturer’s rated capacity. A digital recorder shall be installed as part of any commodity scale. The recorder shall produce a printed digital record on a ticket with the gross, tare, and net weights of the delivery trucks, along with the date and time printed for each ticket. Provisions shall be made so that the scales or recorders may not be manually manipulated during the printing process. The system shall be so interlocked as to allow printing only when the scale has come to rest. Either the gross or net weight shall be a direct scale reading. Printing and recording systems that are capable of accepting keyboard entries shall clearly and automatically differentiate a direct scale weight value from any other weight values printed on the load ticket.

All scales used to determine pay quantities shall be provided to attain a zero balance indication with no load on the load receiving element by the use of semi-automatic zero (push-button zero) or automatic zero maintenance.

Vehicle scales shall have a platform of sufficient size to accommodate the entire length of any vehicle weighed and shall have sufficient capacity to weigh the largest load. Adequate drainage shall be provided to prevent saturation of the ground under the scale foundation.

The Engineer, at his discretion, may require the platform scales to be checked for accuracy. For this purpose the Contractor shall load a truck with material of his choosing, weigh the loaded truck on his scales, and then weigh it on another set of certified vehicle scales. When the difference exceeds 0.4 percent of load, the scales shall be corrected and certified by a registered scale serviceman registered in the appropriate class as outlined in the Georgia Weights and Measures Regulations or in accordance with applicable requirements of the state in which the scales are located. A test report shall be submitted to the appropriate representative of the Department of Agriculture.

Materials to be measured by volume in the hauling vehicle shall be hauled in approved vehicles and measured therein at the point of delivery. Vehicles for this purpose may be of any size or type acceptable to the Engineer, provided that the body is of such shape that the actual contents may be readily and accurately determined. All vehicles shall be loaded to their water level capacity as determined by the Engineer, provided that the body is of such shape that the actual contents may be readily and accurately determined.

Cement and lime will be measured by the ton (megagram). Whenever cement or lime is delivered to the Project in tank trucks, a certified weight shall be made at the shipping point by an authorized Certified Public Weigher who is not an employee of the Department. Whenever cement and lime are from a source within the State, the scales shall be operated by the weights attested to by signature and seal of a duly authorized Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted. When such materials originate from another state that has a certified or licensed weigher program, the scales shall be operated by a weigher who is certified by that state in accordance with applicable laws, and the weight ticket recordation shall be in accordance with Standard Operating Procedure 15. When cement and lime originate from another state that has no program for certifying or licensing weighers, the materials shall be weighed on scales located in the State of Georgia by a Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted.

The shipping invoice shall contain the certified weights and the signature and seal of the Certified Public Weigher. A security seal shall also be affixed to the discharge pipe cap on the tank truck before leaving the shipping point. The number
Section 109—Measurement and Payment

on the security seal shall also be recorded on the shipping invoice. The shipping invoice for quicklime shall also contain a certified lime purity percentage. Unsealed tank trucks will require reweighing by a Certified Public Weigher.

Timber will be measured by the thousand feet board measure (MFBM) (cubic meter) actually incorporated in the structure. Measurements will be based on nominal widths and thickness and the actual length in place. No additional measurement will be made for splices except as noted for overlaps as shown on the Plans.

The term “Lump Sum” when used as an item of payment will mean complete payment for the Work described in the Contract.

When a complete structure or structural unit (in effect, “Lump Sum” work) is specified as the unit of the measurement, the unit will be construed to include all necessary fittings and accessories.

Rental of equipment will be measured as defined in Subsection 109.05.B.4.

When standard manufactured items are specified as fence, wire, plates, rolled shapes, pipe conduits, etc., and these items are identified by gage, unit weight, section dimensions, etc., such identification will be considered to be nominal weights or dimensions. Unless more stringently controlled by tolerance in cited Specifications, manufacturing tolerances established by the industries involved will be accepted.

109.02 Measurement of Bituminous Materials

A. By Weighing the Material

The Department prefers this method whenever it is practicable. This method will be considered acceptable under the following conditions:

1. Weighed On Project: If the weights of the bituminous materials delivered by tank trucks are to be determined on the Project, weights shall be determined on scales that have been previously checked by the Department with standard weights for accuracy. The scale platform shall be large enough to accommodate the entire vehicle at one time. Under no conditions will truck scales be used to measure weights greater than their rated capacity. All weights not determined in the presence of an authorized representative of the Department shall be made by a Certified Public Weigher who is not an employee of the Department of Transportation and who is in good standing with the Georgia Department of Agriculture. The weight tickets shall carry both the signature and seal of the Certified Public Weigher.

2. Weighed At Shipping Point: A certified weight made at the shipping point by an authorized Certified Public Weigher who is not an employee of the Department of Transportation and who is registered with the Georgia Department of Agriculture, will be acceptable provided all openings in the tank have been sealed by the producer and when, upon inspection on the Project, there is no evidence of any leakage. The shipping ticket in this case must carry the signature and seal of the Certified Public Weigher. If the tank is not completely emptied the amount of material remaining in the tank truck will be measured by either weight or volume and the amount so determined, as verified by the Engineer, will be deducted from the certified weight.

3. By Extraction Analysis: The weight of bituminous material used will be determined by extraction tests made by the field laboratory. The average asphalt content for each Lot will be used to compute the weight of the Asphalt Cement to be paid for in accordance with the following formula:

English:

\[P = \% AC \times T \]

Where:

- \(P \) = Pay Tons of Asphalt Cement
- \(\% AC \) = Lot average of \% Asphalt Cement by weight of total mix as determined by extraction
- \(T \) = Actual accepted tons of mixture as weighed

Metric:

\[P = \% AC \times T \]

Where:

- \(P \) = Pay megagrams of Asphalt Cement
- \(\% AC \) = Lot average of \% Asphalt Cement by weight of total mix as determined by extraction
- \(T \) = Actual accepted megagrams of mixture as weighed
4. **By Digital Recording Device:** The amount of bituminous material as shown on the printed tickets will be the Pay Quantity.

B. By Volume

The volume will be measured and corrected for the difference between actual temperature and 60 °F (15 °C). Containers shall be level when measured, and one of the following methods shall be used, whichever is best suited to the circumstances:

1. **Tank Car Measurement:** If the material is shipped to the Project in railroad tank cars, the Contractor shall furnish the Engineer a certified chart showing the dimensions and volume for each inch (25 mm) of depth for each tank. The Engineer will make outage and temperature measurements before unloading is begun and after it is finished. The measurements will be taken when the bituminous material is at a uniform temperature and free from air bubbles. The Contractor shall not remove any bituminous material from any tank until necessary measurements have been made nor shall he release the car until final outage has been measured. The total number of gallons (liters) allowed for any tank car shall not be more than the U.S. Interstate Commerce Commission rating for that car, converted to gallons at 60 °F (15 °C).

2. **Truck Measurement:** If bituminous materials are delivered to the Project in tank trucks, distributor tanks, or drums, the Contractor shall not remove any bituminous material from the transporting vehicle or container until necessary measurements have been made, nor shall the transporting vehicle or container be released until final outage has been measured. If weighing is not convenient, the Contractor shall furnish the Engineer with a certified chart showing the dimensions and volume of each container together with a gauge or calibrated measuring rod which will permit the volume of the material to be determined by vertical measurement.

3. **Metering:** The volume may be determined by metering, in which case the metering device used and the method of using it shall be subject to the approval of the Engineer.

4. **Time of Deliveries:** The arrival and departure of vehicles delivering bituminous materials to the Project site shall be so scheduled that the Engineer is afforded proper time for the measurements of delivered volume and final outage. The Engineer will make the necessary measurements only during the Contractor’s normal daily working hours.

C. Production for Multiple Projects

When a Contractor is producing Asphaltic Concrete from one plant, which is being placed on two or more jobs, public or private, the amount of bituminous material used may be determined by extraction tests in accordance with Subsection 109.02.A.3 or digital recording device in accordance with Subsection 109.02.A.4.

D. Tack Coat

When the same storage facility is utilized for Bituminous Materials to be used in Hot Mix Asphaltic Concrete, Bituminous Tack Coat, and/or Surface Treatment, the quantity used for Tack Coat shall be converted to tons (megagrams) and deducted from the quantities for the Bituminous Material used in the Hot Mix Asphaltic Concrete and Surface Treatment.

E. Corrections

When the volume and temperature have been determined as defined above, the volume will be corrected by the use of the following formula:

\[V_{English} = \frac{V_1}{K (t-60) + 1} \]

\[V_{metric} = \frac{V_1}{K (t-15) + 1} \]

Where:

- \(V = \) Volume of bituminous material at 60 °F (15 °C)
- \(V_1 = \) Volume of hot bituminous material
- \(t = \) Temperature of hot bituminous material in degrees Fahrenheit (Celsius)
- \(K = \) Coefficient of Expansion of bituminous material (correction factor)

The correction factors \(K \) for various materials are given below:

- 0.00035 (0.00063) per °F (°C) for petroleum oils having a specific gravity of 60 °F/60 °F (15 °C/15 °C) above 0.966
- 0.00040 (0.00072) per °F (°C) for petroleum oils having a specific gravity of 60 °F/60 °F (15 °C/15 °C) between 0.850-0.966
Section 109—Measurement and Payment

- 0.00030 (0.00054) per °F (°C) for Tar
- 0.00025 (0.00045) per °F (°C) for Emulsified Asphalt
- 0.00040 (0.00072) per °F (°C) for Creosote Oil

109.03 Scope of Payment

The Contractor shall receive and accept the compensation provided for in the Contract as full payment for furnishing all materials, labor, tools, equipment, superintendence and incidentals, and for performing all work contemplated and embraced under the Contract in a complete and acceptable manner, for any infringement of patent, trademark or copyright, for all loss or damage arising from the nature of The Work, or from the action of the elements, for all expenses incurred by or in consequence of the suspension or discontinuance of The Work, or from any unforeseen difficulties which may be encountered during the prosecution of The Work and for all risks of every description connected with the prosecution of The Work until its Final Acceptance by the Engineer, except as provided in Subsection 107.16.

The payment of any partial estimate prior to Final Acceptance of the Project as provided in Subsection 105.16 shall in no way affect the obligation of the Contractor to repair or renew any defective parts of the construction or to be responsible for all damages due to such defects.

109.04 Payment and Compensation for Altered Quantities

When alteration in Plans or quantities of work not requiring Supplemental Agreements as herein before provided for are ordered and performed, the Contractor shall accept payment in full at the Contract Unit Bid Prices for the actual quantities of work done, and no allowance will be made for increased expense, loss of expected reimbursement, or loss of anticipated profits suffered or claimed by the Contractor, resulting either directly from such alterations, or indirectly from unbalanced allocation among the Contract Items of overhead expense on the part of the Bidder and subsequent loss of expected reimbursement therefore, or from any other cause.

Compensation for alterations in Plans or quantities of work requiring Supplemental Agreements shall be as stipulated in such agreement, except that when the Contractor proceeds with the Work without change of price being agreed upon, he shall be paid for such increased or decreased quantities at the Contract Unit Prices Bid in the Proposal for the Items of the Work.

109.05 Extra Work

Extra work, as defined in Subsection 101.27, when ordered in accordance with Subsection 104.04, will be authorized in writing by the Engineer. The authorization will be in the form of a Supplemental Agreement or a Force Account.

A. Supplemental Agreement

In the case of a Supplemental Agreement, the work to be done will be stipulated and agreed upon by both parties prior to any extra work being performed.

Payment based on Supplemental Agreements shall constitute full payment and settlement of all additional costs and expenses including delay and impact damages caused by, arising from or associated with The Work performed.

B. Force Account

When no agreement is reached for Extra Work to be done at Lump Sum or Unit Prices, such work may be authorized by the Department to be done on a Force Account basis. A Force Account estimate that identifies all anticipated costs shall be prepared by the Contractor on forms provided by the Engineer. Work shall not begin until the Force Account is approved. Payment for Force Account work will be in accordance with the following:

1. Labor: For all labor, equipment operators and supervisors, excluding superintendents, in direct charge of the specific operations, the Contractor shall receive the rate of wage agreed upon in writing before beginning work for each and every hour that said labor, equipment operators and supervisors are actually engaged in such work.

 The Contractor shall receive the actual costs paid to, or in behalf of, workers by reason of subsistence and travel allowances, health and welfare benefits, pension fund benefits, or other benefits, when such amounts are required by collective bargaining agreement or other employment contract generally applicable to the classes of labor employed on The Work.

 An amount equal to 15% of the sum of the above items will also be paid the Contractor.
2. **Bond, Insurance, and Tax**: For property damage, liability, and worker's compensation insurance premiums, unemployment insurance contributions, and Social Security taxes on the Force Account work, the Contractor shall receive the actual cost, to which cost no percentage will be added. The Contractor shall furnish satisfactory evidence of the rate or rates paid for such bond, insurance, and tax.

3. **Materials**: For materials accepted by the Engineer and used, the Contractor shall receive the actual cost of such material incorporated into The Work, including Contractor paid transportation charges (exclusive of machinery rentals as hereinafter set forth), to which cost 10% will be added.

4. **Equipment**: For any machinery or special equipment (other than small tools) including fuel and lubricant, plus transportation costs, the use of which has been authorized by the Engineer, the Contractor shall receive the rental rates indicated below for the actual time that such equipment is in operation on The Work or the time, as indicated below, the equipment is directed to stand by.

 Equipment rates shall be based on the latest edition of the *Rental Rate Blue Book for Construction Equipment* or *Rental Rate Blue Book for Older Construction Equipment*, whichever applies, as published by EquipmentWatch using all instructions and adjustments contained therein and as modified below.

 Allowable Equipment Rates shall be established as defined below:
 - Allowable Hourly Equipment Rate = Monthly Rate/176 x Adjustment Factors.
 - Allowable Hourly Operating Cost = Hourly Operating Cost.
 - Allowable Rate Per Hour = Allowable Hourly Equipment Rate + Allowable Hourly Operating Cost.
 - Standby Rate = Allowable Hourly Equipment Rate x 35%

 NOTE: The monthly rate is the basic machine plus any attachments.

 Standby rates shall apply when equipment is not in operation and is directed by the Engineer to standby for later use. In general, standby rates shall apply when equipment is not in use, but will be needed again to complete The Work and the cost of moving the equipment will exceed the accumulated standby cost. Payment for standby time will not be made on any day the equipment operates for 8 or more hours. For equipment accumulating less than 8 hours operating time on any normal workday, standby payment will be limited to only that number of hours which, when added to the operating time for that day equals 8 hours. Standby payment will not be made on days that are not normally considered workdays.

 The Department will not approve any rates in excess of the rates as outlined above unless such excess rates are supported by an acceptable breakdown of cost.

 Payable time periods will not include:
 - Time elapsed while equipment is broken down
 - Time spent in repairing equipment, or
 - Time elapsed after the Engineer has advised the Contractor the equipment is no longer needed

 If a piece of equipment is needed which is not included in the above *Blue Book* rental rates, reasonable rates shall be agreed upon in writing before the equipment is used. All equipment charges by persons or firms other than the Contractor shall be supported by invoices.

 Transportation charges for each piece of equipment to and from the site of the Work will be paid provided:
 - The equipment is obtained from the nearest approved source
 - The return charges do not exceed the delivery charges
 - Haul rates do not exceed the established rates of licensed haulers, and
 - Such charges are restricted to those units of equipment not already available and not on or near the Project

 No additional compensation will be made for equipment repair.

5. **Miscellaneous**: No additional allowance will be made for general superintendence, the use of small tools, or other costs for which no specific allowance is herein provided.

6. **Compensation**: The Contractor's representative and The Engineer shall compare records and agree on the cost of work done as ordered on a Force Account basis at the end of each day on forms provided by the Department.

7. **Subcontract Force Account Work**: For work performed by an approved Subcontractor or Second-tier Subcontractor, all provisions of this Section (109.05) that apply to the Prime Contractor in respect to labor,
materials and equipment shall govern. The prime Contractor shall coordinate the work of his Subcontractor. The prime Contractor will be allowed an amount to cover administrative cost equal to 5% of the Subcontractor's amount earned but not to exceed $5,000.00 per Subcontractor. Markup for Second-tier Subcontract work will not be allowed.

Should it become necessary for the Contractor or Subcontractor to hire a firm to perform a specialized type of work or service which the prime Contractor or Subcontractor is not qualified to perform, payment will be made at reasonable invoice cost. To each invoice cost a markup to cover administrative cost equal to 5% of the total invoice but not to exceed $5,000.00 will be allowed the Contractor or Subcontractor but not both.

8. **Statements:** No payment will be made for work performed on a Force Account basis until the Contractor has furnished the Engineer with duplicate itemized statements of the cost of such Force Account work detailed as follows:

 a. Name, classification, date, daily hours, total hours, rate, and extension for each laborer, equipment operator, and supervisor, excluding superintendents.

 b. Designation, dates, daily hours, total hours, rental rate, and extension for each unit of machinery and equipment.

 c. Quantities of materials, prices, and extensions.

 d. Transportation of materials.

 e. Cost of property damage, liability, and worker's compensation insurance premiums, unemployment insurance contributions, and Social Security tax.

Statements shall be accompanied and supported by invoices for all materials used and transportation charges. However, if materials used on the Force Account work are not purchased specifically for such work but are taken from the Contractor's stock, then, in lieu of the invoices, the Contractor shall furnish an affidavit certifying that such materials were taken from his stock, that the quantity claimed was actually used, and that the price and transportation claimed represent the actual cost to the Contractor.

Payment based on Force Account records shall constitute full payment and settlement of all additional costs and expenses including delay and impact damages caused by, arising from or associated with The Work performed.

109.06 Eliminated Items

Should any Items contained in the Proposal be found unnecessary for the proper completion of The Work, the Engineer may, upon written order to the Contractor, eliminate such Items from the Contract, and such action shall in no way invalidate the Contract. When a Contractor is notified of the elimination of Items, he will be reimbursed for actual work done and all costs incurred, including mobilization of materials prior to said notifications.

109.07 Partial Payments

A. General

At the end of each calendar month, the total value of Items complete in place will be estimated by the Engineer and certified for payment. Such estimate is approximate only and may not necessarily be based on detailed measurements. Value will be computed on the basis of Contract Item Unit Prices or on percentage of completion of Lump Sum Items.

When so requested by the Contractor and approved by the Engineer, Gross Earnings of $500,000.00 or more for work completed within the first 15 days of any month will be certified for payment on a semi-monthly basis subject to the conditions and provisions of Subsection 109.07.A, Subsection 109.07.B.6, Subsection 109.07.C, Subsection 109.07.D, Subsection 109.07.E, and Subsection 109.07.F.

B. Materials Allowance

Payments will be made on delivered costs, or percentage of bid price if otherwise noted, with copies of paid invoices provided to the Department for the materials listed below which are to be incorporated into the Project provided the materials:

- Conform to all Specification requirements.
• Are stored on the Project Right-of-Way or, upon written request by the Contractor and written approval of the Engineer, they may be stored off the Right-of-Way, but local to the Project, provided such storage is necessary due to lack of storage area on the Right-of-Way, need for security, or need for protection from weather.

As a further exception to on-Project storage, upon written request by the Contractor, the Engineer may approve off-the-Project storage items uniquely fabricated or precast for a specific Project, such as structural steel and precast concrete, which will be properly marked with the Project number and stored at the fabrication or precast facility.

The Engineer may approve out-of-state storage for structural steel and prestressed concrete beams uniquely fabricated for a specific Project stored at the fabrication facility.

1. Paid invoices should accompany the materials allowance request, but in no case be submitted to the Project Engineer later than 30 calendar days following the date of the progress payment report on which the materials allowance was paid.

 In case such paid invoices are not furnished within the established time, the materials allowance payment will be removed from the next progress statement and no further materials allowance will be made for that item on that Project.

2. Materials allowances will be paid for those items which are not readily available, and which can be easily identified and secured for a specific project and for which lengthy stockpiling periods would not be detrimental. Some exclusions are as follows:

 a. No payments will be made on living or perishable plant materials until planted.
 b. No payments will be made on Portland Cement, Liquid Asphalt, or Grassing Materials.
 c. No payment will be made for aggregate stockpiled in a quarry. Payment for stockpiled aggregate will be made only if the aggregate is stockpiled on or in the immediate vicinity of the project and is held for the exclusive use on that project. The aggregate must be properly secured. If the aggregate stockpiled is to be paid for per-ton (megagram) it must be reweighed on approved scales at the time it is incorporated into the Project.
 d. No payments will be made on minor material items, hardware, etc.

3. No materials allowance will be made for materials when it is anticipated that those materials will be incorporated into the Work within 30 calendar days.

4. No materials allowance will be made for a material when the requested allowance for such material is less than $50,000.

5. Where a storage area is used for more than one project, material for each project shall be segregated from material for other projects, identified, and secured. Adequate access for auditing shall be provided. All units shall be stored in a manner so that they are clearly visible for counting and/or inspection of the individual units.

6. The Commissioner may, at his discretion, grant waiver to the requirements of this Section when, in his opinion, such waiver would be in the public interest.

 Subsequently, in the event the material is not on-hand and in the quantities for which the materials allowance was granted, the materials allowance payment will be removed from the next progress statement and no further materials allowance will be made for those items on that Project. If sufficient earnings are not available on the next progress statement, the Contractor agrees to allow the Department to recover the monies from any other Contract he may have with the Department, or to otherwise reimburse the Department.

 Payments for materials on hand shall not exceed the invoice price or 75 percent of the bid prices for the pay items into which the materials are to be incorporated, whichever is less.

C. Minimum Payment

 No partial payment will be made unless the amount of payment is at least $1000.00.

D. Liquidated Damages

 Accrued liquidated damages will be deducted in accordance with Subsection 108.08.

E. Other Deductions

 In addition to the deductions provided for above, the Department has the right to withhold any payments due the Contractor for items unpaid by the Contractor for which the Department is directly responsible, including, but not limited to, royalties (see Section 106).
Section 109—Measurement and Payment

F. **Amount of Payment**

The balance remaining after all deductions provided for herein have been made will be paid to the Contractor. Partial estimates are approximate and are subject to correction on subsequent progress statements. If sufficient earnings are not available on the subsequent progress statement, the Contractor agrees to allow the Department to recover the monies from any other Contract he may have with the Department, or to otherwise reimburse the Department. The Engineer is responsible for computing the amounts of all deductions herein specified, for determining the progress of the Work and for the items and amounts due to the Contractor during the progress of the Work and for the final statement when all Work has been completed.

G. **Interest**

Under no circumstances will any interest accrue or be payable on any sums withheld or deducted by the Department as authorized by Section 109.07.A, Section 109.07.B.6, Section 109.07.C, Section 109.07.D, Section 109.07.E, and Section 109.07.F.

H. **Insert the Following in Each Subcontract**

The Contractor shall insert the following in each Subcontract entered into for work under this Contract:

“The Contractor shall not withhold any retainage on Subcontractors. The Contractor shall pay the Subcontractor 100% percent of the gross value of the Completed Work by the Subcontractor as indicated by the current estimate certified by the Engineer for payment.”

Neither the inclusion of this Specification in the Contract between the Department and the Prime Contractor nor the inclusion of the provisions of this Specification in any Contract between the Prime Contractor and any of his Subcontractors nor any other Specification or Provision in the Contract between the Department and the Prime Contractor shall create, or be deemed to create, any relationship, contractual or otherwise, between the Department and any Subcontractor.

109.08 **Final Payment**

When Final Inspection and Final Acceptance have been made by the Engineer as provided in Section 105.16, the Engineer will prepare the Final Statement of the quantities of the various classes of work performed. All prior partial estimates and payments shall be subject to correction in the Final Statement. The District Engineer will transmit a copy of the Statement to the Contractor by Registered or Certified Mail. The Contractor will be afforded 20 days in which to review the Final Statement in the District Office before it is certified for payment by the Engineer. Any adjustments will be resolved by the District Engineer or in case of a dispute referred to the Chief Engineer whose decision shall be final and conclusive. After approval of the Final Statement by the Contractor, or after the expiration of the 20 days, or after a final ruling on disputed items by the Chief Engineer, the Final Statement shall be certified to the Treasurer by the Chief Engineer stating the Project has been accepted and that the quantities and amounts of money shown thereon are correct, due and payable.

The Treasurer, upon receipt of the Engineer’s certification, shall in turn furnish the Contractor with the Department’s Standard Release Form to be executed in duplicate. The aforesaid Release Form, showing the total amount of money due the Contractor, shall be sent to the Contractor by Registered or Certified Mail, to be delivered to such Contractor upon the signing of a return receipt card, to be returned to the Department in accordance with the provision of Federal law in respect to such matters and such return receipt card shall be conclusive evidence of a tender of said sum of money to the Contractor. Upon receipt of the properly executed Standard Release Form, the Treasurer shall make final payment jointly to the Contractor and his Surety. The aforesaid certification, executed release form, and final payment shall be evidence that the Commissioner, the Engineer, and the Department have fulfilled the terms of the Contract, and that the Contractor has fulfilled the terms of the Contract except as set forth in his Contract Bond.

The Standard Release Form is to be executed by the Contractor within 120 days after delivery thereof, as evidenced by the Registered or Certified Mail Return Receipt. Should the Contractor fail to execute the Standard Release Form because he disputes the Final Payment as offered, or because he believes he has a claim for damages or additional compensation under the Contract, the Contractor shall, within 120 days after delivery to the Contractor of the Standard Release Form, as evidenced by the Registered or Certified Mail Return Receipt, enter suit in the proper court for adjudication of his claim. Should the Contractor fail to enter suit within the aforesaid 120 days, then by agreement hereby stipulated, he is forever barred and stopped from any recovery or claim whatsoever under the terms of this Contract.

Should the Contractor fail to execute the Standard Release Form or file suit within 120 days after delivery thereof, then the Surety on the Contractor’s Bond is hereby constituted the attorney-in-fact of the Contractor for the purpose of executing such
Section 109—Measurement and Payment

final releases as may be required by the Department, including but not limited to the Standard Release Form, and for the purpose of receiving the Final Payment under this Contract.

The Department reserves the right as defined in Subsection 107.20, should an error be discovered in any estimates, to claim and recover from the Contractor or his Surety, or both, such sums as may be sufficient to correct any error of overpayment. Such overpayment may be recovered from payments due on current active Projects or from any future State work done by the Contractor.

The foregoing provisions of this Section shall be applicable both to the Contractor and the Surety on his Bond; and, in this respect, the Surety shall be bound by the provisions of Subsection 108.09 of these Specifications in the same way and manner as the Contractor.

A. Interest

In the event the Contractor fails to execute the Standard Release Form as prepared by the Treasurer because he disputes the amount of the final payment as stated therein, the amount due the Contractor shall be deemed by the Contractor and the Department to be an unliquidated sum and no interest shall accrue or be payable on the sum finally determined to be due to the Contractor for any period prior to final determination of such sum, whether such determination be by agreement of the Contractor and the Department or by final judgement of the proper court in the event of litigation between the Department and the Contractor. The Contractor specifically waives and renounces any and all rights it may have under Section 13-6-13 of the Official Code of Georgia and agrees that in the event suit is brought by the Contractor against the Department for any sum claimed by the Contractor under the Contract, for delay damages resulting from a breach of contract, for any breach of contract or for any extra or additional work, no interest shall be awarded on any sum found to be due from the Department to the Contractor in the final judgement entered in such suit. All final judgements shall draw interest at the legal rate, as specified by law. Also, the Contractor agrees that notwithstanding any provision or provisions of Chapter 11 of Title 13 of the Official Code of Georgia that the provisions of this contract control as to when and how the Contractor shall be paid for The Work. Further, the Contractor waives and renounces any and all rights it may have under Chapter 11 of Title 13 of the Official Code of Georgia.

B. Termination of Department's Liability

Final payment will be in the amount determined by the statement as due and unpaid. The acceptance of the final payment or execution of the Standard Release Form or failure of the Contractor to act within 120 days as provided herein after tender of payment, or final payment to the Contractor’s Surety in accordance with the provisions stipulated herein, shall operate as and be a release to the Department, the Commissioner, and the Engineer from all claims of liability under this contract and for any act or neglect of the Department, the Commissioner, or the Engineer.

109.09 Termination Clause

A. General

The Department may, by written notice, terminate the Contract or a portion thereof for the Department’s convenience when the Department determines that the termination is in the State’s best interest, or when the Contractor is prevented from proceeding with the Contract as a direct result of one of the following conditions:

1. An Executive Order of the President of the United States with respect to the prosecution of war or in the interest of national defense.

2. The Engineer and Contractor each make a determination, that, due to a shortage of critical materials required to complete the Work which is caused by allocation of these materials to work of a higher priority by the Federal Government or any agency thereof, it will be impossible to obtain these materials within a practical time limit and that it would be in the public interest to discontinue construction.

3. An injunction is imposed by a court of competent jurisdiction which stops the Contractor from proceeding with the Work and causes a delay of such duration that it is in the public interest to terminate the Contract and the Contractor was not at fault in creating the condition which led to the court’s injunction.

The decision of the Engineer as to what is in the public interest and as to the Contractor’s fault, for the purpose of Termination, shall be final.

4. Orders from duly constituted authority relating to energy conservation.
B. Implementation

When, under any of the conditions set out in Subsection A of this Section, the Contract, or any portion thereof, is terminated before completion of all Items of Work in the Contract, the Contractor shall be eligible to receive some or all of the following items of payment:

1. For the actual number of units of Items of Work completed, payment will be made at the Contract Unit Price.
2. Reimbursement for organization of the Work and moving equipment to and from the job will be considered where the volume of work completed is too small to compensate the Contractor for these expenses under the Contract Unit Prices. However, the Engineer’s decision as whether or not to reimburse for organization of the Work and moving equipment to and from the job, and in what amount, shall be final.
3. Acceptable materials, obtained by the Contractor for the Work, that have been inspected, tested, and accepted by the Engineer, and that are not incorporated in the Work will, at the request of the Contractor, be purchased from the Contractor at actual cost as shown by receipted bills and actual cost records at such points of delivery as may be designated by the Engineer. This will include any materials that have been delivered to the project site or that have been specifically fabricated for the project and are not readily usable on other projects. It will not include materials that may have been ordered, but not delivered to the project site and that are readily usable on other projects (e.g., guard rail, stone, lumber, etc.).
4. For Items of Work partially completed, payment adjustments including payments to afford the Contractor a reasonable profit on work performed, may be made as determined by the Engineer based upon a consideration of costs actually incurred by the Contractor in attempting to perform the Contract.
5. No payment will be made, and the Department will have no liability, for lost profits on Work not performed. In particular, the Department will not be liable to the Contractor for all profits the Contractor expected to realize had the Project been completed, nor for any loss of business opportunities, nor for any other consequential damages.
6. In order that the Department may make a determination of what sums are payable hereunder, the Contractor agrees that, upon termination of the Contract, it will make all of its books and records available for inspection and auditing by the Department.
 To be eligible for payment, costs must have been actually incurred, and must have been recorded and accounted for according to generally accepted accounting principles, and must be items properly payable under Department policies. Where actual equipment costs cannot be established by the auditors, payment for unreimbursed equipment costs will be made in the same manner as is provided in Subsection 109.05 for Force Account Work. Idle time for equipment shall be reimbursed at standby rates. In no case will the Contractor be reimbursed for idle equipment after the Engineer has advised the Contractor the equipment is no longer needed on the job. Refusal of the Contractor to allow the Department to inspect and audit all of the Contractor’s books and records shall conclusively establish that the Department has no liability to the Contractor for any payment under this provision, and shall constitute a waiver by the Contractor of any claim for damages allegedly caused by breach or termination of the Contract. The amount payable under this provision, if any, is to be determined by the Engineer, whose determination will be final and binding.
7. The sums payable under this Subsection shall be the Contractor’s sole and exclusive remedy for termination of the Contract.

C. Termination of a Contract

Termination of a Contract or a portion thereof shall not relieve the Contractor of his responsibilities for any completed portion of the Work, nor shall it relieve his Surety of its obligation for and concerning any just claims arising out of the Work performed.

109.10 Interest

In the event any lawsuit is filed against the Department alleging the Contractor is due additional money because of claims or for any breach of contract, the Contractor hereby waives and renounces any right it may have under O.C.G.A. Section 13-6-13 to prejudgment interest. Also, the Contractor agrees that notwithstanding any provision or provisions of Chapter 11 of Title 13 of the Official Code of Georgia that the provisions of this contract control as to when and how the Contractor shall be paid for The Work. Further, the Contractor waives and renounces any and all rights it may have under Chapter 11 of Title 13 of the Official Code of Georgia.

109.11 Price Adjustments
A. For Road Construction:

Fuel price adjustments will be made on payments due the Contractor for certain roadway contract items. The adjustments shall be applied only to the items listed in the “Fuel Usage Factor” table. Payments will be made at the end of each month.

1. Fuel Price Adjustments will be computed on a monthly basis for both gasoline and diesel fuel in accordance with the following:

\[
F_{PA} = \text{Fuel Price Adjustment} \\
F_{PM} = \text{the “Monthly Fuel Price” for the month in which work was accomplished} \\
F_{PL} = \text{the “Monthly Fuel Price” for the month in which the project was let to contract} \\
Q = \text{quantity placed} \\
F = \text{“Fuel Usage Factor”}
\]

a. If the fuel price for the month is greater than the fuel price for the month in which the project was let to contract, the contractor will be paid an amount calculated in accordance with the following formula:

\[
F_{PA} = \left(\frac{(F_{PM} - F_{PL})}{F_{PL}} - .10\right) \times Q \times F \times F_{PL}
\]

b. If the fuel price for the month is less than the fuel price for the month in which the project was let to contract, the Department will deduct from payments due the contractor, an amount calculated in accordance with the following formula:

\[
F_{PA} = \left(\frac{(F_{PM} - F_{PL})}{F_{PL}} + .10\right) \times Q \times F \times F_{PL}
\]

Fuel Usage Factors:

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Units</td>
<td>Diesel</td>
</tr>
<tr>
<td>Excavation paid as specified by Sections 205 and 206</td>
<td>Gallons/cubic yard</td>
<td>0.29</td>
</tr>
<tr>
<td>Graded Aggregate Base paid as specified by the ton under Section 310*</td>
<td>Gallons/ton</td>
<td>0.29</td>
</tr>
<tr>
<td>Hot Mix Asphalt paid as specified by the ton under Sections 400 and 402*</td>
<td>Gallons/ton</td>
<td>2.90</td>
</tr>
<tr>
<td>Portland Cement Concrete Pavement paid as specified by the square yard under Section 430</td>
<td>Gallons/square yard</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Units</td>
<td>Diesel</td>
</tr>
<tr>
<td>Excavation paid as specified by Sections 205 and 206</td>
<td>Gallons/cubic meter</td>
<td>0.37</td>
</tr>
<tr>
<td>Graded Aggregate Base paid as specified by the ton under Section 310*</td>
<td>Gallons/megagram</td>
<td>0.32</td>
</tr>
<tr>
<td>Hot Mix Asphalt paid as specified by the ton under Sections 400 and 402*</td>
<td>Gallons/megagram</td>
<td>3.19</td>
</tr>
<tr>
<td>Portland Cement Concrete Pavement paid as specified by the square yard under Section 430</td>
<td>Gallons/square meter</td>
<td>0.29</td>
</tr>
</tbody>
</table>
2. Asphalt Cement Price Adjustments will be computed on a monthly basis in accordance with the following:

\[PA = \left(\frac{APM - APL}{APL} \right) \times TMT \times APL \]

a. If the asphalt cement price for the month is greater than the asphalt cement price for the month in which the project was let to contract, the contractor will be paid an amount calculated in accordance with the following formula:

\[PA = \left(\frac{APM - APL}{APL} \right) - 0.05 \times TMT \times APL \]

b. If the asphalt cement price for the month is less than the asphalt cement price for the month in which the project was let to contract, the Department will deduct an amount calculated in accordance with the following formula:

\[PA = \left(\frac{APM - APL}{APL} \right) + 0.05 \times TMT \times APL \]

1. “Monthly Asphalt Cement Price”: The Department will determine the “Monthly Asphalt Cement Price” based on the following formulas:

Monthly Asphalt Cement Price = 100% Georgia Base Asphalt Price;

Where;

GBAP = “Georgia Base Asphalt Price”, (in dollars/ton) is based on the arithmetic average posted price of PG asphalt cement as specified in Section 820, from the Department’s monthly survey obtained from approved asphalt cement suppliers of bituminous materials to the Department projects F.O.B. the suppliers terminal. However, the highest price and the lowest price are excluded from the calculation of price, GBAP.

2. “Asphalt Cement Quantity Calculation”: The calculation of asphalt cement quantity for each mix type will be based on the asphalt cement content (AC %) of the approved Job Mix Formula (JMF) as specified in Subsection 400.1.03.C. The following calculation formula will be used to determine asphalt cement quantity:

Asphalt Cement Quantity = Hot Mix Asphaltic Concrete monthly total in tons (megagrams) per mix type certified for the payment x AC (%)
The Total Monthly Tonnage (TMT) of asphalt cement computed by the Engineer will be calculated as follows:

$$\text{TMT} = \frac{\text{Sum of all asphalt cement quantities, including polymer modified asphalt binder and non-modified asphalt cement, based on the Hot Mix Asphaltic Concrete of the various mix types per ton (megagram)}}{\text{Sum of all asphalt cement quantities used as bituminous tack coat converted from gallons to tons (megagrams)}} + \frac{\text{Sum of all asphalt cement quantities used for bituminous surface treatment (total gallons of asphalt emulsion used, as measured from distributors, will be multiplied by a factor of 0.65 to determine the quantity in gallons of asphalt cement used) converted from gallons to tons (megagrams) by the Engineer certified for payment.}}{\text{Sum of all asphalt cement quantities used as bituminous tack coat converted from gallons to tons (megagrams)}}$$

Asphalt Cement Price for the Month (APM) will be adjusted monthly. Price adjustments (PA) will be made monthly and all calculations for Price Adjustments shall be performed by the Engineer as specified in SOP-39 “Determination of Asphalt Cement Index and Asphalt Cement Price Adjustment”.

B. For Bridge Construction:

Fuel Price Adjustments shall be made on payments due the Contractor for certain bridge contract items. The adjustments shall be applied only to the bridge items listed in the tables below. Payment will be made based on the following: For every $1,000.00 (One thousand dollars) paid on the items listed a Fuel Usage Factor rate of 8 Gallons for Diesel and 1.5 Gallons for Unleaded Gasoline will be applied.

1. Fuel Price Adjustments (on bridge items) will be computed on a monthly basis for both gasoline and diesel fuel in accordance with the following:

- **FPA** = Fuel Price Adjustment
- **FPM** = the “Monthly Fuel Price” for the month in which work was accomplished
- **FPL** = the “Monthly Fuel Price” for the month in which the project was let to contract
- **QF** = quantity placed (contract item unit bid price x monthly quantity placed)
- **F** = “Fuel Usage Factor” (8.0 – Diesel; 1.5 – Unleaded)

 a. If the fuel price for the month is greater than the fuel price for the month in which the project was let to contract, the contractor will be paid an amount calculated in accordance with the following formula:

 $$\text{FPA} = \{[(\text{FPM} - \text{FPL})/\text{FPL}) - .10] \times (\text{QF}/1000) \times F\} \times \text{FPL}$$

 b. If the fuel price for the month is less than the fuel price for the month in which the project was let to contract, the Department will deduct from payments due the contractor, an amount calculated in accordance with the following formula:

 $$\text{FPA} = \{[(\text{FPM} - \text{FPL})/\text{FPL}) + .10] \times (\text{QF}/1000) \times F\} \times \text{FPL}$$

English Projects:

<table>
<thead>
<tr>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Excavation paid as specified by the cubic yard under Section 211</td>
</tr>
<tr>
<td>Class ___ Concrete paid as specified by the cubic yard under Section 500</td>
</tr>
<tr>
<td>Superstructure Concrete Class ___ paid as specified per plan quantity by the cubic yard and in accordance with Section 500</td>
</tr>
<tr>
<td>Concrete Handrail (designation) specified by the linear foot under Section 500</td>
</tr>
</tbody>
</table>
Concrete Barrier paid as specified by the linear foot under Section 500

Structural Steel paid as specified per plan quantity by the pound and in accordance with Section 501

Prestressed Concrete Beams paid as specified by the linear foot under Section 507

Superstructure Reinforcement as specified per plan quantity by the pound and in accordance with Section 511

Bar Reinforcement Steel as specified by the pound and under Section 511

Piling paid as specified by the linear foot under Section 520

Drilled Caisson, __ paid as specified by the linear foot under Section 524

Pile Encasement, __ paid as specified by the linear foot under Section 547

Metric Projects

<table>
<thead>
<tr>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Excavation paid as specified by the cubic meter under Section 211</td>
</tr>
<tr>
<td>Class __ Concrete paid as specified by the cubic meter under Section 500</td>
</tr>
<tr>
<td>Superstructure Concrete Class __ paid as specified per plan quantity by the cubic meter and in accordance with Section 500</td>
</tr>
<tr>
<td>Concrete Handrail (designation) specified by the linear meter under Section 500</td>
</tr>
<tr>
<td>Concrete barrier paid as specified by the linear meter under Section 500</td>
</tr>
<tr>
<td>Structural Steel paid as specified per plan quantity by the kilogram and in accordance with Section 501</td>
</tr>
<tr>
<td>Prestressed Concrete Beams paid as specified by the linear foot under Section 507</td>
</tr>
<tr>
<td>Superstructure Reinforcement as specified per plan quantity by the kilogram and in accordance with Section 511</td>
</tr>
<tr>
<td>Bar Reinforcement Steel as specified by the kilogram and under Section 511</td>
</tr>
<tr>
<td>Piling paid as specified by the linear meter under Section 520</td>
</tr>
<tr>
<td>Drilled Caisson, __ paid as specified by the linear meter under Section 524</td>
</tr>
<tr>
<td>Pile Encasement, __ paid as specified by the linear meter under Section 547</td>
</tr>
</tbody>
</table>

C. **Price Adjustment Trigger:** No price adjustment will be made on any project with less than 366 Calendar Days from the Contract Letting Date to the specified completion date. If the original Contract contains 366 Calendar Days or more, the Price Adjustment shall be made on quantities placed from the Contract Letting Date to the specified completion date. A fuel price adjustment shall not be made until the FPM is greater than 10% above or
Section 109—Measurement and Payment

below the FPL. An asphalt cement price adjustment shall not be made until the APM is greater than 5% above or below the APL.

D. “Monthly Fuel Price”: The Department will publish a “Monthly Fuel Price” for both regular unleaded gasoline and diesel fuel based on the “AAA” state average for Georgia, and the Department will publish a “Monthly Asphalt Cement Price” based on the formula contained within this specification.

E. “Other Restrictions”:

1. No asphalt cement price adjustment will be made for cut-back, and emulsified asphalt when used for bituminous tack coat with Hot Mix Asphaltic Concrete Construction.

2. There is a cap of 125% above the FPL/APL for any price adjustment.

3. Unless specifically provided for by Supplemental Agreement or Contract Amendment, no positive Price Adjustments for Fuel or Asphalt Cement that result in a payment to the Contractor will be made after the original Contract Time has expired. Irrespective of any other provisions in the Contract, for purposes of this specification, “Contract Time” does not include any time extensions or Supplemental Agreements which affect the completion of the Contract. Negative Price Adjustments for Fuel or Asphalt Cement for any work placed after the original Contract Time expires resulting in a return of funds to the Department will be made and shall be computed based on the Monthly Fuel/Asphalt Cement Price at the time the Contract Time has expired or the Monthly Fuel/Asphalt Cement Price at the time the Contract was let, whichever is less.

F. Final Adjustment: If there are differences between the final audited quantities and the sum of the quantities used to determine the fuel/asphalt cement adjustment, the Engineer will make a pro-rated increase or decrease in the price adjustment.

<table>
<thead>
<tr>
<th>Item No. 109</th>
<th>Price Adjustment – Unleaded Fuel</th>
<th>$ (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 109</td>
<td>Price Adjustment- Diesel Fuel</td>
<td>$ (+/-)</td>
</tr>
<tr>
<td>Item No. 109</td>
<td>Price Adjustment- Asphalt Cement</td>
<td>$ (+/-)</td>
</tr>
</tbody>
</table>
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 149 – Construction Layout

Delete Subsection 149.3.05.I and substitute the following:

I. Maintain the Stakes

After construction has begun in any segment of the Project, maintain the stakes that identify construction station numbers and locations as follows:

1. Ensure that stakes are placed at intervals not to exceed 200 ft (60 m) and use even, 100 ft (30 m) stations. On asphalt shoulder widening and earth shoulder reconstruction projects use mile post numbers when stations are not used.

Mark and flag stakes so that they are visible to DOT Project personnel in that segment of the Project until construction is complete.

Projects utilizing GPS controlled fine grading equipment, place stakes at intervals not to exceed 300 ft (91 m) on English projects and 100 m (310 ft) on metric projects. Use even, 100 ft (30 m) or 100 m (310 ft), stations.

2. During grading activities in fills or cuts over 20 ft (6 m), extend slope stakes up or down the slopes in intervals of 10 ft (3 m) or less to achieve an accurate cross section.

3. Denote the offset distance to the construction centerline on the station number stakes, when the station number is maintained in a location other than on the construction centerline. On asphalt shoulder widening and earth shoulder reconstruction projects use the offset to the edge of pavement on the stakes.

Office of Materials & Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION
Section 150—Traffic Control

150.01 GENERAL

This section as supplemented by the Plans, Specifications, and Manual on Uniform Traffic Control Devices (MUTCD) shall be considered the Temporary Traffic Control (TTC) Plan. Activities shall consist of furnishing, installing, maintaining, and removing necessary traffic signs, pedestrian signs, barricades, lights, signals, cones, pavement markings and other traffic control devices and shall include flagging and other means for guidance and protection of vehicular and pedestrian traffic through the Work Zone. This Work shall include both maintaining existing devices and installing additional devices as necessary in construction work zones.

When any provisions of this Specification or the Plans do not meet the minimum requirements of the MUTCD, the MUTCD shall control. The 2003 Edition of the MUTCD shall be in effect for the duration of the project.

The needs and control of all road users (motorists, bicyclists and pedestrians within the highway right-of-way and easements, including persons with disabilities in accordance with the Americans with Disabilities Act of 1990 (ADA), Title II, Paragraph 35.130) through a Temporary Traffic Control (TTC) zone shall be an essential part of highway construction, utility work, maintenance operations and management of traffic incidents.

The Worksite Traffic Control Supervisor (WTCS) shall have a copy of Part VI of the MUTCD and the Contract on the job site. Copies of the current MUTCD may be obtained from the FHWA web page at http://mutcd.fhwa.dot.gov.

A. WORKER SAFETY APPAREL

All workers, including emergency responders, within the right-of-way who are exposed either to traffic (vehicles using the highway for purpose of travel) or to work vehicles and construction equipment within the TTC zone shall wear high-visibility safety apparel that meets the Performance Class 2 or 3 requirements of the ANSI/ISEA 107-2004 publication entitled “American National Standard for High-Visibility Safety Apparel and Headwear”, or equivalent revisions, and labeled as meeting the ANSI 107-2004 standard performance for Class 2 or 3 risk exposure. Emergency and incident responders and law enforcement personnel within the TTC zone may wear high-visibility safety apparel that meets the performance requirements of the ANSI/ISEA 207-2006 publication entitled “American National Standard for High-Visibility Public Safety Vests”, or equivalent revisions, and labeled as ANSI 207-2006, in lieu of ANSI/ISEA 107-2004 apparel. Firefighters or other
emergency responders working within the right-of-way and engaged in emergency operations that directly expose them to flame, fire, heat, and/or hazardous material may wear retroreflective turn-out gear that is specified and regulated by other organizations, such as the National Fire Protection Association.

B. WORKSITE TRAFFIC CONTROL SUPERVISOR

ALL HIGHWAYS (ADDITIONAL REQUIREMENTS BELOW FOR INTERSTATES): The Contractor shall designate a qualified individual as the Worksite Traffic Control Supervisor (WTCS) who shall be responsible for selecting, installing and maintaining all traffic control devices in accordance with the Plans, Specifications, Special Provisions and the MUTCD. A written resume documenting the experience and credentials of the WTCS shall be submitted and accepted by the Engineer prior to beginning any work that involves traffic control. The WTCS shall be available on a twenty-four (24) hour basis to perform his duties. If the work requires traffic control activities to be performed during the daylight and nighttime hours it may be necessary for the Contractor to designate an alternate WTCS. An alternate WTCS must meet the same requirements and qualifications as the primary WTCS and be accepted by the Engineer prior to beginning any traffic control duties. The Worksite Traffic Control Supervisor’s traffic control responsibilities shall have priority over all other assigned duties.

As the representative of the Contractor, the WTCS shall have full authority to act on behalf of the Contractor in administering the TTC Plan. The WTCS shall have appropriate training in safe traffic control practices in accordance with Part VI of the MUTCD. In addition to the WTCS all other individuals making decisions regarding traffic control shall meet the training requirements of the Part VI of the MUTCD.

The WTCS shall supervise the initial installation of traffic control devices. The Engineer prior to the beginning of construction will review the initial installation. Modifications to traffic control devices as required by sequence of operations or staged construction shall be reviewed by the WTCS.

The WTCS shall be available on a full-time basis to maintain traffic control devices with access to all personnel, materials, and equipment necessary to respond effectively to an emergency situation within forty-five (45) minutes of notification of the emergency.

The WTCS shall regularly perform inspections to ensure that traffic control is maintained. Unless modified by the special conditions or by the Engineer, routine deficiencies shall be corrected within a twenty-four (24) hour period. Failure to comply with these provisions shall be grounds for dismissal from the duties of WTCS and/or removal of the WTCS from the project. Failure of the WTCS to execute his duties shall be considered as non-performance under Subsection 150.08.

The Engineer will periodically review the work for compliance with the requirements of the TTC plan.

On projects where traffic control duties will not require full time supervision, the Engineer may allow the Contractor’s Project Superintendent to serve as the WTCS as long as satisfactory results are obtained.
CERTIFIED WORKSITE TRAFFIC CONTROL SUPERVISOR

ADDITIONAL REQUIREMENTS FOR INTERSTATE AND LIMITED ACCESS HIGHWAYS: In addition to the requirements above, the WTCS shall have a minimum of one year’s experience directly related to work site traffic control in a supervisory or responsible capacity. The WTCS shall be currently certified by the American Traffic Safety Services Association (ATSSA) Work Site Traffic Supervisor Certification program or the National Safety Council Certification program.

Any work performed on the interstate or limited access highway right-of-way that requires traffic control shall be supervised by the Certified Worksite Traffic Control Supervisor. No work requiring traffic control shall be performed unless the certified WTCS is on the worksite. Failure to maintain a Certified Worksite Traffic Control Supervisor on the work will be considered as non-performance under Subsection 150.08.

The WTCS shall perform, as a minimum, weekly traffic control inspections on all interstate and limited access highways. The inspection shall be reported to the Engineer on a TC-1 report. The Engineer will furnish a blank copy of the TC-1 report to the Contractor prior to the beginning of any work on the interstate or limited access right-of-way.

C. TRAFFIC CONTROL DEVICES

All traffic control devices used during the construction of a project shall meet the Standards utilized in the MUTCD, and shall comply with the requirements of these Specifications, Project Plans, and Special Provisions. All devices shall be tested at NCHRP Test Level III. Reference is made to Subsections 104.05, 107.07, and 107.09.

D. REFLECTORIZATION REQUIREMENTS

All rigid fluorescent orange construction warning signs (black on fluorescent orange) shall meet the reflectorization and color requirements of ASTM Type VII, VIII, IX or X regardless of the mounting height.

Portable signs which have flexible sign blanks shall meet the reflectorization and color requirements of ASTM Type VI.

Warning signs (W3-1a) for stop conditions that have rumble strips located in the travelway shall be reflectorized with ASTM Type IX fluorescent yellow sheeting.

All other signs shall meet the requirements of ASTM Type III or IV except for “Pass With Care” and “Do Not Pass” signs which may be ASTM Type I unless otherwise specified.

CHANNELIZATION DEVICES: Channelization devices shall meet the requirements of ASTM Type III or IV high intensity sheeting.

E. IMPLEMENTATION REQUIREMENTS

No work shall be started on any project phase until the appropriate traffic control devices have been placed in accordance with the Project requirements. Changes to traffic flow shall not commence unless all labor, materials, and equipment necessary to make the changes are available on the Project.
When any shift or change is made to the location of traffic or to the flow patterns of traffic, including pedestrian traffic, the permanent safety features shall be installed and fully operational before making the change. If staging or site conditions prevent the installation of permanent features then the equivalent interim devices shall be utilized. This work shall also include any necessary removal and reinstallation of guardrail panels to achieve the required panel lap to accommodate the appropriate shift and traffic flow including the final traffic flow configuration (The cost of performing this work shall be included in Traffic Control-Lump Sum).

Any section of the work that is on new location shall have all permanent safety features installed and fully operational before the work is opened to traffic. Safety features shall include but are not limited to the following items:

1. Guardrail including anchors and delineation with properly lapped panels
2. Impact attenuators
3. Traffic signals
4. Warning devices
5. Pavement markings including words, symbols, stop bars, and crosswalks
6. Roadway signs including regulatory, warning, and guide

Outdoor lighting shall be considered as a safety feature for welcome centers, rest areas, and weigh station projects. For typical roadway type projects new street lighting is not considered a safety feature unless specifically noted in the plans or in the special conditions.

F. MAINTENANCE OF TRAFFIC CONTROL DEVICES

Traffic control devices shall be in acceptable condition when first erected on the project and shall be maintained in accordance with Subsection 104.05 throughout the construction period. All unacceptable traffic control devices shall be replaced within 24 hours. When not in use, all traffic control devices shall be removed, placed or covered so as not to be visible to traffic. All construction warning signs shall be removed within seven calendar days after time charges are stopped or pay items are complete. If traffic control devices are left in place for more than ten days after completion of the Work, the Department shall have the right to remove such devices, claim possession thereof, and deduct the cost of such removal from any monies due, or which may become due, the Contractor.

G. TRAFFIC INTERRUPTION RESTRICTIONS

The Department reserves the right to restrict construction operations when, in the opinion of the Engineer, the continuance of the Work would seriously hinder traffic flow, be needlessly disruptive or unnecessarily inconvenience the traveling public. The Contractor shall suspend and/or reschedule any work when the Engineer deems that conditions are unfavorable for continuing the Work.

Advanced notification requirements to the Contractor to suspend work will be according to the events and the time restrictions outlined below:

- Incident management: No advanced notice required
- Threatening/Inclement weather: 24 hours
Holidays, sporting events, unfavorable conditions

If the work is suspended, the Contractor may submit a request for additional contract time as allowed under Section 108. The Department will review the request and may grant additional contract time as justified by the impact to the Contractor’s schedule. Compensation for loss of productivity, rescheduling of crews, rental of equipment or delays to the Contractor’s schedule will not be considered for payment. Additional contract time will be the only consideration granted to the Contractor.

H. SEQUENCE OF OPERATIONS

Any Sequence of Operations provided in this Contract in conjunction with any staging details which may be shown in the plans, is a suggested sequence for performing the Work. It is intended as a general staging plan for the orderly execution of the work while minimizing the impact on pedestrian facilities, mainline, cross-streets and side streets. The Contractor shall develop detailed staging and temporary traffic control plans for performing specific areas of the Work including but not limited to all traffic shifts, detours, bridge widenings, paces, or other activities that disrupt traffic or pedestrian flow. The Engineer may require detailed staging and TTC plans for lane closures or disruption to pedestrian facilities. These plans shall be submitted for approval at least two weeks prior to the scheduled date of the activity. Activities that have not been approved at least seven (7) days prior to the scheduled date shall be rescheduled.

Where traffic is permitted through the work area under stage construction, the Contractor may choose to construct, at no additional expense to the Department, temporary on-site bypasses or detours in order to expedite the work. Plans for such temporary bypasses or detours shall be submitted to the Engineer for review and approval 30 calendar days prior to the proposed construction. Such bypasses or detours shall be removed promptly when in the opinion of the Engineer; they are no longer necessary for the satisfactory progress of the Work. Bypasses and detours shall meet the minimum requirements of Section 150.02.B.4.

As an option to the Sequence of Operations in the Contract, the Contractor may submit an alternative Sequence of Operations for review and approval. Alternate Sequence of Operations for pedestrian facilities shall be in compliance with the MUTCD and ADA. Pedestrian needs identified in the preconstruction phase shall be included in the proposed alternate plan. The Department may consider the Contractor’s alternate Sequence of Operations as a Value Engineering Proposal as defined by Section 104.08. A twenty calendar days lead time for the Department’s review shall be given to this submission so that a decision on its acceptability can be made and presented at the Preconstruction Conference. Insufficient lead time or no submission by the Contractor shall be construed as acceptance of the Sequence of Operations outlined in the Contract and the willingness of the Contractor to execute this as-bid plan.

The Department will not pay, or in any way reimburse the Contractor for claims arising from the Contractor’s inability to perform the Work in accordance with the Sequence of Operations provided in the Contract or from an approved Contractor alternate.
The Contractor shall secure the Engineer’s approval of the Contractor’s proposed plan of operation, sequence of work and methods of providing for the safe passage of vehicular and pedestrian traffic before it is placed in operation. The proposed plan of operation shall supplement the approved traffic control plan. Any major changes to the approved TTC plan, proposed by the Contractor, shall be submitted to the Department for approval.

Some additional traffic control details will be required prior to any major shifts or changes in traffic. The traffic control details shall include, but not be limited to, the following:

1. A detailed drawing showing traffic locations and laneage for each step of the change.
2. The location, size, and message of all signs required by the MUTCD, Plan, Special Provisions, and other signs as required to fit conditions. Any portable changeable message signs used shall be included in the details.
3. The method to be used in, and the limits of, the obliteration of conflicting lines and markings.
4. Type, location, and extent of new lines and markings.
5. Horizontal and vertical alignment and superelevation rates for detours, including cross-section and profile grades along each edge of existing pavement.
6. Drainage details for temporary and permanent alignments.
7. Location, length, and/or spacing of channelization and protective devices (temporary barrier, guardrail, barricades, etc.)
8. Starting time, duration and date of planned change.
9. For each traffic shift, a paving plan, erection plan, or work site plan, as appropriate, detailing workforce, materials, and equipment necessary to accomplish the proposed work. This will be the minimum resource allocation required in order to start the work.

A minimum of three copies of the above details shall be submitted to the Engineer for approval at least 14 days prior to the anticipated traffic shift. The Contractor shall have traffic control details for a traffic shift which has been approved by the Engineer prior to commencement of the physical shift. All preparatory work relative to the traffic shift, which does not interfere with traffic, shall be accomplished prior to the designated starting time. The Engineer and the Contractor’s representative will verify that all conditions have been met prior to the Contractor obtaining materials for the actual traffic shift.
TEMPORARY TRAFFIC CONTROL (TTC) ZONES:

A. DEVICES AND MATERIALS:

In addition to the other provisions contained herein, work zone traffic control shall be accomplished using the following means and materials:

1. Portable Advance Warning Signs
 Portable advance warning signs shall be utilized as per the requirements of the temporary traffic control plans. All signs shall meet the requirements of the MUTCD and shall be NCHRP 350 crashworthy compliant.

2. Arrow Panels
 Portable sequential or flashing arrow panels as shown in the Plans or Specifications for use on Interstate or multi-lane highway lane closure only, shall be a minimum size of 48” high by 96” wide with not less than 15 lamps used for the arrow. The arrow shall occupy virtually the entire size of the arrow panel and shall have a minimum legibility distance of one mile. The minimum legibility distance is that distance at which the arrow panel can be comprehended by an observer on a sunny day, or clear night. Arrow panels shall be equipped with automatic dimming features for use during hours of darkness. The arrow panels shall also meet the requirements for a Type C panel as shown in the MUTCD. The sequential or flashing arrow panels shall not be used for lane closure on two-lane, two-way highways when traffic is restricted to one-lane operations in which case, appropriate signing, flaggers and when required, pilot vehicles will be deemed sufficient.

 The sequential or flashing arrow panels shall be placed on the shoulder at or near the point where the lane closing transition begins. The panels shall be mounted on a vehicle, trailer, or other suitable support. Vehicle mounted panels shall be provided with remote controls. Minimum mounting height shall be seven feet above the roadway to the bottom of the panel, except on vehicle mounted panels which should be as high as practical.

 For emergency situations, arrow display panels that meet the MUTCD requirements for Type A or Type B panels may be used until Type C panels can be located and placed at the site. The use of Type A and Type B panels shall be held to the minimum length of time possible before having the Type C panel(s) in operation. The Engineer shall determine when conditions and circumstances are considered to be emergencies. The Contractor shall notify the Engineer, in writing, when any non-specification arrow display panel(s) is being used in the work.

3. Portable Changeable Message Signs
 Portable changeable message signs meeting the requirements of Section 632 and the MUTCD. Any PCMS in use that is not protected by positive barrier protection shall be delineated by a minimum of three drums that meet the requirement of Section 150.05.A.1. The drum spacing shall not exceed a maximum of ten (10’) feet as shown in Detail 150-PCMS. When the PCMS is within twenty (20’) feet of the opposing traffic flow, the trailing end of the PCMS shall be delineated with a minimum of three drums spaced in the same manner as the approach side of the PCMS.
When not in use the PCMS shall be removed from the roadway unless protected by positive barrier protection. If the PCMS is protected by positive barrier protection the sign panel shall be turned away from traffic when not in use.

4. **Channelization Devices**
Channelization devices shall meet the standards of the MUTCD and Subsection 150.05.

5. **Temporary Barrier**
Temporary barrier shall meet the requirements of Sections 620.

6. **Temporary Traffic Signals**
Temporary traffic signals shall meet the requirements of Section 647 and the MUTCD.

7. **Pavement Marking**
Pavement marking incorporated into the work shall comply with Subsections 150.04.A and 150.04.B.

8. **Portable Temporary Traffic Control Signals**
The use of Portable Temporary Traffic Control Signals shall meet the following minimum requirements:

 - Only two-lane two-way roadways will be allowed to utilize Portable Temporary Traffic Control Signals.

 - All portable traffic control signals shall meet the physical display and operational requirements of conventional traffic signals described in the MUTCD.

 - Each signal face shall have at least three lenses. The lenses shall be red, yellow, or green in color and shall give a circular type of indication. All lenses shall be twelve (12”) inches nominal in diameter.
A minimum of two signal faces shall face each direction of traffic. A minimum of one signal head shall be suspended over the roadway travel lane in a manner that will allow the bottom of the signal head housing to be not less than seventeen (17’) feet above and not more than nineteen (19’) feet above the pavement grade at the center of the travel lane. The second signal head may be located over the travel lane with the same height requirements or the second signal head may be located on the shoulder. When the signal head is located on the shoulder the bottom of the signal head housing shall be at least eight (8’) feet but not more than (15’) feet above the pavement grade at the center of highway.

Advance warning signage and appropriate pavement markings shall be installed as part of the temporary signal operation.

The signals shall be operated in a manner consistent with traffic requirements. The signals may be operated in timed-mode or in a vehicle-actuated mode. The signals shall be interconnected in a manner to ensure that conflicting movements can not occur. To assure that the appropriate operating pattern including timing is displayed to the traveling public, regular inspections including the use of accurate timing devices shall be made by the Worksite Traffic Control Supervisor. If at any time any part of the system fails to operate within these requirements then the use of the signal shall be suspended and the appropriate flagging operation shall begin immediately.

The Worksite Traffic Control Supervisor (WTCS) shall continuously monitor the portable traffic control signal to insure compliance with the requirements for maintenance under the MUTCD. The signal shall be maintained in a manner consistent with the intention of the MUTCD, with emphasis on cleaning of the optical system. Timing changes shall be made only by the WTCS. The WTCS shall keep a written record of all timing changes.

The portable temporary signal shall have two power sources and shall be capable of running for seven calendar days continuously.

The Contractor shall have an alternate temporary traffic control plan in the event of failure of the signal.

9. RUMBLE STRIPS
Rumble strips incorporated into the work shall meet the requirements of Section 429 and the MUTCD. Existing rumble strips that are positioned in the traveled way to warn traffic of a stop condition shall be reinstalled based on the following requirements:

INTERMEDIATE SURFACES: Intermediate surfaces that will be in use for more than forty-five (45) calendar days shall have rumble strips reinstalled on the traveled way in the area of a stop condition. Non-refundable deductions in accordance with 150.08 will be assessed for any intermediate surface in place for greater than 45 days without rumble strips.

FINAL SURFACES: Rumble strips shall be installed on the final surface within fourteen (14) calendar days of the placement of the final surface in the area of the stop condition. Failure to install within fourteen (14) calendar days will result in assessment of non-refundable deductions in accordance with 150.08.
Prior to the removal of any rumble strips located in the travelway, stop ahead (W3-1a) warning signs shall be double indicated ahead of the stop condition. These warning signs shall be a minimum of 48 inches by 48 inches. The reflectorization of the warning signs shall be as required by Subsection 150.01.C. These warning signs shall remain in place until the rumble strips have been reinstalled on the traveled way. Any existing warning signs for the stop ahead condition shall be removed or covered while the 48” X 48” (W3-1a) signs are in place. When the rumble strips have been reinstalled these warning signs should be promptly removed and any existing signage placed back in service.

10. GUARDRAIL: When the removal and installation of guardrail is required as a part of the work the following time restrictions shall apply unless modified by the special conditions:

MULTI-LANE HIGHWAYS: From the time that the existing guardrail or temporary positive barrier protection is removed the Contractor has fourteen (14) calendar days to install the new guardrail and anchors. During the interim, the location without guardrail shall be protected with drums spaced at a maximum spacing of twenty (20') feet. The maximum length of rail that can be removed at any time without being replaced with positive barrier protection is a total of 2000 linear feet of existing rail or the total length of one run of existing rail, whichever is less.

ALL OTHER HIGHWAYS: From the time that the existing guardrail is removed or from the time that temporary positive barrier protection is removed the Contractor has thirty (30) calendar days to install the new guardrail and anchors. During the interim, the location without guardrail shall be protected with drums spaced at a maximum spacing of twenty (20') feet. The maximum length of rail that can be removed at any time without being replaced with positive barrier protection is a total of 1000 linear feet of existing rail or the total length of one run of existing rail, whichever is less.

Based on existing field conditions, the Engineer may review the work and require that the guardrail be installed earlier than the maximum time allowed above by giving written notification to the Contractor via the TC-1 traffic control report.

ALL HIGHWAYS: The contractor shall install new guardrail such that traffic exposure to fixed objects is minimized. Within the same work day, temporary attenuators, as defined in Subsection 150.05.B, should be installed on the approach to fixed objects that can’t be protected with guardrail. Truck mounted attenuators may be used to shield exposed fixed objects for periods not to exceed forty-eight (48) hours. No separate payment will be made for truck mounted attenuators.

When the roadway is open to traffic, guardrail panels shall be lapped to comply with the directional flow of traffic. Should the staging of the work require that the lap of the guardrail be changed, this work shall be completed before the roadway is opened to traffic. The work to change the lap of any guardrail shall be included in Traffic Control-Lump Sum.

Failure to comply with the above time and quantity restrictions shall be considered as non-compliance under Section 150.08.
11. STOP SIGN REGULATED INTERSECTIONS: For intersections that utilize stop sign(s) to control the flow of traffic and to restrict the movement of vehicles, the stop sign(s) shall be maintained for the duration of the work or until such time that the stop condition is eliminated or until an interim or permanent traffic signal can be installed to provide proper traffic control. The traffic signal shall be installed and properly functioning before the removal of the existing stop sign(s) is permitted. If the existing intersection is enhanced traffic control features such as stop bars, double indicated stop signs, oversized signs, advanced warning stop ahead signs, rumble strips on the approaches or flashing beacons located overhead or on the shoulders then these features shall be maintained for the duration of the project or until the permanent traffic control plan has been implemented.

Whenever the staging of the work requires that the traveled-way be relocated or realigned the Contractor shall reinstall all enhanced traffic control features noted above on the newly constructed sections of the work. The cost of relocating the stop bars, stop signs, advanced warning signs, the rumble strips and the flashing beacons shall be included in the price bid for Lump-Sum-Traffic Control unless individual pay items are included in the contract for rumble strips and/or flashing beacons. When pay items are included in the contract for rumble strips or flashing beacons then these items will be paid per each.

When staging requires the relocation or realignment of an existing stop condition it may be necessary to consider the addition of enhanced traffic control features even though none existed at the original location. Horizontal and vertical alignment changes at a new location may have decreased or restricted sight distance or the stop condition may occur sooner than in the previous alignment. If these conditions occur then the Engineer and/or the WTCS should consider additional measures to enhance the motorist’s awareness of the changes even though the staging plans may not address enhanced features. Stop signs should be a minimum of 36 inches for interim situations. The use of 48 inch stop signs may be warranted under project specific conditions. Flags may be used on interim/permanent stop signs that are mounted at seven (7') feet in height for a short duration in order to direct additional attention to a new or relocated stop sign(s). Flags should not be used for durations exceeding two weeks unless unusual or site specific conditions warrant a longer period of time. The use of Type “A” flashing red light(s) attached to the stop sign(s) may be appropriate during the same period that the flags are in use to increase attention.

The use of rumble strips and/or portable changeable message signs may be considered. The use of new rumble strips, where none previously existed, shall have the prior approval of District Traffic Operations before being included as part of the temporary traffic control plan. The message(s) displayed on any PCMS shall have the prior approval of the Engineer and the message(s) shall be included as part of the TTC plan for the interim staging.

The placement of any additional interim ground-mounted signs and posts or stop bars shall be considered as incidental to the price bid for Lump Sum-Traffic Control. The installation of rumble strips, flashing beacons or the use of Portable Changeable Message Signs (PCMS) shall be considered as Extra Work unless pay items are included in the contract.
B. WORK ZONE RESTRICTIONS:

1. Interstate

 The Contractor shall not simultaneously perform work on both the inside shoulder and outside shoulder on either direction of traffic flow when the Work is within 12 feet of the travel-way, unless such areas are separated by at least one-half mile of distance.

2. Non-Interstate Divided Highways

 The Contractor shall not simultaneously perform work on both the inside shoulder and outside shoulder on either direction of traffic flow when the Work is within 12 feet of the travel-way, unless such areas are separated by at least one-half mile distance in rural areas or at least 500 feet of distance in urban areas.

3. Non-Divided Highways

 a. The Contractor shall not simultaneously perform work on opposite sides of the roadway when the work is within 12 feet of the travel-way, unless such areas are separated by at least one-half mile of distance in rural areas or at least 500 feet of distance in urban areas.

 b. On two-lane projects where full width sections of the existing subgrade, base or surfacing are to be removed, and new base, subgrade, or surfacing are to be constructed, the Contractor shall maintain one-lane traffic through the construction area by removing and replacing the undesirable material for half the width of the existing roadway at a time. Replacement shall be made such that paving is completed to the level of the existing pavement in the adjacent lane by the end of the workday or before opening all the roadway to traffic.

4. All Highways:

 a. There shall be no reduction in the total number of available traffic lanes that existed prior to construction except as specifically allowed by the Contract and as approved by the Engineer.

 b. Travelway Clearances: All portions of the work shall maintain the following minimum requirements:

 Horizontal: The combined dimensions of the paved shoulder and the roadway surface remaining outside the Work Zone shall be no less than sixteen (16) feet in width at any location.

 Vertical: The overhead clearance shall not be reduced to less than fifteen (15) feet at any location.

 The restrictions above apply to all shifts, lane closures, on-site detours and off site detours whether shown in the contract or proposed by the Contractor. It shall be the responsibility of the Contractor to verify that these minimum requirements have been met before proceeding with any phase of the Work.
Two-lane two-way roadways may have temporary horizontal restrictions of less than sixteen (16) feet provided a flagger operation for one-way traffic is utilized to restrict access to the work area by over-width loads. The minimum horizontal clearance shall be restored before the flagging operation is removed.

c. Highway Work Zone: All sections or segments of the roadway under construction or reconstruction shall be signed as a Highway Work Zone except non-state highway two-lane two-way resurfacing projects. Two conditions can be applied to a Highway Work Zone. Condition 1 is when no reduction in the existing speed limit is required. Condition 2 is when worksite conditions require a reduction of the speed limit through the designated Work Zone. Properly marking a Highway Work Zone shall include the following minimum requirements:

1. NO REDUCTION IN THE EXISTING POSTED SPEED LIMIT IN HIGHWAY WORK ZONE:

 a) Signage ([Detail 150-HWZ-2](#)) shall be posted at the beginning point of the Highway Work Zone warning the traveling public that increased penalties for speeding violations are in effect. The [HWZ-2](#) sign shall be placed a minimum of six hundred (600') feet in advance of the Highway Work Zone and shall not be placed more than one thousand (1000') feet in advance of the Work Zone. If no speed reduction is required it is recommended that the [HWZ-2](#) be placed at 750 feet from the work area between the ROAD WORK 500 FT. and the ROAD WORK 1000 FT. signs. The [HWZ-2](#) signs shall be placed at intervals not to exceed one mile for the length of the project. [HWZ-2](#) signs should be placed on the mainline after all major intersections except State Routes. State Routes shall be signed as per the requirements for intersecting roadways below.

 b) The existing speed limit shall be posted at the beginning of the Work Zone. Existing Speed Limit signs (R2-1) shall be maintained.

 c) INTERSECTING ROADWAYS: Intersecting state routes shall be signed in advance of each intersection with the Work Zone with a [HWZ-2](#) sign to warn motorists that increased fines are in effect. All other intersecting roadways that enter into a designated Highway Work Zone may be signed in advance of each intersection with the Work Zone. When construction equipment and personnel are present in the intersection on the mainline of a multi-lane roadway, the intersecting side roads shall be signed in advance with [HWZ-2](#) signs. As soon as the work operation clears the intersection the signage may be removed.

 d) Signage ([Detail 150-HWZ-3](#)) shall be posted at the end of the Highway Work Zone indicating the end of the zone and indicating that increased penalties for speeding violations are no longer in effect.

 e) When a designated Highway Work Zone is no longer necessary all signs shall be removed immediately.
2. REDUCING THE SPEED LIMIT IN A HIGHWAY WORK ZONE:

Highway Work Zone signs shall be posted as required in Condition 1 above.

For limited access (interstate) highways and controlled access multi-lane divided highways the posted speed limit shall be reduced as required below.

Speed Limit signage (R2-1) for the reduced speed limit shall be erected at the beginning of the work zone. Additional signs shall be placed to ensure that the maximum spacing of the reduced speed limit signs shall be no greater than one (1) mile apart. Existing speed limit signs shall be covered or removed. On multi-lane divided highways the speed limit signs shall be double indicated when the reduced speed is in use.

When any one or more of the following conditions exist and the existing speed limit is 65 mph or 70 mph, the speed limit shall be reduced by 10 mph. If the existing speed limit is 60 mph, the speed limit should be reduced by 5 mph. If the existing speed limit is 55 mph or less, the Contractor can only reduce the speed limit with the prior approval of the Engineer. The reduction in the speed limit shall be no greater than 10 mph:

a) Lane closure(s) of any type and any duration.
b) The difference in elevation exceeds two inches adjacent to a travel lane as shown in Subsection 150.06, Detail 150-B, 150-C.
c) Any areas where equipment or workers are within ten feet of a travel lane.
d) Temporary portable concrete barriers located less than two (2') feet from the traveled way.
e) As directed by the Engineer for conditions distinctive to this project.

When the above conditions are not present the speed limit shall be immediately returned to the existing posted speed limit. A speed reduction shall not be put in place for the entire length of the project unless conditions warranting the speed reduction are present for the entire project length. All existing speed limit signs within the temporary speed reduction zone shall be covered or removed while the temporary reduction in the speed limit is in effect. All signs shall be erected to comply with the minimum requirements of the MUTCD.

As a minimum the following records shall be kept by the WTCS:

a) Identify the need for the reduction.
b) Record the time of the installation and removal of the temporary reduction.
c) Fully describe the location and limits of the reduced speed zone.
d) Document any accident that occurs during the time of the reduction.

A copy of the weekly records for reduced speed zones shall be submitted to the Engineer.

Reduced speed zones shall, as a minimum, be signed as per Detail 150-HWZ-1. Interim signs shall meet the requirements of 150.03 D. Additional signs may be necessary to adjust for actual field conditions.
When a pilot vehicle is used on a two-lane two-way roadway the speed limit should not be reduced. For special conditions specific to the work, on two-lane two-way roadways or multi-lane highways, the contractor may reduce the posted speed limit with the prior approval of the Engineer.

5. MILLED SURFACE RESTRICTIONS:
Unless modified by the special conditions, a milled surface on any asphaltic concrete surface shall not be allowed to remain open to traffic for a period of time that exceeds thirty (30) calendar days.

6. INSTALLATION/REMOVAL OF WORK AREA SIGNAGE:
No payment will be made for Traffic Control-Lump Sum until the Work has actually started on the project. The installation of traffic control signage does not qualify as the start of work. Advanced warning signs shall not be installed until the actual beginning of work activities. Any permanent mount height signs installed as the work is preparing to start shall be covered until all signs are installed unless all signs are installed within seven (7) calendar days after beginning installation.

All temporary traffic control devices shall be removed as soon as practical when these devices are no longer needed. When work is suspended for short periods of time, temporary traffic control devices that are no longer appropriate shall be removed or covered.

All construction warning signs shall be removed within seven (7) calendar days after time charges are stopped or pay items are complete. If traffic control devices are left in place for more than ten (10) calendar days after completion of the Work, the Department shall have the right to remove such devices, claim possession thereof, and deduct the cost of such removal from any monies due, or which may become due, the Contractor.

PUNCHLIST WORK: Portable signs shall be utilized to accomplish the completion of all punchlist items. The portable signs shall be removed daily. All permanent mount height signs shall be removed prior to the beginning of the punchlist work except “Low/Soft Shoulder” signs and any signs that have the prior written approval of the Engineer to remain in place while the punchlist work is in progress.

Failure to promptly remove the construction warning signs within the seven (7) calendar days after the completion of the Work or failure to remove or cover signs when work is suspended for short periods of time shall be considered as non-performance under Section 150.08.
SPEED LIMIT REDUCTION FOR HIGHWAY WORK ZONE
INTERSTATE AND MULTI-LANE DIVIDED HIGHWAY SIGNING SHALL BE
DOUBLE INDICATED (RIGHT SHOULDER AND MEDIAN SHOULDER)

600' 600' 600' 600' 600' 500' MAX.

WORK ZONE

OR

K

HWZ-2
SIGNS

REduced speed ahead
R2-5a
48" X 60"

THIS SIGN SHALL BE INSTALLED ONLY
WHEN THE SPEED REDUCTION IS GREATER-
THAN 10 M.P.H. FROM THE EXISTING
POSTED SPEED LIMIT.

BEGIN SPEED ZONE

OR

K

SPEED LIMIT
R2-1
48" X 60"

REDUCED SPEED LIMIT SHALL
HAVE THE PRIOR APPROVAL
OF THE ENGINEER.

R2-1
48" X 60"

SPEED LIMIT

OR

K

HWZ-3
SIGNS

POST EXISTING
SPEED LIMIT
PRIOR TO
CONSTRUCTION
SPEED ZONE
REDUCTION

DOUBLE INDICATOR
NOT REQUIRED
FOR THIS SIGN

REduced construction speed
LIMIT SHALL BE SPACED A MAXIMUM
OF ONE MILE APART.

R2-1
48" X 60"

SPEED LIMIT

ALL INTERSECTING ROADWAYS SHALL BE SIGNED WITH A HWZ-2 SIGN
TO WARN MOTORIST ENTERING THE HIGHWAY WORK ZONE.

INTERSTATE AND MULTI-LANE HIGHWAY SIGNING SHALL BE
DOUBLE INDICATED (RIGHT SHOULDER AND MEDIAN SHOULDER).

SIGN SIZES SHOWN ARE FOR INTERSTATE AND
MULTI-LANE DIVIDED HIGHWAY.
FOR OTHER HIGHWAYS USE STANDARD SIZE
SIGNS AS PER THE M.U.T.C.D. EXCEPT
HWZ-2 AND HWZ-3 SIGNS.

DETAIL 150-HWZ-1
COLORS

TOP PANEL
LEGEND & BORDER - BLACK (NON-REFL)
BACKGROUND - FLUORESCENT ORANGE
 (ASTM TYPE VII, VIII, IX or X)

MIDDLE & BOTTOM PANELS
LEGEND & BORDER - BLACK (NON-REFL)
BACKGROUND - WHITE (ASTM TYPE III OR IV REFL SHEETING)

NOTES:
1. ALL HWZ-2 SIGN PANELS SHALL BE RIGID.
2. THE SIZE OF THE HWZ-2 SIGN SHALL NOT BE REDUCED FOR USE ON TWO-LANE ROADWAYS.
COLORS

TOP PANEL
LEGEND & BORDER - BLACK (NON-REFL)
BACKGROUND - FLUORESCENT ORANGE
(ASTM TYPE VII, VIII, IX or X)

BOTTOM PANEL
LEGEND & BORDER - BLACK (NON-REFL)
BACKGROUND - WHITE (ASTM TYPE III OR IV REFL SHEETING)

NOTES:
1. ALL HWZ-3 SIGN PANELS SHALL BE RIGID.
2. THE SIZE OF THE HWZ-3 SIGN SHALL NOT BE REDUCED FOR USE ON TWO-LANE ROADWAYS.
C. LANE CLOSURES:

1. Approval/Restrictions
 All lane closures of any type or duration shall have the prior approval of the Engineer.

 a. The length of a lane closure shall not exceed two (2) miles in length excluding the length of the tapers unless the prior approval of the Engineer has been obtained. The Engineer may extend the length of a lane closure based upon field conditions however the length of a workzone should be held to the minimum length required to accomplish the Work. Lane closures shall not be spaced closer than one mile. The advanced warning signs for the project should not overlap with the advanced warning signs for lane shifts, lane closures, etc.

 b. Lane closures that require same direction traffic to be split around the Work Area will not be approved for roadways with posted speeds of 35 mph or greater, excluding turn lanes.

 c. For Interstate, Limited Access and Multi-lane Divided Highways, a Portable Changeable Message Sign (PCMS) shall be placed one (1) mile in advance of a lane closure with a message denoting the appropriate lane closure one mile ahead. The Portable Changeable Message Sign (PCMS) shall be placed on the outside shoulder in accordance with Detail 150-PCMS. This is in addition to the other traffic control devices required by Standard 9106.

2. Removal Of Lane Closures
 To provide the greatest possible convenience to the public in accordance with Sub-Subsection 107.07, the Contractor shall remove all signs, lane closure markings, and devices immediately when lane closure work is completed or temporarily suspended for any length of time or as directed by the Engineer. All portable signs and portable sign mounting devices shall be removed from the roadway to an area which will not allow the sign to be visible and will not allow the sign or sign mounting device to be impacted by traffic.

3. Exit And Entrance Ramps
 On multilane highways where traffic has been shifted to the inside lanes, the exit and entrance ramps shall have channelization devices placed on both sides of the ramp. This requirement will apply to any situation where traffic is shifted to contra flows or inside staging lanes to facilitate reconstruction work in the vicinity of exit and entrance ramps. The temporary ramp taper length shall be greater than, or equal to, the existing taper length. Interim EXIT gore signs shall be placed at the ramp divergence. The “EXIT OPEN” sign shown in Figure TA-42 of the MUTCD shall be utilized. For exit ramps, channelization device spacing shall be decreased to 10 feet for 200 feet in advance of the temporary gore, and be decreased to 10 feet for the first 100 feet of the temporary gore.

4. Lane Drop/Lane Closure
 The first seven (7) calendar days of any lane closure shall be signed and marked as per Standard 9106 or 9107. However, lane closures that exist for a duration longer than seven
(7) calendar days may be signed and marked as per the details in Standard 9121, provided the prior approval of the Engineer is obtained. The approved lane drop shall utilize only the signs and markings shown for the termination end of the lane drop in Standard 9121. All warning signs in the lane drop sequence shall be used. Drums may be substituted for the Type I Crystal Delineators at the same spacing.

5. **Termination Area**
 The transition to normal or full width highway at the end of a lane closure shall be a maximum of 150 feet.

D. **TRAFFIC PACING METHOD:**

1. **Pacing Of Traffic**
 With prior approval from the Engineer, traffic may be paced allowing the Contractor up to ten (10) minutes maximum to work in or above all lanes of traffic for the following purposes:

 a. Placing bridge members or other bridge work.
 b. Placing overhead sign structures.
 c. Other work items requiring interruption of traffic.

 The Contractor shall provide a uniformed police officer with patrol vehicle and blue flashing light for each direction of pacing. The police officer, Engineer, and flaggers at ramps shall be provided with a radio which will provide continuous contact with the Contractor.

 When ready to start the work activity, the police vehicle will act as a pilot vehicle slowing the traffic thereby providing a gap in traffic allowing the Contractor to perform the Work. Any on-ramps between the pace and the work area shall be blocked during pacing of traffic, with a flagger properly dressed and equipped with a Stop/Slow paddle. Each ramp should be opened after the police vehicle has passed.

 Pilot vehicles shall travel at a safe pace speed, desirably not less than 20 mph interstate and 10 mph non-interstate. The Contractor shall provide a vehicle to proceed in front of the police vehicle and behind the other traffic in order to inform the Contractor’s work force when all vehicles have cleared the area.

 Traffic will not be permitted to stop during pacing except in extreme cases as approved by the Engineer.

2. **Methods Of Signing For Traffic Pacing**
 At a point not less than 1,000 feet in advance of the beginning point of the pace, the Contractor shall erect and cover a W-special sign (72 inch x 72 inch) with a Type “B” flashing light, with the legend “TRAFFIC SLOWED AHEAD SHORT DELAY” (See Detail 150-A). A portable changeable message sign may be used in lieu of the W-special sign. On divided highways this sign shall be double indicated. A worker with a two-way radio shall be posted at the sign, and upon notice that the traffic is to be paced shall turn on the flashing light and reveal the sign. When traffic is not being paced, the flashing light shall be turned off and the sign covered or removed. W-special signs are reflectorized black on orange, Series “C” letter and border of the size specified.
TRAFFIC SLOWED AHEAD SHORT DELAY

SIGN SHALL HAVE BLACK LEGEND AND BORDER ON ORANGE REFLECTORIZED BACKGROUND

DETAIL 150-A
E. CONSTRUCTION VEHICLE TRAFFIC

The Contractor’s vehicles shall travel in the direction of normal roadway traffic and shall not reverse direction except at intersections, interchanges, or approved temporary crossings. The Contractor may submit a plan requesting that construction traffic be allowed to travel in the opposite direction of normal traffic when it would be desirable to modify traffic patterns to accommodate specific construction activities.

Prior approval of the Engineer shall be obtained before any construction traffic is allowed to travel in a reverse direction. If the Contractor’s submittal is approved the construction traffic shall be separated from normal traffic by appropriate traffic control devices.

F. ENVIRONMENTAL IMPACTS TO THE TEMPORARY TRAFFIC CONTROL (TTC) PLAN

The Contractor shall ensure that dust, mud, and other debris from construction activities do not interfere with normal traffic operations or adjacent properties. All outfall ditches, special ditches, critical storm drain structures, erosion control structures, retention basins, etc. shall be constructed, where possible, prior to the beginning of grading operations so that the best possible drainage and erosion control will be in effect during the grading operations, thereby keeping the roadway areas as dry as possible.

Areas within the limits of the project which are determined by the Engineer to be disturbed or damaged due either directly or indirectly from the progress or the lack of progress of the work shall be cleaned up, redressed, and regrassed. All surplus materials shall be removed and disposed of as required. Surplus materials shall be disposed of in accordance with Subsection 201.02.E.3 of the Specifications.

G. EXISTING STREET LIGHTS

Existing street lighting shall remain lighted as long as practical and until removal is approved by the Engineer.

H. NIGHTWORK

Adequate temporary lighting shall be provided at all nighttime work sites where workers will be immediately adjacent to traffic.

I. CONSTRUCTION VEHICLES IN THE WORKZONE

The parking of Contractor’s and/or workers personal vehicles within the work area or adjacent to traffic is prohibited. It shall be the responsibility of the Worksite Traffic Control Supervisor to ensure that any vehicle present at the worksite is necessary for the completion of the work.

J. ENCROACHMENTS ON THE TRAVELED-WAY

The Worksite Traffic Control Supervisor (WTCS) shall monitor the work to ensure that all the rocks, boulders, construction debris, stockpiled materials, equipment, tools and other potential hazards are kept clear of the travelway. These items shall be stored in a location, in so far as practical, where they will not be subject to a vehicle running off the road and striking them.
K. PEDESTRIAN CONSIDERATIONS

All existing pedestrian facilities, including access to transit stops, shall be maintained. Where pedestrian routes are closed, alternate routes shall be provided. Closures of existing, interim and final pedestrian facilities shall have the prior written approval of the Engineer. When existing pedestrian facilities are disrupted, closed or relocated in a TTC zone, the temporary facilities shall be detectable and shall include accessibility features consistent with the features present in the existing pedestrian facility. Pedestrian facilities are considered improvements and provisions made to accommodate or encourage walking. Whenever a sidewalk is to be closed, the Engineer shall notify the maintaining agency two (2) weeks prior to the closure. Prior to closure, detectable barriers (that are detectable by a person with a visual disability traveling with the aid of a long cane), as described by the MUTCD, shall be placed across the full width of the closed sidewalk. Barriers and channelizing devices used along a temporary pedestrian route shall be in compliance with the MUTCD.

Temporary Traffic Control devices used to delineate a Temporary Traffic Control zone pedestrian walkway shall be in compliance with Subsection 150.01.C. Temporary Traffic Control devices and construction material shall not intrude into the usable width of the pedestrian walkway. Signs and other devices shall be placed such that they do not narrow or restrict any pedestrian passage to less than 48 inches.

A pedestrian walkway shall not be severed or relocated for non-construction activities such as parking for construction vehicles and equipment. Movement by construction vehicles and equipment across designated pedestrian walkways should be minimized. When necessary, construction activities shall be controlled by flaggers. Pedestrian walkways shall be kept free of mud, loose gravel or other debris.

When temporary covered walkways are used, they shall be lighted during nighttime hours. When temporary traffic barrier is used to separate pedestrian and vehicular traffic, the temporary barrier shall meet NCHRP-350 Test Level Three. The barrier ends shall be protected in accordance with Georgia Standard 4960. Curbing shall not be used as a substitute for temporary traffic barriers when temporary traffic barriers are required. Tape, rope or plastic chain strung between temporary traffic control devices are not considered as detectable and shall not be used as a control for pedestrian movements.

The WTCS shall inspect the activity area daily to ensure that effective pedestrian TTC is being maintained. The inspection of TTC for pedestrian traffic shall be included as part of the TC-1 report.

1. Temporary Pedestrian Facilities
 Temporary pedestrian facilities shall be detectable and include accessibility features consistent with the features present in the existing pedestrian facility. The geometry, alignment and construction of the facility should meet the applicable requirements of the “Americans with Disabilities Act Accessibility Guidelines for Buildings and Facilities (ADAAG)”.

 a. Temporary Walkways with Detectable Edging
 A smooth, continuous hard surface (firm, stable and slip resistant) shall be provided throughout the entire length of the temporary pedestrian facility.
Compacted soils, sand, crushed stone or asphaltic pavement millings shall not be used as a surface course for walkways.

Temporary walkways shall include detectable edging as defined in the MUTCD. When temporary traffic barrier is included as a pay item in the contract and where locations identified on the plans for positive protection will also allow them to serve as pedestrian detectable edging, payment will be made for the temporary traffic barrier in accordance with Section 620. No payment will be made for temporary walkways with Detectable Edging where existing pavements or existing edging (that meets the requirements of MUTCD) are utilized as temporary walkways. Payment for temporary detectable edging, including approved barriers and channelizing devices, installed on existing pavements shall be included in Traffic Control-Lump Sum.

Regardless of the materials used, temporary walkways shall be constructed of sufficient thickness and durability to withstand the intended use for the duration of the construction project. If concrete or asphalt is used as the surface course for the walkway, it shall be a minimum of one and one-half inches (1-1/2”) thick. Temporary walkways constructed across unimproved streets and drives shall be a minimum thickness of four inches (4”) for concrete and three inches (3”) for asphalt. Joints formed in concrete sidewalks shall be in accordance with Section 441. Concrete surfaces shall have a broom finish.

If plywood is used as a walkway, it must be a minimum of three quarters of an inch (3/4”) thick pressure treated and supported with pressure treated longitudinal joists spaced a maximum of sixteen inches (16”) on center. The plywood shall be secured to the joist with galvanized nails or galvanized deck screws. Nails and screws shall be countersunk to prevent snagging or tripping the pedestrians. A slip resistant friction course shall be applied to any plywood surface that is used as a walkway. Any slip resistant material used shall have the prior written approval of the engineer.

The contractor may propose alternate types of Temporary Walkways provided the contractor can document that the proposed walkway meets the requirements of the “Americans with Disabilities Act Accessibility Guidelines for Buildings and Facilities (ADAAG)”. Alternate types of Temporary Walkways shall have the prior written approval of the engineer.

Temporary walkways shall be constructed and maintained so there are no abrupt changes in grade or terrain that could cause a tripping hazard or could be a barrier to wheelchair use. The contractor shall construct and maintain the walkway to ensure that joints in the walkway have a vertical difference in elevation of no more than one quarter (1/4”) of an inch and that the horizontal joints have gaps no greater than one half (1/2”) of an inch. The grade of the temporary walkway should parallel the grade of the existing walkway or roadway and the cross slope should be no greater than 2%.

A width of sixty (60”) inches, if practical, should be provided throughout the entire length of any temporary walkway. The temporary walkway shall be a minimum width of forty eight inches (48”). When it is not possible to maintain a minimum width of sixty inches (60”) throughout the entire length of temporary walkway, a
sixty inch (60") by sixty inch (60") passing space should be provided at least every two hundred feet (200 Ft.), to allow individuals in wheelchairs to pass.

Temporary walkways shall be constructed on firm subgrade. Compact the subgrade according to Section 209. Furnish and install any needed temporary pipes prior to constructing any walkway to ensure positive drainage away from or beneath the temporary walkway. Once the walkway is no longer required, remove any temporary materials and restore the area to the original conditions or as shown in the plans.

b. Temporary Curb Cut Wheelchair Ramps
Temporary curb cut wheelchair ramps shall be constructed in accordance with Section 441 and Detail A-3. Ramps shall also include a detectable warning surface in accordance with Detail A-4. Other types of material for the construction of the temporary curb cut wheelchair ramps, including the detectable warning surface, may be used provided the contractor can provide documentation that the material to be used meets the requirements of the “Americans with Disabilities Act Accessibility Guidelines for Buildings and Facilities (ADAAG)”. When a wheelchair ramp is no longer required, remove the temporary materials and restore the area to existing conditions or as shown in the plans. For the items required to restore the area to original conditions or as shown in the plans, measures for payment shall be covered by contract pay items. If pay items are not included in the contract, then payment for these items shall be included in Traffic Control-Lump Sum.

c. Temporary Audible Information Device
Temporary audible information devices, when shown in the plans, shall be installed in compliance with the “Americans with Disabilities Act Accessibility Guidelines for Buildings and Facilities (ADAAG)”. The devices shall be installed in accordance with the manufacturer’s recommendations. Prior to installation, the contractor shall provide the engineer with a set of manufacturer’s drawings detailing the proper installation procedures for each device. When no longer required, the devices shall remain the property of the contractor.

L. TRAFFIC SIGNALS

If the sequence of operations, staging, or the temporary traffic control plan requires the relocation or shifting of any components of an existing traffic signal system then any work on these traffic signals will be considered as part of Lump Sum- Traffic Control. The contractor becomes responsible for the maintenance of these traffic signals from the time that the system is modified until final acceptance. The maintenance of traffic signals that are not a part of the work and are not in conflict with any portion of the work shall not be the responsibility of the contractor.

When construction operations necessitate an existing traffic signal to be out of service, the Contractor shall furnish off-duty police officers to regulate and maintain traffic control at the site. Off-duty police officers should be used to regulate and maintain traffic control at signal sites when lane closures or traffic shifts block or restrict movements causing
interference with normal road user flows and will not allow the activated traffic signal to
guide the traffic through the signal site.

M. REMOVAL/REINSTALLATION OF MISCELLANEOUS ITEMS

In the prosecution of the Work, if it becomes necessary to remove any existing signs,
markers, guardrail, etc. not covered by specific pay item, they shall be removed, stored
and reinstalled, when directed by the Engineer, to line and grade, and in the same
condition as when removed.

150.03 SIGNS:

A. SIGNING REQUIREMENTS OF THE TEMPORARY TRAFFIC CONTROL (TTC) PLAN

When existing regulatory, warning or guide signs are required for proper traffic and
pedestrian control the Contractor shall maintain these signs in accordance with the
temporary traffic control (TTC) plan. The Contractor shall review the status of all existing
signs, interim signs added to the work, and permanent sign installations that are part of
the work to eliminate any conflicting or non-applicable signage in the TTC Plan. The
Contractor's review of all signs in the TTC Plan shall establish compliance with the
requirements of the MUTCD and Section 150. Any conflicts shall be reported to the
Engineer immediately and the WTCS shall take the necessary measures to eliminate the
conflict.

The Contractor shall make every effort to eliminate the use of interim signs as soon as the
Work allows for the installation of permanent signs.

All existing illuminated signs shall remain lighted and be maintained by the Contractor.

Existing street name signs shall be maintained at street intersections.

B. CONFLICTING OR NON-APPLICABLE SIGNS

Any sign(s) or portions of a sign(s) that are not applicable to the TTC plan shall be covered
so as not to be visible to traffic or shall be removed from the roadway when not in use. The
WTCS shall review all traffic shifts and changes in the traffic patterns to ensure that all
conflicting signs have been removed. The review shall confirm that the highest priority
signs have been installed and that signs of lesser significance are not interfering with the
visibility of the high priority signs. High priority signs include signs for road closures, shifts,
detours, lane closures and curves. Any signs, such as speed zones and speed limits,
passing zones, littering fines and litter pick up, that reference activities that are not
applicable due to the presence of the Work shall be removed, stored and reinstalled when
the Work is completed.

Failure to promptly eliminate conflicting or non-applicable signs shall be considered as non-
performance under Section 150.08.
C. REMOVAL OF EXISTING SIGNS AND SUPPORTS

The Contractor shall not remove any existing signs and supports without prior approval from the Engineer. All existing signs and supports which are to be removed shall be stored and protected if this material will be required later in the work as part of the TTC plan. If the signs are not to be utilized in the work then the signs will become the property of the Contractor unless otherwise specified in the contract documents.

D. INTERIM GUIDE, WARNING AND REGULATORY SIGNS

Interim guide, warning, or regulatory signs required to direct traffic and pedestrians shall be furnished, installed, reused, and maintained by the Contractor in accordance with the MUTCD, the Plans, Special Provisions, Special Conditions, or as directed by the Engineer. These signs shall remain the property of the Contractor. The bottom of all interim signs shall be mounted at least seven (7') feet above the level of the pavement edge when the signs are used for long-term stationary operations as defined by Section 6G.02 of the MUTCD. Special Conditions under Subsection 150.11 may modify this requirement.

Portable signs may be used when the duration of the work is less than three (3) days or as allowed by the special conditions in Subsection 150.11. Portable signs shall be used for all punchlist work. All portable signs and sign mounting devices utilized in work shall be NCHRP 350 compliant. Portable interim signs shall be mounted a minimum of one (1') foot above the level of the pavement edge for directional traffic of two (2) lanes or less and a minimum of seven (7') feet for directional traffic of three (3) or more lanes. Signs shall be mounted at the height recommended by the manufacturer’s crashworthy testing requirements. Portable interim signs which are mounted at less than seven (7') feet in height may have two 18 inch x 18 inch fluorescent red-orange or orange-red warning flags mounted on each sign.

All regulatory sign blanks shall be rigid whether the sign is mounted as a portable sign, on a Type III barricade or as a permanent mount height sign.

Any permanent mount height interim sign that is designed to fold in half to cover a non-applicable message on the sign shall have reflectorized material on the folded over portion of the sign. The reflectorized material shall be orange in color with a minimum of ASTM Type I engineering grade sheeting with a minimum area of six inches by six inches (6” x 6”) facing the direction of traffic at all times when the sign is folded.

Interim signs may be either English or metric dimensions.

E. EXISTING SPECIAL GUIDE SIGNS

Existing special guide signs on the Project shall be maintained until conditions require a change in location or legend content. When change is required, existing signs shall be modified and continued in use if the required modification can be made within existing sign borders using design requirements (legend, letter size, spacing, border, etc.) equal to that of the existing signs, or of Sub-Section 150.03.E.2. Differing legend designs shall not be mixed in the same sign.

1. Special Guide Signs

Special guide signs are those expressway or freeway guide signs that are designed with a message content (legend) that applies to a particular roadway location. When
an existing special guide sign is in conflict with work to be performed, the Contractor shall remove the conflicting sign and reset it in a new, non-conflicting location which has been approved by the Engineer.

2. **Interim Special Guide Signs**
 When it is not possible to utilize existing signs, either in place or relocated, the Contractor shall furnish, erect, maintain, modify, relocate, and remove new interim special guide signs in accordance with the Plans or as directed by the Engineer. Interim special guide signs that may be required in addition to, or a replacement for, existing expressway and freeway (interstate) signs shall be designed and fabricated in compliance with the minimum requirements for guide signing contained in Part 2E “Guide Signs Expressway” and Part 2F “Guide Signs Freeways” of the MUTCD, except that the minimum size of all letters and numerals in the names and places, streets and highways on all signs shall be 16 inches Series “E” initial upper-case and 12 inches lower-case. All interstate shields on these signs shall be 48 inches and 60 inches for two-numeral and three-numeral routes, respectively.

 The road name of the exit or route shield shall be placed on the exit gore sign.

3. **Interim Overhead Guide Sign Structures**
 Interim overhead special guide sign structures are not required to be lighted unless specifically required by the Plans. If lighting is required the sign shall be lighted as soon as erected and shall remain lighted, during the hours of darkness, until the interim sign is no longer required. The Contractor shall notify the Power Company at least thirty (30) days prior to desired connection to the power source.

4. **Permanent Special Guide Signs**
 The installation of new permanent special guide signs and the permanent modification or resetting of existing special guide signs, when included in the contract, shall be accomplished as soon as practical to minimize the use of interim special guide signs. If lighting is required by the Plans, all new permanent overhead special guide signs shall be lighted as soon as erected.

F. MATERIALS- INTERIM SIGNS:

1. **Posts**
 Permanent mounting height of seven (7’) feet- Posts for all interim signs shall meet the requirements of Section 911 except that green or silver paint may be used in lieu of galvanization for steel posts or structural shape posts. Within the limits of a single project, all metal posts shall be the same color. Wood posts are not required to be pressure treated. Ground mounted sign(s) greater than nine (9) square feet shall be mounted on two posts.

 Interim posts may be either metric or English in dimensions.

 Posts for all interim signs shall be constructed to yield upon impact unless the posts are protected by guardrail, portable barrier, impact attenuator or other type of positive barrier protection. Unprotected posts shall meet the breakaway requirements of the “1994 AASHTO Standard Specifications for Structural Support for Highway Signs, Luminaries and Traffic Signals”. Unprotected interim posts shall be spliced as shown in Detail 150-F unless full length unspliced posts are used.
Unprotected post splices will not be permitted any higher than four inches above the ground line to lessen the possibility of affecting the undercarriage of a vehicle. Installation of posts may require establishment of openings in existing pavements, islands, shoulders etc.
2. **Sign Blanks And Panels- Permanent mounting height of seven (7') feet**

 All sign blanks and panels shall conform to Section 912 of the Specifications except that blanks and panels may be ferrous based or other metal alloys. Type 1 and Type 2 sign blanks shall have a minimum thickness of 0.08 inches regardless of the sign type used. Alternative sign blank materials (composites, poly carbonates, fiberglass reinforced plastics, recycled plastics, etc.) shall have a letter of approval from the Office of Materials and Research for use as interim construction signs before these materials are allowed to be incorporated into the work unless these rigid sign blanks are currently approved as a crashworthy sign blank material under QPL 34. The back side of sign panels shall be painted orange to prevent rust if other metals are used in lieu of aluminum. Plywood blanks or panels will not be permitted. The use of flexible signs will not be permitted for permanent mount height signs.

 Interim blanks and panels may be either metric or English in dimensions.

3. **Portable Sign Mounting Devices, Portable Sign Blanks**

 All portable sign mounting devices and sign blanks utilized in the work shall be NCHRP 350 Test Level III compliant. All portable sign mounting devices and sign blanks shall be from the Qualified Products List. Any sign or sign mounting device shall have an identifying decal, logo, or manufacturer’s stamping that clearly identifies the device as NCHRP 350 compliant. The required decal, logo or manufacturer’s stamping shall not be displayed on the message face of the sign. The Contractor may be required to provide certification from the Manufacturer as proof of NCHRP 350 compliance. All portable signs shall be mounted according to height requirements of Subsection 150.03.D.

G. **SIGN VISIBILITY AND OFFSETS**

 All existing, interim and new permanent signs shall be installed so as to be completely visible for an advance distance in compliance with the MUTCD. Any clearing required for maintaining the line of sight to existing, interim or permanent signs shall be done as part of the requirements of the TTC plan. The clearing shall include any advance warning signs, both interim and permanent, that are installed as a part of the work including advance warning signs that are installed outside the limits of the project. Any sign installed behind W-beam or T-beam guardrail with non-breakaway posts shall be installed with the leading edge of the sign a minimum of four feet and three inches (4’3”) behind the face of the guardrail with five feet (5”) of clearance being desirable. Limbs, brush, construction equipment and materials shall be kept clear of the driver’s line of sight to all signs that are part of the TTC plan.

H. **ADVANCE WARNING SIGNS:**

 1. **All Type Of Highways**

 Advance warning signs shall be placed ahead of the work area in accordance with Part VI of the MUTCD and shall include a series of at least three advance road work (W20-1) signs placed at the termini of the project. The series shall have the legend ROAD WORK (1500 FEET, 1000 FEET, AND 500 FEET).

 At grade intersecting roadways and on-ramps shall be signed with a minimum of one ROAD WORK AHEAD sign.
When work terminates at a “T” intersection, a minimum of one “ROAD WORK AHEAD” sign shall be placed in advance of the intersection and one “END ROAD WORK” sign shall be placed at the termination end of the intersection. Field conditions may require the use of additional warning signage.

Advanced Warning Signs on State Routes shall be a minimum dimension of 48 inches x 48 inches. When a State Route intersects a project which consists of adding travel lanes, reconstructing an existing roadway or new location work, the State Route approaches shall have a minimum of three (W20-1) advanced warning signs (1500 ft., 1000 ft., 500 ft.). The termination end of an intersecting State Route shall have END ROAD WORK signage.

The W20-1 signs shall be placed at the termini of the project or sufficiently in advance of the termini to allow for lane shifts, lane closures and other activities which may also require advanced warning signs. The advanced warning signs for the project should not overlap with the advanced warning signs for lane shifts, lane closures, etc.

The length of a workzone should be held to the minimum length required to accomplish the work. If a project has multiple individual worksites within the overall limits of the project, each site should be signed individually if the advance warning signs for each site can be installed without overlapping an adjacent worksite. As soon as the work is completed at any individual site the warning signs shall be removed from that site. Clean-up work and punchlist work shall be performed with portable signage.

Project mileage indicated on the G20-1 sign shall be the actual project mileage rounded up to the nearest whole mile. Projects less than two (2) miles in length or individual worksites that are part of a multiple worksite project may delete this sign. The G20-1 sign shall be 60” X 36” and the G20-2 sign shall be 48” X 24”.

2. Interstate, Limited Access And Multilane Divided Highways

In addition to the W20-1 signs required at 500 ft., 1000 ft. and 1500 ft., multi-lane divided highways shall also have additional advanced warning signs installed with the legend "ROAD WORK (2 MILES, 1 MILE and 1/2 MILE). All construction warning signs on divided highways shall be double indicated (i.e., on the left and right sides of the roadway.) If the use of the ½ mile, 1 mile and 2 mile advanced warning signs cause an overlap with other work or do not benefit field conditions then the Engineer may review the use of these signs and eliminate their installation. When the posted speed limit is 50 MPH or less, the ½ mile, 1 mile and 2 mile signs should be eliminated especially in urban areas.

The W20-1 advance warning signs for ROAD WORK 500 FEET; 1000 FEET; and 1500 FEET shall be temporarily covered when work involving the advanced warning signs for lane shifts and lane closures overlap these signs. The ROAD WORK ½ MILE, ROAD WORK 1 MILE, and ROAD WORK 2 MILES shall be in place when the 500, 1000 and 1500 feet signs are temporarily covered.

When the temporary traffic control zone already has advanced warning (W20-1) signs installed the W20-1 signs required for lane closures under Standard 9106 should be eliminated.
RAMP WORK ON LIMITED ACCESS HIGHWAYS: The workzone shall not be signed for the entire length of the mainline of a limited access highway when only short individual worksites, interchange or ramp work is being performed.

When work is restricted to ramp reconstruction or widening activities, the advance warning signs on the mainline section of the limited access highway shall be limited to the use of portable advance warning signs. These portable advance warning signs shall only be utilized when work activity is within the gore point of the ramp and the mainline traveled way or work is active in the accel/decel lane adjacent to the mainline traveled way. Portable advance warning signs (W20-1; 1500ft./1000 ft./500ft.) shall be installed on the traveled way of the limited access highway when the above conditions are present. The advance warning signs shall be installed only in one direction where work is active. All portable signs shall be double indicated. When work is not active, the ramp work shall be advanced warned by the use of a single 48 inch X 48 inch “RAMP WORK AHEAD” sign along the right shoulder of the mainline traveled way prior to the beginning of the taper for the decel lane. The “RAMP WORK AHEAD” sign shall be mounted at seven (7’) feet in height. Differences in elevation shall be in compliance with the requirements of Subsection 150.06 prior to the removal of the portable (W20-1) advanced warning signs from the mainline.

The G20-1 sign shall be eliminated on limited access highways when the work involves only ramp work, bridge reconstruction, bridge painting, bridge joint repairs, guardrail and anchor replacement or other site specific work which is confined to a short section of limited access highway.

I. PORTABLE CHANGEABLE MESSAGE SIGN

Unless specified as a paid item in the contract the use of a portable changeable message sign will not be required. When specified, a portable changeable message sign (PCMS) shall meet the minimum requirements of Section 632 and the MUTCD. The maximum amount of messages allowed to be flashed on one PCMS is two phases (flashes). The language and the timing of the messages shall comply with the MUTCD and Section 632. When used as an advanced device the PCMS should typically be placed ahead of the construction activities. If the PCMS is used as a substitute for another device then the requirements for the other device apply.

J. FLASHING BEACON

The flashing beacon assembly, when specified, shall be used in conjunction with construction warning signs, regulatory, or guide signs to inform traffic of special road conditions which require additional driver attention. The flashing beacon assembly shall be installed in accordance with the requirements of Section 647.

K. RUMBLE STRIP SIGNAGE

Signage for rumble strips located in the travelway shall be as required in Subsection 150.01.C and Subsection 150.02.A.9.

L. LOW/SOFT SHOULDER SIGNAGE

Low or soft shoulder signs shall be utilized in accordance with the following conditions:
CONSTRUCTION/RECONSTRUCTION PROJECTS:

“LOW/SOFT SHOULDER” signs shall be erected when a difference in elevation exceeds one (1”) inch but does not exceed three (3”) inches between the travelway and any type of shoulder unless the difference in elevation is four (4’) feet or greater from the edge of the traveled way.

The spacing of the signs shall not exceed one (1) mile and the signs shall be placed immediately past each crossroad intersection. The “Low/Soft” signs shall remain in place until the difference in elevation is eliminated and the shoulder has been dressed and permanently grassed for a minimum of thirty (30) calendar days. These signs shall be furnished, installed, maintained and removed by the Contractor as part of Traffic Control- Lump Sum. These signs shall be orange with black borders and meet the reflectorization requirements of Subsection 150.01.C.

“SHOULDER DROP-OFF” (W8-9a) signs shall be used when a difference in elevation, less than four (4’) feet from the traveled way, exceeds three (3”) inches and is not protected by positive barrier protection. These warning signs shall be placed in advance of the drop-off. For a continuous drop-off condition, the W8-9a) signs shall, as a minimum, be spaced in accordance with the above requirements for “Low/soft shoulder” signs.

PROJECTS CONSISTING PRIMARILY OF ASPHALTIC CONCRETE RESURFACING ITEMS:

“LOW/SOFT SHOULDER” signs shall be erected when a difference in elevation exceeds one (1”) inch but does not exceed three (3”) inches between the travelway and any type of shoulder unless the difference in elevation is four (4’) feet or greater from the edge of the traveled way.

SHOULDER BUILDING INCLUDED IN THE CONTRACT: “Low/Soft Shoulder” signs shall be erected as per the requirement of Standards 9102, 9106, and 9107. “Shoulder Drop-off” signs (W8-9a) shall be erected as per the requirements of the MUTCD. These signs shall be maintained until the conditions requiring their installation have been eliminated. The Contractor shall remove all interim warning signs before final acceptance.

SHOULDER BUILDING NOT INCLUDED IN THE CONTRACT: The Department will furnish the “Low/Soft Shoulder” signs, “Shoulder Drop-off” signs and the posts. The signs shall be erected to meet the minimum requirements of Subsection 150.03. The Contractor shall include the cost of furnishing installation hardware (bolts, nuts, and washers), erection and maintenance of the signs in the bid price for Traffic Control- Lump Sum. The Contractor shall maintain the signs until final acceptance. The Department will remove the signs.

LAU/LAR PROJECTS SHOULDER BUILDING NOT INCLUDED IN THE CONTRACT: The Contractor will furnish, install and maintain LOW/SOFT SHOULDER signs (yellow with black borders, ASTM Type III or IV) at the appropriate spacing, until Final Acceptance of the project by the Department. After Final Acceptance by the Department the signs will become the property and responsibility of the local government.

M. BUMP SIGNAGE:

MULTI-LANE DIVIDED HIGHWAYS: A bump sign (W8-1) shall be utilized when a transverse joint in the pavement structure has a vertical difference in elevation of three quarters
(3/4”) of an inch or greater in depth with no horizontal taper to ramp the traffic from one elevation to the other. This condition typically occurs at approach slabs during pavement milling operations and at transverse joints in asphaltic pavement lifts.

TWO-LANE TWO-WAY HIGHWAYS: A bump sign (W8-1) shall be utilized when a transverse joint in the pavement structure has a vertical difference in elevation that exceeds one and three quarters (1-3/4”) inches in depth with no horizontal taper to ramp the traffic from one elevation to the other. This includes utility and storm drainage repairs that require concrete placement for patching and/or steel plating.

The (W8-1) sign shall be placed sufficiently in advance to warn the motorist of the condition.

N. PEDESTRIAN SIGNAGE:

Appropriate signs as described in the MUTCD shall be maintained to allow safe passage of pedestrian traffic or to advise pedestrians of walkway closures (Refer to MUTCD Figures TA-28 and TA-29 for guidance). Advance closure signing should be placed at intersections rather than midblock locations so that pedestrians are not confronted with midblock work sites that will induce them to attempt skirting the work site or making a midblock crossing. Signs and other devices mounted lower than seven (7) feet above the temporary pedestrian walkway shall not project more than four (4) inches into the accessible pedestrian facilities. Signs and other devices shall be placed such that they do not narrow any pedestrian passage to less than 48 inches.

150.04 PAVEMENT MARKINGS

A. GENERAL

Full pattern pavement markings in accordance with Section 652 and in conformance with Section 3A and 3B, except 3B.02, of the MUTCD are required on all courses before the roadway is opened to traffic. No passing zones shall be marked to conform to Subsection 150.04.E. During construction and maintenance activities on all highways open to traffic, both existing markings and markings applied under this Section shall be fully maintained until Final Acceptance. If the pavement markings are, or become, unsatisfactory in the judgement of the Engineer due to wear, weathering, or construction activities, they shall be restored immediately.

1. Resurfacing Projects

Pavement markings shall be provided on all surfaces that are placed over existing markings. Interim and final markings shall conform in type and location to the markings that existed prior to resurfacing unless changes or additions are noted in the Contract. The replacement of parking spaces will not be required unless a specific item or note has been included in the Contract. Any work to make additions to the markings that existed prior to resurfacing is to be considered as extra work.
2. **Widening And Reconstruction Projects**
 If the lane configuration is altered from the preconstruction layout then pavement markings will be as required by the plans or the Engineer.

3. **New Location Construction Projects**
 Pavement marking plans will be provided.

B. **MATERIALS**

All traffic striping applied under this Section shall be a minimum four inches in width or as shown in plans and shall conform to the requirements of Section 652, except as modified herein. Raised pavement markers (RPMs) shall meet the requirements of Section 654. Markings on the final surface course, which must be removed, shall be a removable type. The Contractor will be permitted to use paint, thermoplastic, or tape on pavement which is to be overlaid as part of the project, unless otherwise directed by the Engineer. Partial (skip) reflectorization (i.e. reflectorizing only a portion of a stripe) will not be allowed.

C. **INSTALLATION AND REMOVAL OF PAVEMENT MARKINGS**

INSTALLATION: All pavement markings, both interim and permanent, shall be applied to a clean surface. The Contractor shall furnish the layout and preline the roadway surface for the placement of pavement markings applied as part of the temporary traffic control plan. All interim marking tape and RPM's on the final surface shall be removed prior to the placement of the final markings.

The Contractor shall sequence the work in such a manner as to allow the installation of markings in the final lane configuration at the earliest possible stage of the work.

REMOVAL: Markings no longer applicable shall be removed in accordance with Subsection 656.3.05.

THE ELIMINATION OF CONFLICTING PAVEMENT MARKINGS BY OVERPAINTING WITH UNAPPROVED PAINT OR ANY TYPE OF LIQUID ASPHALT IS NOT ACCEPTABLE.

INTERMEDIATE SURFACE: Interim markings shall be removed by methods that will cause minimal damage to the pavement surface while also ensuring that traveling public will not be confused or misdirected by any residual markings remaining on the intermediate surface. The use of approved black-out tape and black-out paint (manufactured for the sole purpose of covering existing pavement markings) may be permitted on some interim surfaces, provided the results are satisfactory to the Engineer.

FINAL SURFACE: No interim paint or thermoplastic markings will be permitted on any final surface unless the interim markings are in alignment with the location of the permanent markings and the interim marking will not interfere or adversely affect placement of the permanent markings. The proposed method of removal for layout errors that require markings to be removed from the final surface shall have the prior approval of the Engineer. Any damage to the final pavement surface caused by the pavement marking removal process shall be repaired at the Contractor’s expense by methods acceptable and approved by the Engineer. Subsection 400.3.06.C shall apply when corrective measures are required. The use of black-out tape or black-out paint will not be permitted under any circumstance to correct layout errors on any final surface.
Traffic shifts that are done on the final surface shall be accomplished using interim traffic marking tape that can be removed without any blemishing of the final surface. Interim traffic marking tape shall be used on any of the following final surfaces: asphaltic concrete, Portland cement concrete, and bridge deck surfaces. The contractor may propose alternate traffic markings and removal methods on the final surface. Submitted proposals shall include the type of material, method of removal and a cost comparison to the traffic marking tape method. Prior to any approval, the contractor shall field demonstrate to the satisfaction of the Engineer that the proposed traffic markings can be removed without any blemishing of the final surface. If the proposal is determined to be acceptable, a supplemental agreement will be executed prior to the installation of the proposed alternate traffic markings. The supplemental agreement shall denote the type of traffic marking materials, method of removal and any cost and/or time savings to the Department. The Department will not consider or participate in any cost increase that may result from implementing the proposed alternate method.

PAY FACTOR REDUCTION FOR ASPHALTIC CONCRETE FINAL SURFACES: When the correction of an error in the layout of the final pavement markings requires the final surface to be grounded, blemished, scarred, or polished the pay factor shall be reduced to 0.95 for the entire surface area of the final topping that has a blemish, polished or a scarred surface. The reduced pay factor shall not be confined to only the width and length of the stripe or the dimensions of the blemished areas, the whole roadway surface shall have the reduced pay factor applied. The area of the reduced pay factor shall be determined by the total length and the total width of the roadway affected. If the affected area is not corrected, the reduction in pay shall be deducted from the final payment for the topping layer of asphaltic concrete. The Engineer shall make the final determination whether correction or a reduced pay factor is acceptable.

The eradication of pavement markings on intermediate and final concrete surfaces shall be accomplished by a method that does not grind, polish, or blemish the surface of the concrete. The method used for the removal of the interim markings shall not spall chip the joints in the concrete and shall not damage the sealant in the joints. Any joint or sealant repairs shall be included in the bid price for Traffic Control-Lump Sum. The proposed method of removal shall have the prior approval of the Engineer.

Failure to promptly remove conflicting or non-applicable pavement markings shall be considered as non-performance under Subsection 150.08.

PREPARATION AND PLANNING FOR TRAFFIC SHIFTS: When shifting of traffic necessitates removal of centerline, lane lines, or edge lines, all such lines shall be removed prior to, during, or immediately after any change so as to present the least interference with traffic. Interim traffic marking tape shall be used as a temporary substitute for the traffic markings being removed.

Before any change in traffic lane(s) alignment, marking removal equipment shall be present on the project for immediate use. If marking removal equipment failures occur, the equipment shall be repaired or replaced (including leasing equipment if necessary), so that the removal can be accomplished without delay.

Except for the final surface, markings on asphaltic concrete may be obliterated by an overlay course, when approved by the Engineer. When an asphaltic concrete overlay is placed for the sole purpose of eliminating conflicting markings and the in place asphaltic concrete section will allow, said overlay will be eligible for payment only if designated in
the Plans. Overlays to obliterate lines will be paid for only once and further traffic shifts in the same area shall be accomplished with removable markings. Only the minimum asphaltic concrete thickness required to cover lines will be allowed. Excessive build-up will not be permitted. When an overlay for the sole purpose of eliminating conflicting markings is not allowed, the markings no longer applicable shall be removed in accordance with Subsection 656.3.05.

D. RAISED PAVEMENT MARKERS

Raised pavement markers (RPMs) are required as listed below for all asphaltic concrete pavements before the roadway is open to traffic. On the final surface, RPM’s shall be placed according to the timeframes specified in 150.04 E. for full pattern pavement markings except Interstate Highways where RPM’s shall be placed and/or maintained when the roadway is open to traffic. When Portland Cement Concrete is an intermediate or final surface and is open to traffic, one calendar day is allowed for cleaning and drying before the installation of RPMs is required.

Raised pavement markers are not allowed on the right edge lines under any situation.

1. Interstate Highways
Retro-reflective raised pavement markers (RPM’s) shall be placed and/or maintained on intermediate pavements surfaces on all interstate highways that are open to traffic. This includes all resurfacing projects along with widening and reconstruction projects. The spacing and placement shall be as required for MULTI-LANE DIVIDED HIGHWAYS.

2. Multi-Lane Divided Highways
Retro-reflective raised pavement markers (RPMs) shall be placed and/or maintained on intermediate pavement surfaces on all multi-lane divided highways that are opened to traffic when these roadways are being widened or reconstructed. Two lane-two way roadways that are being widened to a multi-lane facility, whether divided or undivided, are included in this provision. Projects consisting primarily of asphalt resurfacing items or shoulder widening items are excluded from this requirement. The RPMs shall be placed as follows:

 a. SUPPLEMENTING LANE LINES
 80 foot center on skip lines with curvature less than three degrees. (Includes tangents)
 40 foot centers on solid lines and all lines with curvature between three degrees and six degrees.
 20 foot centers on curves over six degrees.
 20 foot centers on lane transitions or shifts.

 b. SUPPLEMENTING RAMP GORE LINES
 20 foot centers, two each, placed side by side.
c. OTHER LINES

As shown on the plans or directed by the Engineer.

3. Other Highways

On other highways under construction RPMs shall be used and/or maintained on intermediate pavement surfaces as follows:

a. SUPPLEMENTING LANE LINES AND SOLID LINES

40 foot centers except on lane shifts. (When required in the Plans or Contract.)

20 foot centers on lane shifts. (Required in all cases.)

b. SUPPLEMENTING DOUBLE SOLID LINES

40 foot centers (one each beside each line) except on lane shifts. (When required in the Plans or Contract.)

20 foot centers on lane shifts. (Required in all cases.)

E. EXCEPTIONS FOR INTERIM MARKINGS

Some exceptions to the time of placement and pattern of markings are permitted as noted below; however, full pattern pavement markings are required for the completed project.

1. Two-Lane, Two-Way Roadways

a. SKIP LINES

All interim skip (broken) stripe shall conform to Section 652 except that stripes shall be at least two feet long with a maximum gap of 38 feet. On curves greater than six degrees, a one-foot stripe with a maximum gap of 19 feet shall be used. In lane shift areas solid lines will be required. Interim skip lines shall be replaced with markings in full compliance with Section 652 prior to expiration of the 14 calendar day period.

Interim raised pavement markers may be substituted for the interim skip (broken) stripes. If raised pavement markers are substituted for the two foot interim skip stripe, three markers spaced at equal intervals over a two feet distance will be required. No separate payment will be made if the interim raised pavement markers are substituted for interim skip lines.

Interim raised pavement markers shall be retro-reflective, shall be the same color as the pavement markers for which they are substituted, and shall be visible during daytime.

The type of interim marker and method of attachment to the pavement shall be approved by the Office of Materials and Research but in no case will the markers be attached by the use of nails. Flexible reflective markers, Type 14 or Type 15, may be used for a maximum of fourteen (14) calendar days as an interim marker. Any flexible reflective markers in use shall be from the qualified products list (QPL).
The interim raised pavement markers shall be maintained until the full pattern pavement markings are applied. At the time full pattern markings are applied the interim raised markers shall be removed in a manner that will not interfere with application of the full pattern pavement markings.

b. NO PASSING ZONES-TWO-LANE, TWO-WAY ROADWAYS

Passing zones shall be re-established in the locations existing prior to resurfacing. No changes to the location of passing zones shall be done without the written approval of the Engineer. For periods not to exceed three calendar days where interim skip centerlines are in place, no-passing zones shall be identified by using post or portable mounted DO NOT PASS regulatory signs (R4-1 24” x 30”) at the beginning and at intervals not to exceed ½ mile within each no-passing zone. A post or portable mounted PASS WITH CARE regulatory sign (R4-1 24” x 30”) shall be placed at the end of each no-passing zone. Post mounted signs shall be placed in accordance with the MUTCD. Portable signs shall conform to the requirements of the MUTCD and shall be NCHRP 350 compliant. Portable signs shall be secured in such a manner to prevent misalignment and minimize the possibility of being blown over by weather conditions or traffic.

On new location projects and on projects where either horizontal or vertical alignments has been modified, the location of No-Passing Zones will be identified by the Engineer.

c. EDGELINES

1) Bituminous Surface Treatment Paving

Edgelines will not be required on intermediate surfaces (including asphaltic concrete leveling for bituminous surface treatment paving) that are in use for a period of less than 60 calendar days except at bridge approaches, on lane transitions, lane shifts, and in such other areas as determined by the Engineer. On the final surface, edgelines shall be placed within 30 calendar days of the time that the final surface was placed.

2) All Other Types of Pavement

Edgelines will not be required on intermediate surfaces that are in use for a period of less than 30 calendar days except at bridge approaches, on lane transitions, lane shifts, and in such other areas as determined by the Engineer. On the final surface, edgelines shall be placed within 14 calendar days of the time that the surface was placed.

2. Multi-Lane Highways – With No Paved Shoulder(S) Or Paved Shoulder(S) Four Feet Or Less

a. UNDIVIDED HIGHWAYS (INCLUDES PAVED CENTER TURN LANE)

1) Centerlines and No-Passing Barrier-Full Pattern centerlines and no-passing barriers shall be restored before opening to traffic.

2) Lanelines- Interim skip (broken) stripe as described in Subsection 150.04E.1.a. may be used for periods not to exceed three calendar days. Skiplines are not permitted in lane shift areas. Solid lines shall be used.
3) Edgelines- Edgelines shall be placed on intermediate and final surfaces within three calendar days of obliteration.

b. DIVIDED HIGHWAYS (GRASS OR RAISED MEDIAN)

1) Lanelines- Full pattern skip stripe shall be restored before opening to traffic. Skip lines are not permitted in lane shift areas. Solid lines shall be required.

2) Centerline/Edgeline- Solid lines shall be placed on intermediate and final surfaces within three calendar days of obliteration.

3. Limited Access Roadways And Roadways With Paved Shoulders Greater Than Four Feet

a. Same as Subsection 150.04.E.2 except as noted in (b) below.

b. EDGELINES-

1) Asphaltic Concrete Pavement- Edgelines shall be placed on intermediate and final surfaces prior to opening to traffic.

2) Portland Cement Concrete Pavement- Edgelines shall be placed on any surface open to traffic no later than one calendar day after work is completed on a section of roadway. All water and residue shall be removed prior to daily striping.

4. Ramps For Multi-Lane Divided Highways

A minimum of one solid line edge stripe shall be placed on any intermediate surface of a ramp prior to opening the ramp to traffic. The other edge stripe may be omitted for a maximum period of three (3) calendar days on an intermediate surface. Appropriate channelization devices shall be spaced at a maximum of twenty-five (25') feet intervals until the other stripe has been installed.

The final surface shall have both stripes placed prior to opening the ramp to traffic.

5. MISCELLANEOUS PAVEMENT MARKINGS:

FINAL SURFACE: School zones, railroads, stop bars, symbols, words and other similar markings shall be placed on final surfaces conforming to Section 652 within fourteen (14) calendar days of completion of the final surface. Final markings shall conform to the type of pay item in the plans. When no pay item exists in the plans the final markings shall conform to Section 652 for painted markings.

INTERMEDIATE SURFACE: Intermediate surfaces that will be in use for more than forty-five (45) calendar days shall have the miscellaneous pavement markings installed to conform to the requirement of Section 652. Under Subsection 150.11, Special Conditions, or as directed by the Engineer these markings may be eliminated.

F. MOBILE OPERATIONS

When pavement markings (centerlines, lane lines, and edgelines) are applied in a continuous operation by moving vehicles and equipment, the following minimum
equipment and warning devices shall be required. These devices and equipment are in addition to the minimum requirements of the MUTCD.

1. **All Roadways**
 All vehicles shall be equipped with the official slow moving vehicle symbol sign. All vehicles shall have a minimum of two flashing or rotating beacons visible in all directions. All protection vehicles shall have an arrow panel mounted on the rear. All vehicles requiring an arrow panel shall have, as a minimum, a Type B panel. All vehicle mounted signs shall be mounted with the bottom of the sign a minimum height of forty-eight inches (48”) above the pavement. All sign legends shall be covered or removed from view when work is not in progress.

2. **Two-Lane Two-Way Roadways**
 a. **Lead Vehicles**
 The lead vehicle may be a separate vehicle or the work vehicle applying the pavement markings may be used as the lead vehicle. The lead vehicle shall have an arrow panel mounted so that the panel is easily visible to oncoming (approaching) traffic. The arrow panel should typically operate in the caution mode.

 b. **Work Vehicles**
 The work vehicle(s) applying markings shall have an arrow panel mounted on the rear. The arrow panel should typically operate in the caution mode. The work vehicle placing cones shall follow directly behind the work vehicle applying the markings.

 c. **Protection Vehicles**
 A protection vehicle may follow the cone work vehicle when the cones are being placed and may follow when the cones are being removed.

3. **MULTI-LANE ROADWAYS**
 A lead vehicle may be used but is not required. The work vehicle placing cones shall follow directly behind the work vehicle applying the markings. A protection vehicle that does not function as a work vehicle should follow the cone work vehicle when traffic cones are being placed. A protection vehicle should follow the cone work vehicle when the cones are being removed from the roadway. Protection vehicles shall display a sign on the rear of the vehicle with the legend PASS ON LEFT (RIGHT).

 INTERSTATES AND LIMITED ACCESS ROADWAYS: A protection vehicle shall follow the last work vehicle at all times and shall be equipped with a truck mounted attenuator that is certified for impacts not less than 62 mph in accordance with NCHRP350 Test Level Three (3).
A. GENERAL

Channelization shall clearly delineate the travelway through the work zone and alert drivers and pedestrians to conditions created by work activities in or near the travelway. Channelization shall be done in accordance with the plans and specifications, the MUTCD, and the following requirements.

All Channelization Devices utilized on any project shall be NCHRP 350 compliant. Any device used on the Work shall be from the Qualified Products List. All devices utilized on the work shall have a decal, logo, or manufacturer’s stamping that clearly identifies the device as NCHRP 350 compliant. The Contractor may be required to furnish certification from the Manufacturer for any device to prove NCHRP 350 compliance.

1. Types of Devices Permitted for Channelization in Construction Work Zones:

 a. DRUMS:

 1) DESIGN: Drums shall meet the minimum requirement of the MUTCD and shall be reflectorized as required in Subsection 150.01.C. The upper edge of the top reflectorized stripe on the drum shall be located a minimum of 33 inches above the surface of the roadway. A minimum drum diameter of 18 inches shall be maintained for a minimum of 34 inches above the roadway.

 2) APPLICATION: Drums shall be used as the required channelizing device to delineate the full length of a lane closure, shift, or encroachment, except as modified by this Subsection.

 3) TRANSITION TAPERS FOR LANE CLOSURES: Drums shall be used on all transition tapers. The minimum length for a merging taper for a lane closure on the travelway shall be as shown in Table 150-1:
TABLE 150-1

<table>
<thead>
<tr>
<th>Posted Speed Limit, MPH</th>
<th>Lane Width 9 Feet</th>
<th>Lane Width 10 Feet</th>
<th>Lane Width 11 Feet</th>
<th>Lane Width 12 Feet</th>
<th>Maximum Drum Spacing in Tapers, (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum Taper Length (L) in Feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>95</td>
<td>105</td>
<td>115</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>135</td>
<td>150</td>
<td>165</td>
<td>180</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>185</td>
<td>205</td>
<td>225</td>
<td>245</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>240</td>
<td>270</td>
<td>295</td>
<td>320</td>
<td>40</td>
</tr>
<tr>
<td>45</td>
<td>405</td>
<td>450</td>
<td>495</td>
<td>540</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>50</td>
</tr>
<tr>
<td>55</td>
<td>495</td>
<td>550</td>
<td>605</td>
<td>660</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>540</td>
<td>600</td>
<td>660</td>
<td>720</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>585</td>
<td>650</td>
<td>715</td>
<td>780</td>
<td>65</td>
</tr>
<tr>
<td>70</td>
<td>630</td>
<td>700</td>
<td>770</td>
<td>840</td>
<td>70</td>
</tr>
<tr>
<td>75</td>
<td>675</td>
<td>750</td>
<td>825</td>
<td>900</td>
<td>75</td>
</tr>
</tbody>
</table>

If site conditions require a longer taper then the taper shall be lengthened to fit particular individual situations.

The length of shifting tapers should be at least ½ L.

The length of a closed lane or lanes, excluding the transition taper(s), shall be limited to a total of two (2) miles. Prior approval must be obtained from the Engineer before this length can be increased.

Night time conditions: When a merge taper exists into the night all drums located in the taper shall have, for the length of the taper only, a six (6") inch fluorescent orange (ASTM Type VI, VII, VIII, IX or X) reflectorized top stripe on each drum. The top six-inch stripe may be temporarily attached to the drum while in use in a taper. The Engineer may allow the fluorescent orange reflectorized six (6") inch top stripe on each drum in a merging taper to remain in place during daylight hours provided there is a lane closure(s) with a continuous operation that begins during one nighttime period and ends during another nighttime period. All drums that have the six-inch top stripe permanently attached shall not be used for any other conditions.

Multiple Lane Closures:

(a) A maximum of one lane at a time shall be closed with each merge taper.

(b) A minimum tangent length of 2 L shall be installed between each individual lane closure taper.

4) LONGITUDINAL CHANNELIZATION: Drums shall be spaced as listed below for various roadside work conditions except as modified by Subsection 150.06.
Spacing shall be used for situations meeting any of the conditions listed as follows:

(a) 40 FOOT SPACING MAXIMUM

(1) For difference in elevation exceeding two inches.

(2) For healed sections no steeper than 4:1 as shown in Subsection 150.06, Detail 150-E.

(b) 80 FOOT SPACING MAXIMUM

(1) For difference in elevation of two inches or less.

(2) Flush areas where equipment or workers are within ten feet of the travel lane.

(c) 200 FOOT SPACING MAXIMUM: Where equipment or workers are more than ten feet from travel lane. Lateral offset clearance to be four feet from the travel lane.

(1) For paved areas eight feet or greater in width that are paved flush with a standard width travel lane.

(2) For disturbed shoulder areas not completed to typical section that are flush to the travel lane and considered a usable shoulder.

REMOVAL OF DRUMS: Drums may be removed after shoulders are completed to typical section and grassed. Guardrail and other safety devices shall be installed and appropriate signs advising of conditions such as soft or low shoulder shall be posted before the drums are removed.

b. VERTICAL PANELS

1) DESIGN: All vertical panels shall meet the minimum requirements of the MUTCD. All vertical panels shall have a minimum of 270 square inches of retro-reflective area facing the traffic and shall be mounted with the top of the reflective panel a minimum of 36” above the roadway.

2) APPLICATION: Lane encroachment by the drum on the travelway should permit a remaining lane width of ten feet. When encroachment reduces the travelway to less than ten feet, vertical panels shall be used to restore the travelway to ten feet or greater. No other application of vertical panels will be permitted.

c. CONES

1) DESIGN: All cones shall be a minimum of 28 inches in height regardless of application and shall meet the requirement of the MUTCD. Reflectorization may be deleted from all cones.

2) APPLICATION: For longitudinal channelizing only, cones will be permitted for daylight closures or minor shifts. (Drums are required for all tapers.) The use
of cones for nighttime work will not be permitted. Cones shall not be stored or allowed to be visible on the worksite during nighttime hours.

d. BARRICADES

DESIGN: Type III barricades shall meet the minimum requirements of the MUTCD and shall be reflectorized as required in Subsection 150.01.C. The Contractor has the option of choosing Type III barricades from the Qualified Products List or the Contractor may utilize generic barricades that are approved by the Federal Highway Administration (FHWA). When barricades have been specifically crash tested with signs attached, the contractor has the responsibility to attach the signs as per the manufacturer's recommendations to ensure crashworthiness. If signs are attached to generic barricades or to barricades from the Qualified Products List (QPL) that have not been crash tested with signs attached then the responsibility for crashworthiness and the liability for mounting these signs to the barricades are assumed by the Contractor and the Contractor shall certify that the barricades are crashworthy under FHWA workzone guidelines for NCHRP 350 crashworthy compliance. Any generic barricades used in the work shall be stamped or stenciled to show compliance with NCHRP 350. The use of Type I and Type II barricades will not be permitted.

1) APPLICATION: Type III barricades shall be placed as required by the plans, the Standards, and as directed by the Engineer. All signs mounted on barricades shall be mounted to comply with the requirements of the MUTCD and NCHRP 350 Test Level III. NCHRP 350 crashworthy compliance may require that rigid signs be mounted separate from the Type III barricade.

When a barricade is placed so that it is subject to side impact from a vehicle, a drum shall be placed at the side of the barricade to add target value to the barricade.

e. WARNING LIGHTS:

1) DESIGN: All warning lights shall meet the requirements of the MUTCD.

2) APPLICATION

(a) Type A low-intensity flashing lights shall be used as shown in the Plans, the Standards, and as directed by the Engineer. Flashing lights are not required for advance warning signs in Subsection 150.03.H.

(b) Type C Steady-Burn lights shall be used as shown in the Plans, the Standards, and as directed by the Engineer. Steady-burn lights are not required on drums for merging tapers that exist into the night.

f. TEMPORARY BARRIERS

1) DESIGN: Temporary barriers shall meet the requirements of Sections 620.

2) APPLICATION: Temporary barriers shall be placed as required by the plans, standards, and as directed by the Engineer. When Temporary barrier is located
20 feet or less from a travel lane, yellow reflectors shall be fixed to the top of
the barrier at intervals not greater than 40 feet in the longitudinal section and
20 feet in the taper section and shall be mounted approximately two inches
above the barrier. If both lanes of a two-lane two-way roadway are within 20
feet or less of the barrier then the reflectors shall be installed for both
directions of traffic.

The reflectors shall be 100 square inches (ASTM Type VII or VIII) reflective
sheeting mounted on flat-sheet blanks. The reflectors shall be mounted
approximately two inches above the top of the barrier. The reflectors shall be
attached to the barrier with adhesive or by a drilled-in anchor type device. The
reflector shall not be attached to a post or board that is placed between the
gap in the barrier sections.

Approach end of Temporary barrier shall be flared or protected by an impact
attenuator (crash cushion) or other approved treatment in accordance with
Construction Details/Standards and Standard Specifications.

On interstate or other controlled access highways where lane shifts or
crossovers cause opposing traffic to be separated by less than 40 ft., portable
barrier shall be used as a separator.

B. PORTABLE IMPACT ATTENUATORS:

1. DESCRIPTION
 This work consists of the furnishing (including spare parts), installation, maintenance,
 relocation, reuse as required, and removal of Portable Impact Attenuator Units/Arrays.

2. MATERIALS
 Materials used in the Attenuator shall meet the requirements of Section 648 for
 Portable Impact Attenuators.

3. CONSTRUCTION
 Portable Impact Attenuator Unit/Arrays installation shall conform to the requirements
 of Section 648, Manufacturer’s recommendations and Georgia Standard 4960 and shall
 be installed at locations designated by the Engineer, and/or as shown on the plans.

C. TEMPORARY GUARDRAIL ANCHORAGE- Type 12:

1. DESCRIPTION
 This work consists of the furnishing, installation, maintenance and removal or
 Temporary Guardrail Anchorage- Type 12 used for Portable Barrier or temporary
 guardrail end treatment.

2. MATERIALS
 Materials used in the Temporary Guardrail Anchorage- Type 12 shall meet the
 requirements of Subsection 641.2 of the Specifications and current Georgia Standards
 and may be new or used. Materials salvaged from the Project which meet the
 requirements of Standards may be utilized if available. The use of any salvaged
 materials will require prior approval of the Engineer.
3. CONSTRUCTION
Installation of the Temporary Guardrail Anchorage- Type 12 shall conform to the requirements of the Plans, current Georgia Standards and Subsection 641.3 of the Specifications. Installation shall also include sufficient additional guardrail and appurtenances to effect the transition and connection to Temporary Concrete Barrier as required by the details in Georgia Standard 4960.

150.06 DIFFERENCES IN ELEVATION BETWEEN TRAVEL LANES AND SHOULDERS (SEE SUBSECTION 150.06.G FOR PROJECTS CONSISTING PRIMARILY OF ASPHALTIC CONCRETE RESURFACING ITEMS)

Any type of work such as paving, grinding, trenching, or excavation that creates a difference in elevation between travel lanes or between the travelway and the shoulder shall not begin until the Contractor is prepared and able to continuously place the required typical section to within two inches (2") of the existing pavement elevation. For any areas that the two inches minimum difference in elevation cannot be accomplished the section shall be healed as shown in Detail 150-E. If crushed stone materials are used to provide a healed section no separate payment will be made for the material used to heal any section. The Contractor may submit a plan to utilize existing pay items for crushed stone provided the plan clearly demonstrates that the materials used to heal an area will be incorporated into the work with minimal waste. Handling and hauling of any crushed stone used to heal shall be kept to a minimum. The Engineer shall determine if the crushed stone used to heal meets the specifications for gradation and quality when the material is placed in the final location.

A maximum of sixty (60) calendar days shall be allowed for conditions to exist that require any section or segment of the roadway or ramp to continue to require a healed section as described by Detail 150-E. Failure to meet this requirement shall be considered as non-performance of Work under Subsection 150.08.

When trenching or excavation for minor roadway or shoulder widening is required, all operations at one site shall be completed to the level of the existing pavement in the same work day.

Any channelization devices utilized in the work shall conform to the requirements of Subsection 150.05 and to the placement and spacing requirements in Details 150-B, 150-C, 150-D, and 150-E shown in this section.

Any construction activity that reduces the width of a travel lane shall require the use of a W-20 sign with the legend “LEFT/RIGHT LANE NARROWS”. Two 24” x 24” red or red/orange flags may be mounted above the W-20 sign. The W-20 sign shall be located on the side of the travelway that has been reduced in width just off the travelway edge of pavement. The W-20 sign shall be a minimum of 500 feet in advance of any channelization devices that encroach on the surface of travelway. A portable changeable message sign may be used in lieu of the W-20 sign.

GENERAL/TIME RESTRICTIONS:

A. STONE BASES, SOIL AGGREGATE BASE AND SOIL BASES
 1. All Highways
 Differences in elevation of more than two inches between surfaces carrying or adjacent to traffic will not be allowed for more than a 24-hour period. A single length of excavated area that does not exceed 1000 feet in total length may be left open as a
start up area for periods not to exceed 48 hours provided the Contractor can demonstrate the ability to continuously excavate and backfill in a proficient manner. Prior approval of the Engineer shall be obtained before any startup area may be allowed.

2. LIMITED ACCESS HIGHWAY RAMPS (INTERSTATES):
On projects that include ramp rehabilitation work, one ramp at a time may be excavated for the entire length of the ramp from the gore point of the ramp with the interstate mainline to the intersection with the crossing highway. This single ramp may remain excavated with a vertical difference in elevation greater than two (2") inches for a maximum of fourteen (14) calendar days with drums spaced at twenty (20') feet intervals as shown in Detail 150-B and a buffer space accepted under Section 150.06.F. After fourteen (14) calendar days the section shall be healed as required for all other highways. This area will be allowed in addition to the 1000 feet allowed for all other highways.

B. ASPHALT BASES, BINDERS AND TOPPINGS

1. DIFFERENCES IN ELEVATION BETWEEN THE SURFACES OF ADJACENT TRAVELWAYS
Travel lanes shall be paved with a plan that minimizes any difference in elevation between adjacent travel lanes. The following limitations will be required on all work:

 a. Differences of two inches (2") or less may remain for a maximum period of fourteen (14) calendar days.

 b. Differences of greater than two inches (2") shall be permitted for continuous operations only.

 EMERGENCY SITUATIONS: Inclement weather, traffic accidents, and other events beyond the control of the Contractor may prevent the work from being completed as required above. The Contractor shall notify the Engineer in writing stating the conditions and reasons that have prevented the Contractor from complying with the time limitations. The Contractor shall also outline a plan detailing immediate steps to complete the work. Failure to correct these conditions on the first calendar day that conditions will allow corrective work shall be considered as non-performance of Work under Subsection 150.08.

2. Differences in Elevation Between Asphalt Travelway and Paved Shoulders
Differences in elevation between the asphalt travelway and asphalt paved shoulders shall not be allowed to exist beyond the maximum durations outlined below for the conditions shown in Details 150-B, 150-C, 150-D, and 150-E:

Detail 150-B conditions shall not be allowed for more than 24 hours. A single length that does not exceed 1000 feet in total length may be left open for periods not to exceed 48 hours provided the Contractor can demonstrate the ability to continuously pave in a proficient manner. Prior approval of the Engineer shall be obtained before any section is allowed to exceed 24 hours. Any other disturbed shoulder areas shall be healed as in Detail 150-E.

Detail 150-C conditions will not be allowed for more than 48 hours.

Detail 150-D conditions will not be allowed for more than 30 calendar days.
Detail 150-E conditions will not be allowed for more than 60 calendar days.

Failure to meet these requirements shall be considered as non-performance of Work under **Subsection 150.08**.

C. PORTLAND CEMENT CONCRETE

Work adjacent to a Portland Cement Concrete traveled way which involves the following types of base and shoulders shall be accomplished according to the time restrictions outlined for each type of base or shoulder. Traffic control devices shall be in accordance with **Subsection 150.05**.

1. **Cement Stabilized Base**

 Work adjacent to the traveled way shall be healed as per **Detail 150-E** within forty-eight (48) hours after the seven (7) calendar day curing period is complete for each section placed. During the placement and curing period, traffic control shall be in accordance **Detail 150-B**.

2. **Asphaltic Concrete Base**

 When an asphaltic concrete base is utilized in lieu of a cement stabilized base the asphaltic concrete base shall be healed as per **Detail 150-E** within forty-eight (48) hours after the placement of each section of asphaltic concrete base. For the first forty-eight hours traffic control shall be in compliance with **Detail 150-B**.

3. **Concrete Paved Shoulders**

 Concrete paved shoulders shall be placed within sixty (60) calendar days after the removal of each section of existing shoulder regardless of the type of base materials being placed on the shoulders. During the placement period, traffic control devices shall be in accordance with the appropriate detail based on the depth of the change in elevation. Differences in elevation of more than two inches between the travel way and the shoulder will not be allowed for more than a 24-hour period. A single length of excavated area that does not exceed 1000 feet in total length may be left open as a start up area for periods not to exceed 48 hours provided the Contractor can demonstrate the ability to continuously excavate and backfill in a proficient manner. Prior approval of the Engineer shall be obtained before any startup area may be allowed. Any other disturbed shoulder areas shall be healed as in **Detail 150-E**.

4. **Asphaltic Concrete Shoulders**

 A difference in elevation that meets the requirements of **Detail 150-B** shall not be allowed to exist for a period greater than forty-eight (48) hours. After the removal of the existing shoulder the section or segment of travelway may be healed with stone as per **Detail 150-E** for a maximum of fourteen (14) calendar days. Asphaltic concrete shoulders shall be placed within two (2") inches or less of the traveled way surface within fourteen (14) calendar days after the removal of the stone healed section or the removal of each section of the existing shoulder. The two (2") inches or less difference in elevation shall not remain in existence for a period that exceeds thirty (30) calendar days unless the paved shoulder is utilized as a detour for the traveled way. During the
placement period, traffic control shall be in accordance with the appropriate detail based on the depth of the change in elevation.

The Contractor may propose an alternate plan based on Subsection 150.06.F. Failure to meet the above requirements and time restrictions shall be considered as non-performance of Work under Subsection 150.08.

D. MISCELLANEOUS ELEVATION DIFFERENTIALS FOR EXCAVATIONS ADJACENT TO THE TRAVELWAY

Drainage structures, utility facilities, or any other work which results in a difference in elevation adjacent to the travelway shall be planned and coordinated to be performed in such a manner to minimize the time traffic is exposed to this condition. The excavation should be backfilled to the minimum requirements of Detail 150-E as soon as practical. Stage construction such as plating or backfilling the incomplete work may be required. The difference in elevation shall not be allowed to exist for more than five (5) calendar days under any circumstances. Failure to correct this condition shall be considered as non-performance of Work under Subsection 150.08.

E. CONDUIT INSTALLATION IN PAVED AND DIRT SHOULDERS

The installation of conduit and conduit systems along the shoulders of a traveled way shall be planned and installed in a manner to minimize the length of time that traffic is exposed to a difference in elevation condition. The following restrictions and limitations shall apply:

1. **Differences in Elevation of Two (2”) Inches or Less**
 The shoulder may remain open when workers are not present. When workers are present the shoulder shall be closed and the channelization devices shall meet the requirements of Subsection 150.05. The difference in elevation on the shoulder shall remain for a maximum period of fourteen (14) calendar days.

2. **Differences in Elevation Greater Than Two (2”) Inches**
 The shoulder shall be closed. The shoulder closure shall not exceed twenty-four (24) hours in duration unless the Special Conditions in Subsection 150.11 modifies this restriction or the Engineer allows the work to be considered as a continuous operation.

 Failure to meet these requirements shall be considered as non-performance of Work under Subsection 150.08.

F. MODIFICATIONS TO TIME RESTRICTIONS

The Contractor may propose any alternate temporary traffic control plan that utilizes a portion of the travel lane as a “buffer space”. This buffer space may allow for an enhanced work area that will allow for the placement of materials to proceed at a pace that could not be achieved with the time restriction requirements outlined in Section 150.06.A, 150.06.B, and 150.06.C. The Contractor may propose modified time restrictions based on the use of the buffer space. Any proposed modifications in the time duration allowed for the differences in elevations to exist shall be reviewed by the Engineer as a component of the
overall TTC plan. No modifications shall be made until the proposed plan is accepted by the Engineer. The Engineer shall have no obligation to consider any proposal which results in an increase in cost to the Department.

For the travel lane described in each of the details 150-B, 150-C, 150-D and 150-E it is presumed that the pavement marking edgeline (yellow or white solid stripe) is located at the very edge of the travel lane surface. A buffer space (temporary paved shoulder) that utilizes a portion of the travel lane should be six (6') feet in width desirable but shall not be less than four (4') feet in width. Any remaining travel lane(s) shall not be less than ten (10') feet in width. Modifications to drum spacing shown in the details above will not be allowed.

If the proposed shifting of the traffic to obtain a buffer space and maintain a minimum travel lane(s) of ten (10') feet requires the use of any existing paved shoulders then the cost of maintenance and repair of the existing paved shoulder(s) shall be the responsibility of the Contractor. The Contractor is responsible for the costs of maintenance and repairs even if the existing paved shoulder(s) is to be removed in a later stage of the work. Existing shoulders that have rumble strips shall have the rumble strips removed before the shoulder can be utilized as part of the travel lane. The cost of the removal of the rumble strips shall be done at no cost to the Department even if the shoulder is to be removed in a later stage of the work.

Any modifications to the staging and time restrictions that are approved as part of the TTC plan shall be agreed to in writing. Failure to meet these modifications shall be considered as non-performance of the Work under Subsection 150.08.

G. ASPHALTIC CONCRETE RESURFACING PROJECTS

SHOULDER CONSTRUCTION INCLUDED AS A PART OF THE CONTRACT: When the placement of asphaltic concrete materials creates a difference in elevation greater than two (2") inches between the earth shoulder (grassed or un-grassed) and the edge of travelway or between the earth shoulder and a paved shoulder that is less than four (4') feet in width, the Contractor shall place and maintain drums in accordance with the requirements of Subsection 150.05A.1.a.4). When the edge of the paved surface is tapered with a 30-45 degree wedge, drums may be spaced at 2.0 times the speed limit in MPH. Drums shall remain in place and be maintained until the difference in elevation has been eliminated by the placement of the appropriate shoulder materials.

SHOULDER CONSTRUCTION NOT INCLUDED AS A PART OF THE CONTRACT: When the placement of asphaltic concrete materials creates a difference in elevation greater than two (2") inches between the earth shoulder (grassed or un-grassed) and the edge of travelway or between the earth shoulder and a paved shoulder that is less than four (4') feet in width, the Contractor shall notify the Engineer, in writing, when the resurfacing work including all punchlist items has been completed.

See Subsection 150.03.L for the requirements for “LOW/SOFT SHOULDERS” and “SHOULDER DROP-OFF” signage.
Location of drums when Elevation Difference exceeds 4 inches. Drums spaced at 20 foot intervals. **Note:** If the travel way width is reduced to less than 10 feet by the use of drums, vertical panels shall be used in lieu of drums.

NEW CONSTRUCTION TRAVEL LANE

ELEVATION DIFFERENCE GREATER THAN 4 INCHES

DETAIL 150-B

| Drums spaced at 40 foot intervals. | Location of drums when Elevation Difference is 2+ inches to 4 inches. |

NEW CONSTRUCTION TRAVEL LANE

ELEVATION DIFFERENCE 2+ to 4 inches

DETAIL 150-C
Drums spaced at 80 foot intervals.

Location of drums when Elevation Difference is 2 inches or less.

Drums spaced at 80 foot intervals.

Location of drums when Elevation Difference is 2 inches or less.

ELEVATION DIFFERENCE OF 2 INCHES OR LESS

DETAIL 150-D

Location of drums immediately after completion of healed sections spaced at 40 foot intervals.

Compacted graded aggregate, subbase material or dirt.

NO STEEPER THAN 4:1

TOP OF DRUM TO BE LEVEL

HEALED SECTION

DETAIL 150-E
150.07 FLAGGING AND PILOT CARS:

A. FLAGGERS

Flaggers shall be provided as required to handle traffic, as specified in the Plans or Special Provisions, and as required by the Engineer.

B. FLAGGER CERTIFICATION

All flaggers shall meet the requirements of the MUTCD and shall have received training and a certificate upon completion of the training from one of the following organizations:

- National Safety Council
- Southern Safety Services
- Construction Safety Consultants
- Ivey Consultants
- American Traffic Safety Services Association (ATSSA)

Certifications from other agencies will be accepted only if their training program has been approved by any one of the organizations listed above.

Failure to provide certified flaggers as required above shall be reason for the Engineer suspending work involving the flagger(s) until the Contractor provides the certified flagger(s). Flaggers shall have proof of certification and valid identification (photo I.D.) available any time they are performing flagger duties.

C. FLAGGER APPEARANCE AND EQUIPMENT

Flaggers shall wear high-visibility clothing in compliance with Subsection 150.01.A. The apparel background (outer) material color shall be fluorescent orange-red, fluorescent yellow-green, or a combination of the two as defined in the ANSI standard. The retroreflective material shall be orange, yellow, white, silver, yellow-green, or a fluorescent version of these colors, and shall be visible at a minimum distance of one thousand (1000) feet. The retroreflective safety apparel shall be designed to clearly identify the wearer as a person. They shall use a Stop/Slow paddle meeting the requirements of the MUTCD for controlling traffic. The Stop/Slow paddles shall have a shaft length of seven (7) feet minimum. The Stop/Slow paddle shall be retro-reflectorized for both day and night usage. In addition to the Stop/Slow paddle, a flagger may use a flag as an additional device to attract attention. This flag shall meet the minimum requirements of the MUTCD. The flag shall, as a minimum, be 24” inches square and red or red/orange in color. For night work, the vest shall have reflectorized stripes which meet the requirements of the MUTCD.

D. FLAGGER WARNING SIGNS

Signs for flagger traffic control shall be placed in advance of the flagging operation in accordance with the MUTCD. In addition to the signs required by the MUTCD, signs at regular intervals, warning of the presence of the flagger shall be placed beyond the point where traffic can reasonably be expected to stop under the most severe conditions for that day’s work.
E. PILOT VEHICLE REQUIREMENTS

Pilot vehicles will be required during placement of bituminous surface treatment or asphaltic concrete on two-lane roadways unless otherwise specified. Pilot vehicles shall meet the requirements of the MUTCD.

F. PORTABLE TEMPORARY TRAFFIC CONTROL SIGNALS

The Contractor may request, in writing, the substitution of portable temporary traffic control signals for flaggers on two-lane two-way roadways provided the temporary signals meet the requirements of the MUTCD, Section 647, and Subsection 150.02.A.8. As a part of this request, the Contractor shall also submit an alternate temporary traffic control plan in the event of a failure of the signals. Any alternate plan that requires the use of flaggers shall include the use of certified flaggers. The Contractor shall obtain the approval of the Engineer before the use of any portable temporary traffic control signals will be permitted.

150.08 ENFORCEMENT

The safe passage of pedestrians and traffic through and around the temporary traffic control zone, while minimizing confusion and disruption to traffic flow, shall have priority over all other Contractor activities. Continued failure of the Contractor to comply with the requirements of Section 150 (TRAFFIC CONTROL) will result in non-refundable deductions of monies from the Contract as shown in this Subsection for non-performance of Work.

Failure of the Contractor to comply with this Specification shall be reason for the Engineer suspending all other work on the Project, except erosion control and traffic control, taking corrective action as specified in Subsection 105.15, and/or withholding payment of monies due to the Contractor for any work on the Project until traffic control deficiencies are corrected. These other actions shall be in addition to the deductions for non-performance of traffic control.

| SCHEDULE OF DEDUCTIONS FOR EACH CALENDAR DAY OF DEFICIENCIES OF TRAFFIC CONTROL INSTALLATION AND/OR MAINTENANCE |
|---|---|------------------|
| ORIGINAL TOTAL CONTRACT AMOUNT | From More Than | To and Including |
| Daily Charge | $0 | $100,000 | $200 |
| | $100,000 | $1,000,000 | $500 |
| | $1,000,000 | $5,000,000 | $1,000 |
| | $5,000,000 | $20,000,000 | $1,500 |
| | $20,000,000 | $40,000,000 | $2,000 |
| | $40,000,000 | $------------------| $3,000 |
150.09 MEASUREMENT

A. TRAFFIC CONTROL
When listed as a pay item in the Proposal, payment will be made at the Lump Sum price bid, which will include all traffic control not paid for separately, and will be paid as follows:

When the first Construction Report is submitted, a payment of 25 (twenty-five) percent of the Lump Sum price will be made. For each progress payment thereafter, the total of the Project percent complete shown on the last pay statement plus 25 (twenty-five) percent will be paid (less previous payments), not to exceed one hundred (100) percent.

When no payment item for Traffic Control-Lump Sum is shown in the Proposal, all of the requirements of Section 150 and the Temporary Traffic Control Plan shall be in full force and effect. The cost of complying with these requirements will not be paid for separately, but shall be included in the overall bid submittal.

B. SIGNS

When shown as a pay item in the contract, interim special guide signs will be paid for as listed below. All other regulatory, warning, and guide signs, as required by the Contract, will be paid for under Traffic Control Lump Sum or included in the overall bid submitted.

1. Interim ground mounted or interim overhead special guide signs will be measured for payment by the square foot. This payment shall be full compensation for furnishing the signs, including supports as required, erecting, illuminating overhead signs, maintaining, removing, re-erecting, and final removal from the Project. Payment will be made only one time regardless of the number of moves required.

2. Remove and reset existing special guide signs, ground mount or overhead, complete, in place, will be measured for payment per each. Payment will be made only one time regardless of the number of moves required.

3. Modify special guide signs, ground mount or overhead, will be measured for payment by the square foot. The area measured shall include only that portion of the sign modified. Payment shall include materials, removal from posts or supports when necessary, and remounting as required.

C. TEMPORARY BARRIER

Temporary Barrier shall be measured as specified in Sections 620.

D. CHANGEABLE MESSAGE SIGN, PORTABLE

Changeable Message Sign, Portable will be measured as specified in Section 632.

E. TEMPORARY GUARDRAIL ANCHORAGE, Type 12

Temporary Guardrail Anchorage- Type 12 will be measured by each assembly, complete in place and accepted according to the details shown in the plans, which shall also include the
additional guardrail and appurtenances necessary for transition and connection to Temporary Concrete Barrier. Payment shall include all necessary materials, equipment, labor, site preparation, maintenance and removal.

F. TRAFFIC SIGNAL INSTALLATION- TEMPORARY

Traffic Signal Installation- Temporary will be measured as specified in Section 647.

G. FLASHING BEACON ASSEMBLY

Flashing Beacon Assemblies will be measured as specified in Section 647.

H. PORTABLE IMPACT ATTENUATORS

Each Portable Impact Attenuator will be measured by the unit/array which shall include all material components, hardware, incidentals, labor, site preparation, and maintenance, including spare parts recommended by the manufacturer for repairing accident damage. Each unit will be measured only once regardless of the number of locations installed, moves required, or number of repairs necessary because of traffic damage. Upon completion of the project, the units shall be removed and retained by the Contractor.

I. PAVEMENT MARKINGS

Pavement markings will be measured as specified in Section 150.

J. TEMPORARY WALKWAYS WITH DETECTABLE EDGING

Temporary walkways with detectable edging will be measured in linear feet (meters), complete in place and accepted, which shall include all necessary materials, equipment, labor, site preparation, temporary pipes, passing spaces, maintenance and removal. Excavation and backfill are not measured separately for payment. No payment will be made for temporary walkways where existing pavements or existing edging (that meets the requirements of MUTCD) are utilized for the temporary walkway. Payment for temporary detectable edging, including approved barriers and channelizing devices, installed on existing pavement shall be included in Traffic Control-Lump Sum.

K. TEMPORARY CURB CUT WHEELCHAIR RAMPS

Temporary curb cut wheelchair ramps are measured as the actual number formed and poured, complete and accepted, which shall include all necessary materials, equipment, labor, site preparation, maintenance and removal. No additional payment will be made for sawing existing sidewalk and removal and disposal of removed material for temporary wheelchair ramp construction. No additional payment will be made for constructing the detectable warning surface.

L. TEMPORARY AUDIBLE INFORMATION DEVICE

Temporary audible information devices are measured as the actual number furnished and installed in accordance with the manufacturer’s recommendations, which shall include all
necessary materials, equipment, labor, site preparation, maintenance and removal. Each temporary audible information device will be paid for only one time regardless of the number of times it’s reused during the duration of The Work. These devices shall remain the property of the Contractor.

150.10 PAYMENT:
When shown in the Schedule of Items in the Proposal, the following items will be paid for separately.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.10</td>
<td>Traffic Control</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Solid Traffic Stripe _ Inch, (Color)</td>
<td>per Linear Mile</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Skip Traffic Stripe _ Inch, (Color)</td>
<td>per Linear mile</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Solid Traffic Stripe, Thermoplastic ____ Inch, (Color)</td>
<td>per Linear Mile</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Skip Traffic Stripe, Thermoplastic ____ Inch, (Color)</td>
<td>per Linear Mile</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Pavement Arrow with Raised Reflectors</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Raised Pavement Markers-All Types.</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Interim Ground Mounted Special Guide Signs</td>
<td>per Square Foot</td>
</tr>
<tr>
<td>150.10</td>
<td>Interim Overhead Special Guide Signs</td>
<td>per Square Foot</td>
</tr>
<tr>
<td>150.10</td>
<td>Remove & Reset Existing Special Guide Signs, Ground Mount, Complete in Place</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Remove & Reset, Existing Special Guide Signs, Overhead, Complete in Place</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Portable Impact Attenuator</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Pavement Markers, Words and Symbols</td>
<td>per Square Foot</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Pavement Arrow (Painted) with Raised Reflectors</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Traffic Control, Workzone Law Enforcement</td>
<td>per Hour</td>
</tr>
<tr>
<td>150.10</td>
<td>Modify Special Guide Sign, Ground Mount</td>
<td>per Square Foot</td>
</tr>
<tr>
<td>150.10</td>
<td>Modify Special Guide Sign, Overhead</td>
<td>per Square Foot</td>
</tr>
<tr>
<td>150.10</td>
<td>Temporary Walkways With Detectable Edging</td>
<td>per Linear foot</td>
</tr>
<tr>
<td>150.10</td>
<td>Temporary Curb Cut Wheelchair Ramps</td>
<td>per Each</td>
</tr>
<tr>
<td>150.10</td>
<td>Temporary Audible Information Device</td>
<td>per Each</td>
</tr>
<tr>
<td>620.20</td>
<td>Temporary Barrier</td>
<td>per Linear Foot</td>
</tr>
<tr>
<td>632.10</td>
<td>Changeable Message Sign, Portable</td>
<td>per Each</td>
</tr>
<tr>
<td>641.10</td>
<td>Temporary Guardrail Anchorage, Type 12</td>
<td>per Each</td>
</tr>
<tr>
<td>647.10</td>
<td>Traffic Signal Installation, Temp</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>647.10</td>
<td>Flashing Beacon Assembly, Structure Mounted</td>
<td>per Each</td>
</tr>
<tr>
<td>647.10</td>
<td>Flashing Beacon Assembly, Cable Supported</td>
<td>per Each</td>
</tr>
</tbody>
</table>
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 153 – Field Engineer’s Office

Delete Subsection 153.3.05 B.7 and substitute the following:

7. Worktable: Provide a minimum of three (3) standard dimension desks. They shall be provided with a minimum of 1 1/8” (28mm) wood grain laminated tops with 23” (575mm) deep files and heavy-duty steel ball bearing drawers and locking center drawer. Provide one (1) 5’ X 3’ (1500mmX900mm) adjustable from 0 to 45 degree and 38” (950mm) high drafting table.

Delete Subsection 153.3.05 B.8 and substitute the following:

8. Stools: Provide one (1) posture stool with supportive backrest, waterfall edge seat and instant height lever (26” to 30”) (650mm to 750mm). Provide a minimum of five (5) fully braced stackable full 2” (50mm) thick 16”X15” (400mmX375mm) seats with armrests and chrome frames. Provide a minimum of four (4) swivel chairs with arms and a 19”X19” (475mmX475mm) foam cushion and upholstered seat adjustable from 16 ½” to 20” (415mm to 500mm) high.

Retain Subsection 153.3.05 B.11 and add the following:

Process and pay the monthly bills for all utility services.

Delete Subsection 153.3.05 B.12 and substitute the following:

12. Electric Service: Provide 120/240 volt electric service that meets code.

Delete Subsection 153.3.05 B.15 and substitute the following:

15. Telephone: Provide in each Type 3 building three telephone lines. Provide two voice lines, with rollover capabilities, connected to two handsets (located on either end of the office). Provide separate telephone line for the computer, as directed by the Engineer. Install and maintain these lines for the life of the Project. Provide telephone access to the Local Area Telephone Service (LATS) only for outgoing, credit card, collect and toll free calls. Ensure that the telephones can receive incoming non-collect long distance calls.

Provide with the telephone, an automatic answering system that can give a greeting message, record incoming messages, and activate remotely.
Delete Subsection 153.3.05 C.6 and substitute the following:

6. Outside Electrical Receptacle – Provide a weather-proof, exterior 220-volt electrical receptacle attached to a power source.

Delete Subsection 153.3.05 C.7 and substitute the following:

7. Chain Link Fence – Provide a minimum of 500 feet (150m) of 6 ft. (1.8 m) high chain link fence with an extension arm and barbed wire as specified in Section 643. Equip the fence with matching gates and meeting the requirements of Section 643 and consisting of a double 7 ft. (2.1m) by 6 ft. (1.8 m) and a single 4 ft (1.2 m) by 6 ft. (1.8 m) gate. Include a positive-type locking devices, padlock and a minimum of two keys for each gate. Ensure the fence encompasses the entire compound.

Delete Subsection 153.3.05 C.8 and substitute the following:

8. Security Light – Provide two 150-watt high-pressure sodium security lights with photoelectric controls. Place as directed by the Engineer.

Delete Subsection 153.3.05 C.9 and substitute the following:

9. Copying Machine – The Contractor shall furnish the Field Office with one copying machine installed and maintained for the life of the Project. The copying machine shall have the capability of making letter-size copies (8 ½” x 11”), legal-size copies (8 ¾”x 14”), two-sided copies, at least thirty copies per minute, and possess an auto-feed feature. Furnish all consumable and non-consumable supplies for the life of the Project.

Add the following to Subsection 153.3.05 C:

10. Place and spread 200 tons (181 Mg) of aggregate surface course on the Office grounds where indicated by the Engineer to facilitate parking. Remove aggregate and grass the area upon completion of the Project.

11. Ensure that the Office is supported with concrete blocks with mortar joints and anchored with ten storm-tie-down anchors. Enclose the area between the ground and the bottom of the Office with a vinyl skirting that matches the Office’s siding.

12. Install an alarm system that includes the following items and maintain in good operating condition:
 - SRN-2000 Enforced Bisonic with NAPCO Magnum Alert 850 – control box or Honeywell Vista-10P Master Control Panel with Honeywell 6150RF keypad or equivalent.
 - All doors and windows with wired contacts.
 - Outside sirens with wired contacts.
 - Tamper-proof box with wired contacts.
 - Inside sirens with wired contacts.
 - Two smoke and heat detectors.

Tie all of the above equipment to a 24 hour control monitoring system (BRK –2812TH or equivalent). Use a wired keyboard system. Do not use a remote system.

Process and pay the monthly bills for the alarm system and monitoring.

13. Provide two (2) additional 4 drawer locking fireproof file cabinets.
14. Provide one Desktop Computer and Accessories meeting the following minimum requirements:

A. Hardware:
 - 1.7 GHz Processor or better
 - 1 GB RAM or larger
 - 80 GB Hard Drive or larger
 - 40X Max, CD-RW
 - 64 MB Video memory
 - V.90 PCI DataFax Modem w/Voice
 - 19” (431 mm) Color Monitor
 - Human Input Device (Mouse)
 - Standard Windows Keyboard

B. Software:
 - MS Windows XP **Professional**
 - MS Office XP **Professional**
 - MS Outlook (Most Recent Version)
 - WinZip
 - WS-FTP
 - A restore CD

C. Printers:
 - HP Officejet 6310 All-in-One Printer, Fax, Scanner, Copier or Dell 968w All-in-One Wireless Printer
 or approved equal connected so that all functions including fax capability are active. Furnish all consumable and non-consumable supplies for the life of the Project.

D. Uninterruptible Power Supply:
 - American Power Conversion Corporation Back-UPS ES 650 or Newpoint 750 VA Battery Backup or Equal (minimum 5 Receptacles)

E. DSL or Cable Broadband Internet Service
 - Provide DSL Internet Service with static IP address or provide Cable Broadband Internet Service as directed by the Engineer. If Cable Broadband Internet Service is used, the third telephone line shall be used for the fax mode of the printer.

16. Concrete Cylinder Curing Box – The Contractor shall furnish a Concrete Curing Box for any project that requires the placement of concrete. The curing box and its components shall be constructed of non-corroding materials and shall be capable of storing a minimum of 22 test cylinders, 6 inch x 12 inch (150 mm x 300 mm) stored vertically with the lid closed. Additional capacity may be required on large projects at the direction of the Engineer. The curing box shall be equipped with heating/cooling capabilities, automatic temperature control, and a maximum/minimum (high/low) temperature readout. The curing box shall be capable of meeting the moisture and temperature requirements of AASHTO T 23.

Add the following to Subsection 153.3.07:

Retain possession of all items that are required as part of the Field Office when the Engineer determines that these items are no longer needed.
Add the following:

161.1 General Description
This Work includes using control measures shown on the Plans, ordered by the Engineer, or as required during the life of the Contract to control soil erosion and sedimentation through the use of any of the devices or methods referred to in this Section.

161.1.01 Definitions
Certified Personnel—certified personnel are defined as persons who have successfully completed the Level IA certification course approved by the Georgia Soil and Water Conservation Commission. For Department projects the certified person must also have successfully completed the Department’s WECS certification course.

Design Professional as defined in the current GAR100002 NPDES permit.

161.1.02 Related References
A. Standard Specifications

Section 105—Control of Work
Section 106—Control of Materials
Section 107—Legal Regulations and Responsibility to the Public
Section 109—Measurement and Payment
Section 160—Reclamation of Material Pits and Waste Areas
Section 162—Erosion Control Check Dams
Section 163—Miscellaneous Erosion Control Items
Section 166—Restoration or Alteration of Lakes and Ponds
Section 170—Silt Retention Barrier
Section 171—Temporary Silt Fence
Section 205—Roadway Excavation
Section 434—Sand Asphalt Paved Ditches
Section 441—Miscellaneous Concrete
Section 603—Rip Rap
Section 700—Grassing
Section 710—Permanent Soil Reinforcing Mat
Section 715—Bituminous Treated Roving
Erosion control measures contained in the Specifications include:

<table>
<thead>
<tr>
<th>Erosion Control Measure</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Check Dams</td>
<td>163.3.05.J</td>
</tr>
<tr>
<td>Bituminous Treated Mulch</td>
<td>700.3.05.G</td>
</tr>
<tr>
<td>Concrete Paved Ditches</td>
<td>441</td>
</tr>
<tr>
<td>Bituminous Treated Roving</td>
<td>715</td>
</tr>
<tr>
<td>Erosion Control Mats (Blankets)</td>
<td>716</td>
</tr>
<tr>
<td>Erosion Control Check Dams</td>
<td>162</td>
</tr>
<tr>
<td>Grassing</td>
<td>700</td>
</tr>
<tr>
<td>Maintenance of Temporary Erosion Control</td>
<td>165</td>
</tr>
<tr>
<td>Devices</td>
<td></td>
</tr>
<tr>
<td>Permanent Soil Reinforcing Mat</td>
<td>710</td>
</tr>
<tr>
<td>Reclamation of Material Pits and Waste Areas</td>
<td>160</td>
</tr>
<tr>
<td>Rip Rap</td>
<td>603</td>
</tr>
<tr>
<td>Restoration or Alteration of Lakes and Ponds</td>
<td>166</td>
</tr>
<tr>
<td>Sand-Asphalt Ditch Paving</td>
<td>434</td>
</tr>
<tr>
<td>Sediment Basin</td>
<td>163.3.05.C</td>
</tr>
<tr>
<td>Silt Control Gate</td>
<td>163.3.05.A</td>
</tr>
<tr>
<td>Silt Retention Barrier</td>
<td>170</td>
</tr>
<tr>
<td>Sod</td>
<td>700.3.05.H & 700.3.05.I</td>
</tr>
<tr>
<td>Mulch</td>
<td>163</td>
</tr>
<tr>
<td>Temporary Grassing</td>
<td>163.3.05.F</td>
</tr>
<tr>
<td>Temporary Silt Fence</td>
<td>171</td>
</tr>
<tr>
<td>Temporary Slope Drains</td>
<td>163.3.05.B</td>
</tr>
<tr>
<td>Triangular Sediment Barrier</td>
<td>720</td>
</tr>
<tr>
<td>Silt Filter Bag</td>
<td>719</td>
</tr>
<tr>
<td>Organic & Synthetic Material Fiber Blanket</td>
<td>713</td>
</tr>
</tbody>
</table>

B. Referenced Documents

Erosion and Sedimentation Pollution Control Plans (ESPCP)

161.1.03 Submittals

A. Status of Erosion Control Devices

The Worksite Erosion Control Supervisor (WECS) or certified personnel will inspect the installation and maintenance of the Erosion Control Devices according to Subsection 167.3.05.B and the ESPCP.

1. Submit all reports to the Engineer within 24 hours of the inspection. Refer to Subsection 167.3.05.C for report requirements.
2. The Engineer will review the reports and inspect the Project for compliance and concurrence with the submitted reports.
3. The Engineer will notify the WECS or certified personnel of any additional items that should be added to the reports.
4. Items listed in the report requiring maintenance or correction shall be completed within 72 hours.

B. Erosion and Sedimentation Pollution Control Plan

1. Project Plans
 An erosion and sedimentation pollution control plan (ESPCP) for the construction of the project will be provided by the Department. The ESPCP will be prepared for the various stages of construction necessary to complete the project.
 If the Contractor elects to alter the stage construction from that shown in the plans, it will be the responsibility of the Contractor to have the plans revised and prepared in accordance with the current GAR100002 NPDES permit by a Design Professional to reflect all changes in Staging. This will also include any revisions to erosion and sedimentation control item quantities. If the changes affect the Comprehensive Monitoring Program (CMP), the Contractor will be responsible for any revisions to the CMP as well. Submit revised plans and quantities to the Engineer for review prior to land disturbing activities.

2. Haul Roads, Borrow Pits, Excess Material Pits, etc.
 The Contractor is responsible for preparing erosion and sedimentation control plans for construction access roads and or haul roads borrow pits, excess material pits, etc (inside the Right of Way). Prepare these plans for all stages of construction and include the appropriate items and quantities. Submit these plans to the Engineer for review prior to land disturbing activities. These plans are to be prepared by a Design Professional.
 If construction of access roads, haul roads, borrow pits, excess material pits, etc., (inside the Right of Way) encroach within the 25 foot (7.6 m) buffer along the banks of all state waters or within the 50 ft. (15 m) buffer along the banks of any state waters classified as a “trout stream”, a state water buffer variance must be obtained by the Contractor prior to beginning any land disturbing activity in the stream buffer.

3. Erosion Control for Borrow and Excess Material Pits Outside the Right-of-Way
 Erosion control for borrow pits and excess material pits outside the right of way is the responsibility of the Contractor. If borrow or excess material pits require coverage under the National Pollutant Discharge Elimination System permit (NPDES) or other permits or variances are required, submit a copy of all documentation required by the permitting agency to the Engineer. All costs associated with complying with local, state, and federal laws and regulations are the responsibility of the Contractor.

4. Culverts and Pipes
 The ESPCP does not contain approved methods to construct a stream diversion or stream diversion channel. The Contractor shall prepare a diversion plan utilizing a Design Professional as defined in the current NPDES permit. See 161.3.05 G for additional information.

5. Temporary Asphalt or Concrete Batch Plants
 In addition to the requirements of any applicable specifications, if the Department authorizes the temporary installation and use of any asphalt, concrete or similar batch plants within its right of way, the contractor shall submit an NOI to the Georgia Environmental Protection Division for coverage under the following NPDES permits; The Infrastructure permit for the construction of the plant, and the Industrial permit for the operation of, such a plant. The contractor shall submit the NOIs as both the Owner and the Operator.
161.2 Materials
General Provisions 101 through 150.

161.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

161.3 Construction Requirements

161.3.01 Personnel

A. Duties of the Worksite Erosion Control Supervisor

Before beginning Work, designate a Worksite Erosion Control Supervisor (WECS) to initiate, install, maintain, inspect, and report the condition of all erosion control devices as described in Sections 160 through 171 or in the Contract and ESPCP documents. The designee shall submit their qualifications on the Department provided resume form for consideration and approval. The contractor may utilize additional persons having WECS qualifications to facilitate compliance however, only one WECS shall be designated at a time.

The WECS and alternates shall:

- Be an employee of the Prime Contractor.
- Have at least one year of experience in erosion and sediment control, including the installation, inspection, maintenance and reporting of BMPs.
- Successfully completed the Georgia Soil and Water Conservation Commission Certification Course Level IA and the Department’s WECS Certification Course.
- Provide phone numbers where the WECS can be located 24 hours a day.

The WECS’ duties include the following:

1. Be available or have an approved representative available 24 hours a day and have access to the equipment, personnel, and materials needed to maintain erosion control and flooding control.

2. Inform the Engineer in writing whenever the alternate WECS assumes project responsibilities.

3. Ensure that erosion control deficiencies are corrected within seventy two (72) hours or immediately during emergencies. Deficiencies that interfere with traffic flow, safety or downstream turbidity are to be corrected immediately.

4. During heavy rain, have the construction area patrolled day or night, any day of the week to quickly detect and correct erosion or flooding problems before they interfere with traffic flow, safety, or downstream turbidity.

5. Be on the site within three (3) hours after receiving notification of an emergency prepared to positively respond to the conditions encountered. The Department may handle emergencies without notifying the Contractor. The Department will recover costs for emergency maintenance work according to Subsection 105.15, “Failure to Maintain Roadway or Structures.”

6. Maintain and submit for project record, “As-built” Erosion and Sedimentation Control Plans that supplement and graphically depict EC-1 reported additions and deletions of BMPs. The As-Built plans are to be accessed and retained at a Department facility at all times.

7. Ensure that both the WECS and the alternate meet the criteria of this Subsection.

8. The WECS shall maintain a current certification card for the duration of the project. Recertification of the WECS will be required prior to the expiration date shown on the Certification card in order to remain as Certified Personnel and the WECS for the project.
Failure of the WECS or alternate to perform the duties specified in the Contract, or whose performance, has resulted in a citation being received from a State or Federal Regulatory Agency, e.g. the Georgia Environmental Protection Division, shall result in one or more of the following:

- Suspension of the WECS’ certification for a period of not less than 30 days
- Removal of the Contractor’s project superintendent in accordance with Sections 105.05 and 108.05 for a period not less than 14 days
- Department wide revocation of the WECS certification for a period of 12 months
- Removal of the Contractor’s project superintendent in accordance with Sections 105.05 and 108.05

161.3.02 Equipment
General Provisions 101 through 150.

161.3.03 Preparation
General Provisions 101 through 150.

161.3.04 Fabrication
General Provisions 101 through 150.

161.3.05 Construction
Coordinate the temporary and permanent erosion control provisions in this Specification with the permanent erosion control provisions in the Contract to ensure economical, effective, and continuous erosion control throughout the construction and post-construction periods.

At all times that land disturbing activity is underway, a person meeting the requirements of, “certified person” by the GSWCC (Level IA) must be on the project.

A. Control Dust Pollution
The contractor shall keep dust pollution to a minimum during any of the activities performed on the project. It may be necessary to apply water or other BMPs to roadways or other areas reduce pollution.

B. Perform Permanent or Temporary Grassing
Perform permanent grassing, temporary grassing, or mulching on cut and fill slopes weekly (unless a shorter period is required by Subsection 107.23) during grading operations. When conditions warrant, the Engineer may require more frequent intervals.

Under no circumstances shall the grading (height of cut) exceed the height operating range of the grassing equipment. It is extremely important to obtain a cover, whether it is mulch, temporary grass or permanent grass. Adequate mulch is a must.

When grading operations or other soil disturbing activities have stopped, perform grassing or erosion control as shown in the Plans, as shown in an approved Plan submitted by the Contractor, or as directed by the Engineer.

C. Seed and Mulch
Refer to Subsection 161.3.05.B, “Perform Permanent or Temporary Grassing”.

210
D. Implement Permanent or Temporary Erosion Control

1. Silt fence shown along the perimeter, e.g. right of way, and sediment containment devices, e.g. sediment basins, shall be installed prior to or concurrently with clearing and grubbing operations.

2. Incorporate permanent erosion control features into the Project at the earliest practicable time, e.g. velocity dissipation, permanent ditch protection.

3. Use temporary erosion control measures to address conditions that develop during construction but were unforeseen during the design stage.

4. Use temporary erosion control measures when installation of permanent erosion control features cannot be accomplished.

The Engineer has the authority to:

- Limit the surface area of erodible earth material exposed by clearing and grubbing.
- Limit the surface area of erodible earth material exposed by excavation and borrow and fill operations.
- Limit the area of excavation, and embankment operations in progress to correspond with the Contractor’s ability to keep the finish grading, mulching, seeding, and other permanent erosion control measures current.
- Direct the Contractor to provide immediate permanent or temporary erosion control to prevent contamination of adjacent streams or water courses, lakes, ponds, or other areas of water impoundment.

Such Work may include constructing items listed in the table in Subsection 161.1.02.A, “Related References” or other control devices or methods to control erosion.

E. Erodible Area

NOTE: Never allow the surface area of erodible earth material exposed at one time to exceed 17 acres (7 ha) except as approved by the State Construction Engineer.

The maximum of 17 acres (7 ha) of exposed erodible earth applies to the entire Project and to all of its combined operations as a whole, not to the exposed erodible earth of each individual operation.

Upon receipt of a written request from the contractor, the State Construction Engineer, or his designee, will review; the request, any justifications and the Project conditions for waiver of the 17 acres (7 ha) limitation.

If the 17 acre limitation is increased by the State Construction Engineer, the WECS shall not be assigned to another project in that capacity and should remain on site each work day that the exposed acreage exceeds 17 acres.

After installing temporary erosion control devices, e.g., grassing, mulching, stabilizing an area, and having it approved by the Engineer, that area will be released from the 17 acres (7 ha) limit.
F. **Perform Grading Operations**

Perform the following grading operations:

1. Complete each roadway cut and embankment continuously, unless otherwise specified in the Contract or ordered by the Engineer.
2. Maintain the top of the earthwork in roadway sections throughout the construction stages to allow water to run off to the outer edges.
3. Provide temporary slope drain facilities with inlets and velocity dissipaters (straw bales, silt fence, aprons, etc.) to carry the runoff water to the bottom of the slopes. Place drains at intervals to handle the accumulated water.
4. Continue temporary erosion control measures until permanent drainage facilities have been constructed, pavement placed, and the grass on planted slopes stabilized to deter erosion.

G. **Perform Construction in Rivers and Streams**

Perform construction in river and stream beds as follows:

1. Unless otherwise agreed to in writing by the Engineer, restrict construction operations in rivers, streams, and impoundments to:
 - Areas where channel changes or access for construction are shown on the Plans to construct temporary or permanent structures.
2. If channel changes or diversions are not shown on the Plans, the Contractor shall develop diversion plans prepared in accordance with the current GAR100002 NPDES Infrastructure Construction permit utilizing a design professional as defined within the permit. The Engineer will review prepared diversion plans for content only and accepts no responsibility for design errors or omissions. Amendments will be made part of the project plans by attachment. Include any associated costs in the price bid for the overall contract. Any contract time associated with the submittal or its review and subsequent response will not be considered for an extension of Contract time. All time associated with this subsection shall be considered incidental.
3. If additional access for construction or removal of work bridges, temporary roads/access or work platforms is necessary, and will require additional encroachment upon river or stream banks and bottoms, the contractor shall prepare a plan in accordance with the current GAR100002 NPDES Infrastructure Construction permit utilizing a design professional as defined within the permit. Plans should be submitted at least 12 weeks prior to the date the associated work is expected to begin. If necessary, the plan will be provided to the appropriate regulating authority, e.g. United States Army Corps of Engineers by the Department for consideration and approval. No work that impacts areas beyond what has been shown in the approved plans will be allowed to begin until written approval of the submitted plan has been provided by the Department. Approved plan amendments will be made part of the project plans by attachment. Include any associated costs in the price bid for the overall contract. Any contract time associated with the submittal or its review and subsequent response will not be considered for an extension of Contract time. All time associated with this subsection shall be considered incidental.
4. Clear rivers, streams, and impoundments of the following as soon as conditions permit:
 - Falsework
 - Piling that is to be removed
 - Debris
 - Other obstructions placed or caused by construction operations
5. Do not ford live streams with construction equipment.
6. Use temporary bridges or other structures that are adequate for a 25-year storm for stream crossings. Include costs in the price bid for the overall contract.
7. Do not operate mechanized equipment in live streams except to construct channel changes or temporary or permanent structures, and to remove temporary structures, unless otherwise approved in writing by the Engineer.
H. State Water Buffers and Environmental Restrictions

1. The WECS shall review the plans and contract documents for environmental restrictions, Environmentally Sensitive Areas (ESA), e.g. buffers, etc prior to performing land disturbing activities.

2. The WECS shall ensure all parties performing land disturbing activities within the project limits are aware of all environmental restrictions.

3. Buffer delineation shall be performed prior to clearing, or any other land disturbing activities. Site conditions may require temporary delineation measures are implemented prior to the installation of orange barrier/safety fencing. The means of temporary delineation shall have the Engineer’s prior approval.

4. The WECS shall allow the Engineer to review the buffer delineation prior to performing any land disturbing activities, including but not limited to clearing, grubbing and thinning of vegetation. Any removal and relocation of buffer delineation based upon the Engineer’s review will not be measured for separate payment.

5. The WECS shall advise the Engineer of any surface water(s) encountered that are not shown in the plans. The WECS shall prevent land disturbing activities from occurring within surface water buffers until the Engineer provides approval to proceed.

I. General Requirements

Projects that consist of asphalt resurfacing, shoulder reconstruction and/or shoulder widening; schedule and perform the construction of the project to comply with the following:

After temporary and permanent erosion control devices are installed and the area permanently stabilized (temporary or permanent) and approved by the Engineer, the area may be released from the 1 acre (0.4 ha) limit.

The maximum of 1 acre (0.4 ha) of erodible earth applies to the entire project and to all combined operations, including borrow and excess material operations that are within the right of way, not 1 acre (0.4 ha) of exposed erodible earth for each operation.

NOTE: Never allow the surface area of erodible earth material exposed at one time to exceed 1 acre (0.4 ha).

1. Do not allow the disturbed exposed erodible area to exceed 1 acres (0.4 ha). This 1 acre (0.4 ha) limit includes all disturbed areas relating to the construction of the project including but not limited to slope and shoulder construction.

2. At the end of each working day, permanently stabilize all of the area disturbed by slope and shoulder reconstruction to prevent any contamination of adjacent streams or other watercourses, lakes, ponds or other areas of water impoundment. For purposes of this Specification, the end of the working day is defined as when the construction operations cease. For example, 6:00 a.m. is the end of the working day on a project that allows work only between 9:00 p.m. and 6:00 a.m.)

3. Stabilize the cut and fill slopes and shoulder with permanent or temporary grassing and a Wood Fiber Blanket (Section 713, Type II). Mulching is not allowed. Borrow pits, soil disposal sites and haul roads will not require daily applications of wood fiber blanket. The application rate for the Wood Fiber Blanket on shoulder reconstruction is the rate specified for Shoulders. For shoulder reconstruction, the ground preparation requirements of Subsection 700.3.05.A.1 are waived. Preparation consists of scarifying the existing shoulders 4 to 6 in (100 to 150 mm) deep and leaving the area in a smooth uniform condition free from stones, lumps, roots or other material.
4. If a sudden rain event occurs that would not allow the Contractor to apply the Type II Wood Fiber Blanket per Section 713, install Wood Fiber Blanket Type I per Section 713 if directed by the Engineer. Wood Fiber Blanket Type I application is for emergency use only.

Install temporary grass or permanent grass according to seasonal limitations and Specifications. When temporary grass is used, use the overseeding method (Subsection 700.3.05.E.4) when planting permanent grass.

3. Remove and dispose of all material excavated for the trench widening operation at an approved soil disposal site by the end of each working day. When shoulder reconstruction is required, this material may be used to reconstruct the graded shoulder after all asphaltic concrete pavement has been placed.

4. Provide immediate permanent and/or temporary erosion control measures for borrow pits, soil disposal sites and haul roads to prevent any contamination of adjacent streams or other watercourses, lakes, ponds or other areas of water impoundment.

5. Place asphalt in the trench the same day as the excavation occurs. Place asphalt or concrete in driveways and side roads being re-graded the same day as the excavation occurs. Stabilize any disturbed or exposed soil that is not covered with asphalt with a Wood Fiber Blanket (and grass seed). Payment will be made for the Wood Fiber Blanket and grass seed only if the shoulder has been constructed to final dimensions and grade and no further grading will be required.

6. Do not allow the grading (height of cut or fill) to exceed the operating range of the grassing equipment.

7. When grading operations or other soil disturbing activities are suspended, regardless of the reason, promptly perform all necessary permanent stabilization and/or erosion control work.

8. Use temporary erosion control measures to:
 - To correct conditions that develop during construction but were unforeseen during the design stage.
 - To use as needed before installing permanent erosion control features.
 - To temporarily control erosion that develops during normal construction practices but are not associated with permanent control features on the Project.

9. When conditions warrant, such as unfavorable weather (rain event), the Engineer may require more frequent intervals for this work.

161.3.06 Quality Acceptance
Before Final Acceptance of the Work, clean drainage structures within the project limits, both existing and newly constructed, and ensure that they are functioning properly. Costs to accomplish this work are incidental and shall be included in the overall bid for the Contract.

161.3.07 Contractor Warranty and Maintenance
Maintain the erosion control features installed to:

- Contain erosion within the limits of the right-of-way
- Control storm water discharges from disturbed areas

Effectively install and maintain the erosion control features. Ensure these features contain the erosion and sediment within the limits of the rights of way and control the discharges of storm-water from disturbed areas to meet all local, state, and federal requirements on water quality.

If a construction Project has separate contractors, the Prime Contractor shall maintain the erosion control features at grading sites as acceptable to the Engineer until the Contract is accepted. If any erosion control devices are damaged by any contractor either by neglect, by construction methods, or any other reasons, including acts of nature, they shall be repaired within 24 hours by the Prime Contractor at no cost to the Department.
161.4 Measurement
Control of soil erosion and sedimentation is not measured separately for payment.

161.4.01 Limits
General Provisions 101 through 150.

161.5 Payment
When no pay item is shown in the Contract, the requirements of this Specification and the Erosion Control Plan shall be in full effect. The cost of complying with these requirements will not be paid for separately, but shall be included in the overall bid submitted with the exception of inspections performed by qualified personnel which will be included in Section 167.

When listed as a pay item in the Contract, payment will be made at the unit price bid for each particular item.

No payment will be made for erosion control outside the Right-of-Way or construction easements except as provided for by the Plans.

161.5.01 Enforcement and Adjustments
A. Failure to Provide a WECS
If a designated WECS is not maintained or if the Contractor does not comply with this Specification, cease activities except traffic control and erosion control work. Monies that are due or that may become due also may be withheld according to the Specifications

B. Failure to submit reports
A non-refundable deduction will be taken from the schedule below whenever the WECS fails to submit completed reports required by Subsection 167.3.05.C in accordance with the provisions of this specification.

C. Failure to Comply with Specifications
If the Contractor fails to comply with any of the requirements of this Specification, all activities shall cease immediately except traffic control and erosion control related work.

Monies that are currently due or that may become due shall be withheld according to the specifications. In addition, nonrefundable monies shall be deducted from the contract as shown in the Schedule of Deductions table below. These deductions are in addition to any actions taken in the above subsections. Deductions assessed for uncorrected deficiencies shall continue until all corrections are completed to the satisfaction of the Engineer.

D. Receipt of a Consent Order or Notice of Violation, etc
Regulatory enforcement actions will be resolved including at a minimum the following steps;

- The Department will perform an internal review of the alleged violations
- The Department will then meet with the Contractor to review and further determine responsibilities for the alleged violations
- The Department will then arrange to collectively meet with the regulatory agencies to negotiate resolutions and/or settlements.

215
The Department does not waive any rights of the Contractor to resolve such matters however, in the event that regulatory agency communication is addressed jointly to the Department and to the contractor, the Department reserves the right to coordinate all communications, e.g., written correspondence, and to schedule jointly attended meetings with Regulatory agencies such that timely and accurate responses are known to the Department.

Such Orders or Notices may result in the assessment of Deductions from the table below for each day the condition remains non-compliant following an agreed remedy.

Monetary penalties for which the contractor is obligated for as a result of regulatory enforcement may be withheld from future monies due the contractor.

<table>
<thead>
<tr>
<th>From More Than</th>
<th>To and Including</th>
<th>Daily Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$100,000</td>
<td>$750</td>
</tr>
<tr>
<td>$100,000</td>
<td>$1,000,000</td>
<td>$1125</td>
</tr>
<tr>
<td>$1,000,000</td>
<td>$5,000,000</td>
<td>$2000</td>
</tr>
<tr>
<td>$5,000,000</td>
<td>$15,000,000</td>
<td>$3000</td>
</tr>
<tr>
<td>$15,000,000</td>
<td>-</td>
<td>$5000</td>
</tr>
</tbody>
</table>

*Continued non-compliance with the requirements of this specification may result in the doubling of the above tabulated Daily Charge.

Upon written request from the Contractor, the Engineer may allow, limited activities to concurrently proceed once significant portions of the corrective work have been completed. This authorization may be similarly rescinded if in the opinion of the Engineer corrective work is not being diligently pursued.
163.1 General Description
This work includes constructing and removing:

- Silt control gates
- Temporary erosion control slope drains shown on the Plans or as directed
- Sediment basins
- Baled straw sediment barrier and check dams
- Other temporary erosion control structures shown on the Plans or directed by the Engineer

This work also includes applying mulch (straw or hay, erosion control compost), and temporary grass.

163.1.01 Related References
A. Standard Specifications

- Section 109—Measurement and Payment
- Section 161—Control of Soil Erosion and Sedimentation
- Section 171—Temporary Silt Fence
- Section 500—Concrete Structures
- Section 603—Rip Rap
- Section 700—Grassing
- Section 715—Bituminous Treated Roving
- Section 720—Triangular Silt Barrier
- Section 822—Emulsified Asphalt
- Section 860—Lumber and Timber
- Section 863—Preservative Treatment of Timber Products
- Section 890—Seed and Sod
- Section 893—Miscellaneous Planting Materials

B. Referenced Documents
- AASHTO M252
- AASHTO M294
163.1.02 Submittals
Provide written documentation to the Engineer as to the average weight of the bales of mulch.

163.2 Materials
Provide materials shown on the Plans, such as pipe, spillways, wood baffles, and other accessories including an anti-seep collar, when necessary. The materials shall remain the Contractor’s property after removal, unless otherwise shown on the Plans.

Materials may be new or used; however, the Engineer shall approve previously used materials before use.

Materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Temporary Silt Fence</td>
<td>171</td>
</tr>
<tr>
<td>Concrete Aprons and Footings shall be Class A</td>
<td>500</td>
</tr>
<tr>
<td>Rip Rap</td>
<td>603</td>
</tr>
<tr>
<td>Temporary Grass</td>
<td>700</td>
</tr>
<tr>
<td>Bituminous Treated Roving</td>
<td>715</td>
</tr>
<tr>
<td>Triangular Silt Barrier</td>
<td>720</td>
</tr>
<tr>
<td>Lumber and Timber</td>
<td>860.2.01</td>
</tr>
<tr>
<td>Preservative Treatment of Timber Products</td>
<td>863.1</td>
</tr>
<tr>
<td>Corrugated Polyethylene Temporary Slope Drain Pipe</td>
<td>AASHTO M252 or M294</td>
</tr>
</tbody>
</table>

163.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

163.3 Construction Requirements

163.3.01 Personnel
General Provisions 101 through 150.

163.3.02 Equipment
General Provisions 101 through 150.

163.3.03 Preparation
General Provisions 101 through 150.

163.3.04 Fabrication
General Provisions 101 through 150.

163.3.05 Construction
A. Silt Control Gates

If silt control gates are required or are directed by the Engineer, follow these guidelines to construct them:

1. Clear and grade only that portion of the roadway within the affected drainage area where the drainage structure will be constructed.
2. Construct or install the drainage structure and backfill as required for stability.
3. Install the silt control gate at the inlet of the structure. Use the type indicated on the Plans.
4. Vary the height of the gate as required or as shown on the Plans.
5. Finish grading the roadway in the affected drainage area. Grass and mulch slopes and ditches that will not be paved. Construct the ditch paving required in the affected area.
6. Keep the gate in place until the work in the affected drainage area is complete and the erodible area is stabilized.
7. Remove the Type 1 silt gate assembly by sawing off the wood posts flush with the concrete apron. Leave the concrete apron between the gate and the structure inlet in place. The gate shall remain the property of the Contractor.

B. Temporary Slope Drains

If temporary slope drains are required, conduct the roadway grading operation according to Section 161 and follow these guidelines:

1. Place temporary pipe slope drains with inlets and velocity dissipaters (straw bales, silt fence, or aprons) according to the Plans.
2. Securely anchor the inlet into the slope to provide a watertight connection to the earth berm. Ensure that all connections in the pipe are leak proof.
3. Place temporary slope drains at a spacing of 350 ft (105 m) maximum on a 0% to 2% grade and at a spacing of 200 ft (60m) maximum on steeper grades, or more frequently as directed by the Engineer. Keep the slope drains in place until the permanent grass has grown enough to control erosion.
4. Remove the slope drains and grass the disturbed area with permanent grass. However, the temporary slope drains may remain in place to help establish permanent grass if approved by the Engineer.

C. Sediment Basins

Construct sediment basins according to the Plans at the required location, or as modified by the Engineer.

1. Construct the unit complete as shown, including:
 - Grading
 - Drainage
 - Rip rap
 - Spillways
 - Anti-seep collar
 - Temporary mulching and grassing on internal and external slopes
 - Accessories to complete the basin
2. When the sediment basin is no longer needed, remove and dispose of the remaining sediment.
3. Remove the sediment basin. Grade to drain and restore the area to blend with the adjacent landscape.
4. Mulch and permanently grass the disturbed areas according to Section 700.

D. Sediment Barrier (baled straw)

Construct sediment barrier (baled straw) according to the Plan details. Use rectangular, standard size baled straw in mechanically produced bales.

The following items may be substituted for sediment barrier (baled straw)

1. Type B Silt Fence.
2. Triangular Silt Barrier.
3. **Synthetic Fiber:** Use synthetic fiber bales of circular cross section at least 18 in (450 mm) in diameter. Use synthetic bales of 3 ft or 6 ft (0.9 m or 1.8 m) in length that are capable of being linked together to form a continuous roll of the desired total length. Use bales that are enclosed in a geotextile fabric and that contain a pre-made stake hole for anchoring.

4. **Coir:** Use coir fiber bales of circular cross section at least 16” (400mm) in diameter. Use coir bales of 10 ft, 15 ft, or 20 ft (3 m, 4.5 m, or 6 m) in length. Use coir baled with coir twine netting with 2 in X 2 in (50 mm X 50 mm) openings. Use coir bales with a dry density of at least 7 lb/ft³ (112 kg/m³). Anchor in place with 2 in X 4 in (50 mm X 100 mm) wooden wedges with a 6 in (150 mm) nail at the top. Place wedges no more than 36 in (900 mm) apart.

5. **Excelsior:** Use curled aspen excelsior fiber with barbed edges in circular bales of at least 18 in (450 mm) in diameter and nominally 10 ft (3 m) in length. Use excelsior baled with polyester netting with 1 in X 1 in (25 mm by 25 mm) triangular openings. Use excelsior bales with a dry density of at least 1.4 lb/ft³ (22 kg/m³). Anchor in place with 1 in (25 mm) diameter wooden stakes driven through the netting at intervals of no more than 2 ft (600 mm).

6. **Compost Filter Sock:** Use general use compost (see Subsection 893.2.02.A.5.b) in circular bales at least 18 in in diameter. Use compost baled with photo-degradable plastic mesh 3 mils thick with a maximum 0.25 in X 0.25 in (6 mm X 6 mm) openings. Anchor in place with 1 in (25 mm) diameter wooden stakes driven through the netting at intervals of no more than 2 ft (600 mm). The sock shall be dispersed on site when no longer required, as determined by the Engineer. Do not use Compost Filter Socks in areas where the use of fertilizer is restricted.

7. **Compost Filter Berm:** Use erosion control compost (see Subsection 893.2.02) to construct an uncompacted 1.5 ft to 2 ft (450 mm to 600 mm) high trapezoidal berm which is approximately 2 ft to 3 ft (600 mm to 1 m) wide at the top and minimum 4 ft (1.2 m) wide at the base. Do not use Compost Filter Berms in areas where the use of fertilizer is restricted.

 The construction of the compost filter berm includes the following:
 a. Keeping the berm in a functional condition.
 b. Installing additional berm material when necessary.
 c. Removing the berm when no longer required, as determined by the Engineer. At the Engineer’s discretion, berm material may be left to decompose naturally, or distributed over the adjacent area.

E. Other Temporary Structures

When special conditions occur during the design stage, the Plans may show other temporary structures for erosion control with required materials and construction methods.

F. Temporary Grass

Use a quick growing species of temporary grass such as rye grass, millet, or a cereal grass suitable to the area and season.

Use temporary grass in the following situations:
 - When required by the Specifications or directed by the Engineer to control erosion where permanent grassing cannot be planted.
 - To protect an area for longer than mulch is expected to last (60 calendar days).

Plant temporary grass as follows:

1. Use seeds that conform to Subsection 890.2.01, “Seed.” Perform seeding according to Section 700; except use the minimum ground preparation necessary to provide a seed bed if further grading is required.

2. Prepare areas that require no further grading according to Subsection 700.3.05.A, “Ground Preparation.” Omit the lime unless the area will be planted with permanent grass without further grading. In this case, apply the lime according to Section 700.
3. Apply mixed grade fertilizer at 400 lbs/acre (450 kg/ha). Omit the nitrogen. Mulch (with straw or hay) temporary grass according to Section 700. (Erosion control compost Mulch will not be allowed with grassing.)

4. Before planting permanent grass, thoroughly plow and prepare areas where temporary grass has been planted according to Subsection 700.3.05.A, “Ground Preparation”.

5. Apply Polyacrylamide (PAM) to all areas that receive temporary grassing.

6. Apply Pam (powder) before grassing or PAM (emulsion) to the hydroseeding operation.

7. Apply PAM according to manufacturer specifications.

8. Use only anionic PAM.

For projects that consist of shoulder reconstruction and/or shoulder widening refer to Section 161.3.05H for Wood Fiber Blanket requirements.

G. Mulch

When stage construction or other conditions prevent completing a roadway section continuously, apply mulch (straw or hay or erosion control compost) to control erosion. Mulch may be used without temporary grassing for 60 calendar days or less. Areas stabilized with only mulch (straw/hay/compost) shall be planted with temporary grass after 60 calendar days.

Apply mulch as follows:

1. Mulch (Hay or Straw)
 a. Uniformly spread the mulch over the designated areas from 2 in to 4 in (50 mm to 100 mm) thick.
 b. After spreading the mulch, walk in the mulch by using a tracked vehicle (preferred method), empty sheep foot roller, light discing, or other means that preserves the finished cross section of the prepared areas. The Engineer will approve of the method.
 c. Place temporary mulch on slopes as steep as 2:1 by using a tracked vehicle to imbed the mulch into the slope. Where specified, use bituminous treated mulch (straw or hay) according to Subsection 700.3.05.G.1, “Mulch with Binder”.
 d. When grassing operations begin, leave the mulch in place and plow the mulch into the soil during seed bed preparation. The mulch will become beneficial plant food for the newly planted grass.

2. Apply mulch (erosion control compost) as follows:
 a. Uniformly spread the mulch (erosion control compost) over the designated areas 2 in (50 mm) thick.
 b. When rolling is necessary, or directed by the Engineer, use a light corrugated drum roller.
 c. When grassing operations begin, leave the mulch in place and plow the mulch into the soil during seed bed preparation. The mulch will become beneficial plant food for the newly planted grass.
 d. Plant temporary grass on area stabilized with mulch (erosion control compost) after 60 calendar days.
 e. Do not use Erosion Control Compost in areas where the use of fertilizer is restricted.

H. Miscellaneous Erosion Control Not Shown on the Plans

When conditions develop during construction that were unforeseen in the design stage, the Engineer may direct the Contractor to construct temporary devices such as but not limited to:

- Bulkheads
- Sump holes
- Half round pipe for use as ditch liners
- U-V resistant plastic sheets to cover critical cut slopes

The Engineer and the Contractor will determine the placement to ensure erosion control in the affected area.

I. Diversion Channels

When constructing a culvert or other drainage structure in a live stream that requires diverting a stream, construct a diversion channel.

J. Temporary Check Dams

Temporary check dams are constructed of the following materials;

- Stone plain rip rap according to Section 603 or of sand bags as in Section 603 without Portland cement. (Place plastic filter fabric on ditch section before placing rip rap.)
- Fabric (Type C silt fence)
- Hay Bales

Temporary check dams shall be constructed according to plan details and shall remain in place until the permanent ditch protection is in place or being installed and the removal is approved by the Engineer.

K. Construction Exits

Locate construction exits at any point where vehicles will be leaving the project onto a public roadway. Install construction exits at the locations shown in the plans and in accordance with plan details.

L. Retrofit

Add the retrofit device to the permanent outlet structure as shown on the Plan details.

When all land disturbing activities that would contribute sediment-laden runoff to the basin are complete, clean the basin of sediment and stabilize the basin area with vegetation.

When the basin is stabilized, remove the retrofit device from the permanent outlet structure of the detention pond.

M. Inlet Sediment Trap

Inlet sediment traps consist of a temporary device placed around a storm drain inlet to trap sediment. An excavated area adjacent to the sediment trap will provide additional sediment storage.

Inlet sediment traps may be constructed of Type C silt fence, plastic frame and filter, hay bales, baffle box, or other filtering materials approved by the Engineer.

Construct inlet sediment traps according to the appropriate specification for the material selected for the trap.

Place inlet sediment traps as shown on the Plans or as directed by the Engineer.

163.3.06 Quality Acceptance
General Provisions 101 through 150.

163.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.
163.4 Measurement

A. Silt Control Gates

Silt control gates are measured for payment by the entire structure constructed at each location complete in place and accepted. Silt control gates constructed at the inlet of multiple lines of drainage structures are measured for payment as a single unit.

B. Temporary Slope Drains

Temporary slope drains are measured for payment by the linear foot (meter) of pipe placed. When required, the inlet spillway and outlet apron and/or other dissipation devices are incidental and not measured separately.

C. Sediment Basins

Sediment basins are measured for payment by the entire structure complete, including construction, maintenance, and removal. Measurement also includes:

- Earthwork
- Drainage
- Spillways
- Baffles
- Rip rap
- Final cleaning to remove the basin

Permanent and temporary grassing for sediment basins is measured separately for payment.

D. Diversion Channels

Diversion channels are not measured for payment. Costs for the entire structure complete, including materials, construction (including earthwork), and removal is included in the price bid for the drainage structure or for other Contract items.

E. Temporary Grass

Temporary grass is measured for payment by the acre (hectare). Lime, when required, is measured by the ton (megagram). Mulch and fertilizer are measured separately for payment.

F. Mulch

Mulch (straw or hay, or erosion control compost) is measured for payment by the ton (megagram).

G. Baled Straw Sediment Barrier, Baled Straw Check Dam and Fabric Check Dams

Baled straw sediment barrier, baled straw check dams, and fabric check dams are measured by the linear foot (meter). When the Contractor substitutes a product allowed in Subsection 163.3.05.D for baled straw sediment barrier or when the Engineer directs this substitution, the product will be measured by the linear foot (meter).

H. Rip Rap Check Dams

Rip Rap Check Dams are measured per each which will include all work necessary to construct the check dam including plastic filter fabric placed beneath the rip rap or sand bags.

I. Construction Exits

Construction exits are measured per each which will include all work necessary to construct the exit including the required geotextile fabric placed beneath the aggregate.
J. **Retrofit**
 Retrofits will be measured for payment per each. The construction of the detention pond and permanent outlet structure will be measured separately under the appropriate items.

K. **Inlet Sediment Trap**
 Inlet sediment traps, regardless of the material selected, are measured per each which includes all work necessary to construct the trap including any incidentals and providing the excavated area for sediment storage.

163.4.01 **Limits**
 General Provisions 101 through 150.

163.5 **Payment**

A. **Silt Control Gates**
 The specified silt control gates are paid for at the Contract Unit Price per each. Payment is full compensation for:
 - Furnishing the material and labor
 - Constructing the concrete apron as shown on the Plans
 - Excavating and backfilling to place the apron
 - Removing the gate

B. **Temporary Slope Drains**
 Temporary slope drains are paid for by the linear foot (meter). Payment is full compensation for materials, construction, removal (if required), inlet spillways, velocity dissipaters, and outlet aprons.

 When temporary drain inlets and pipe slope drains are removed, they remain the Contractor’s property and may be reused or removed from the Project as the Contractor desires. Reused pipe or inlets are paid for the same as new pipe or inlets.

C. **Sediment Basin**
 Sediment basins, measured according to Subsection 163.4.C—Measurement,” are paid for by the unit, per each, for the type specified on the Plans. Price and payment are full compensation for work and supervision to construct, and remove the sediment basin, including final clean-up.

D. **Diversion Channel**
 Diversion channels are not paid for separately; they are included in the price bid for the drainage structure or for other Contract Items.

E. **Temporary Grass**
 Temporary grass is paid for by the acre (hectare). Payment is full compensation for all equipment, labor, ground preparation, materials, wood fiber mulch, polyacrylamide, and other incidentals. Lime (when required) is paid for by the ton (megagram). Mulch and fertilizer are paid for separately.

F. **Mulch**
 Mulch is paid for by the ton. Payment is full compensation for all materials, labor, maintenance, equipment and other incidentals.

 The weight for payment of straw or hay mulch will be the product of the number of bales used and the average weight per bale as determined on certified scales provided by the contractor or state certified scales. Provide written documentation to the Engineer stating the average weight of the bales.
The weight of erosion control compost mulch will be determined by weighing each loaded vehicle on the required motor truck scale as the material is hauled to the roadway, or by using recorded weights if a digital recording device is used. The contractor may propose other methods of providing the weight of the mulch to Engineer for approval.

G. **Baled Straw Sediment barrier, Baled Straw Check Dams and Fabric Check Dams (Type C Silt Fence)**

Baled straw sediment barrier, baled straw check dams and fabric check dams (type C silt fence), complete in place and accepted are paid for at the Contract Unit Price bid per linear foot (meter). Payment is full compensation for constructing, and removing (when directed) the baled straw sediment barrier or either check dam.

When the Contractor substitutes any product allowed in Subsection 163.3.05.D for baled straw sediment barrier or when the Engineer directs this substitution, payment is made at the bid price per linear foot (meter) for baled straw sediment barrier.

H. **Rip Rap Check Dams**

Rip Rap Check Dams are paid for per each. Payment is full compensation for all materials, construction, and removal. Reused stone plain rip rap or sandbags are paid for on the same basis as new items. Filter fabric required under rip rap check dams is included in the price bid for each check dam.

I. **Construction Exits**

Construction exits are paid for per each. Payment is full compensation for all materials including the required geotextile, construction, and removal.

J. **Retrofit**

This item is paid for at the Contract Unit Price per each. Payment is full compensation for all work, supervision, materials (including the stone filter), labor and equipment necessary to construct and remove the retrofit device from an existing or proposed detention pond outlet structure.

K. **Inlet Sediment Trap**

Inlet sediment traps are paid for per each. Payment is full compensation for all materials, construction, and removal.

The Items in this Section (except temporary grass and mulch) are made as partial payments as follows:

- When the item is installed and put into operation the Contractor will be paid 75 percent of the Contract price.
- When the Engineer instructs the Contractor that the Item is no longer required and is to remain in place or is removed, whichever applies, the remaining 25 percent will be paid.

Temporary devices may be left in place at the Engineer’s discretion at no change in cost. Payment for temporary grass will be made based on the number of acres (hectares) grassed. Mulch will be based on the number of tons (megagrams) used.
Payment is made under:

<table>
<thead>
<tr>
<th>Item No. 163</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construct and remove silt control gate, type__</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Construct and remove temporary pipe slope drains</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Construct and remove temporary sediment barrier or baled straw check dam</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Construct and remove sediment basin type__, Sta. No.____</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Construct and remove Fabric Check Dam - type C silt fence</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Construct and remove Rip Rap Check Dams, Stone Plain Rip Rap/Sand Bags</td>
<td>Per Each</td>
</tr>
<tr>
<td></td>
<td>Construction exit</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Construct and remove retrofit, Sta. No.____</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Construct and remove inlet sediment trap</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Temporary grass</td>
<td>Per acre (hectare)</td>
</tr>
<tr>
<td></td>
<td>Mulch</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

163.5.01 Adjustments

General Provisions 101 through 150.
SPECIAL PROVISION

Section 165—Maintenance of Temporary Erosion and Sedimentation Control Devices

165.1 General Description
This work consists of providing maintenance on temporary erosion and sediment control devices, including but not limited to the following:

- Silt fence
- Sediment basins
- Silt control gates
- Check dams
- Silt retention barriers

It also consists of removing sediment that has accumulated at the temporary erosion and sediment control devices.

165.1.01 Definitions
General Provisions 101 through 150.

165.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

165.1.03 Submittals
General Provisions 101 through 150

165.2 Materials
General Provisions 101 through 150.

165.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

165.3 Construction Requirements

165.3.01 Personnel
General Provisions 101 through 150.

165.3.02 Equipment
General Provisions 101 through 150.
165.3.03 Preparation
General Provisions 101 through 150.

165.3.04 Fabrication
General Provisions 101 through 150.

165.3.05 Construction
A. General

As a minimum, clean the sediment from all temporary erosion control devices (except sediment basins) installed on the project when one half the capacity, by height, depth or volume has been reached. Clean the sediment from all temporary sediment basins installed on a project when one third the capacity of the storage volume has been filled.

Handle sediment excavated from any erosion or sediment control device in one of the following ways:

- Remove sediment from the immediate area and immediately stabilize it to prevent the material from refilling any erosion or sediment control device.
- Place and mix it in the roadway embankment, or waste it in an area approved by the Engineer.
- Repair or replace at no cost to the Department, any erosion or sediment control devices that are not functioning properly or are damaged due to negligence or abuse.

B. Temporary Silt Fence

Maintenance of Temporary Silt Fence consists of furnishing all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original ground line (0% filled). Also included is the removal of sediment accumulations (“filtercake”) on the fabric by tapping the fabric on the downstream side.

C. Silt Control Gates

Maintenance of Temporary Silt Control Gates consists of all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original ground line (0% filled). When applicable, this item will include the removal of sediment accumulations on the fabric by tapping the fabric on the downstream side.

D. Check Dams (all types)

Maintenance of Temporary Erosion Control Check Dams shall consist of all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original ground line (0% filled). This item also includes the removal of any material deposited in sump holes. When applicable, this item will include the removal of sediment accumulations on the fabric by tapping the fabric on the downstream side, or from the baled straw by similar means.

E. Silt Retention Barrier

Maintenance of Temporary Silt Retention Barrier consists of all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original ground line (0% filled).

F. Temporary Sediment Basins

Maintenance of Temporary Sediment Basins consists of all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original bottom of the basin. This also includes removing accumulated sediment from the rock filter and restoring the rock filter to its original specified condition and any work necessary to restore all other components to the pre-maintenance conditions.
G. Sediment Barrier (baled straw)

Maintenance of sediment barrier (baled straw) consists of furnishing all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original ground line (0% filled). Also included is the removal of sediment accumulations on the bales by tapping.

H. Triangular Silt Barrier

Maintenance of Triangular Silt Barrier consists of all labor, tools, materials, equipment and necessary incidentals to remove and dispose of accumulated sediment down to the original ground line (0% filled).

I. Retrofit:

Maintenance of the retrofit device consists of all labor, tools, materials, equipment and necessary incidentals to remove and properly dispose of accumulated sediment in the permanent detention pond being utilized as a temporary sediment basin. This item also includes any maintenance that is required to ensure the retrofit device is maintained per Plan details and any maintenance of the stone filter to maintain its filtering ability, including cleaning and replacement.

J. Construction Exit:

Maintenance of the construction exit consists of all labor, tools, materials, equipment and incidentals, including additional stone and geotextile fabric as required to prevent the tracking or flow of soil onto public roadways. This includes, scarifying existing stone, cleaning existing stone, or placement of additional stone.

Cleaning of the construction exit by scraping and/or brooming only will not be measured for payment.

K. Inlet Sediment Trap

Maintenance of inlet sediment traps consists of all labor, tools, materials, equipment and necessary incidentals to remove and properly dispose of accumulated sediment in the trap and/or the excavated area adjacent to the trap. It also includes any maintenance that is required to remove sediment accumulations (“filtercake”) from the material selected to construct the inlet sediment trap.

165.3.06 Quality Acceptance
General Provisions 101 through 150.

165.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

165.4 Measurement

A. Temporary Silt Fence:

Maintenance of temporary silt fence, Type A, B, or C, is the actual linear feet (meter) of silt fence, measured in place, where sediment is removed.

B. Silt Control Gates:

Maintenance of temporary silt control gates, type I, II, III or IV, as specified on the Plans, is measured as a single unit.

C. Check Dams (All Types):

Maintenance of temporary erosion control check dams as specified on the Plans is the actual linear feet (meter) of baled straw, type c silt fence or rip rap, measured in place, where sediment is removed.
D. Silt Retention Barrier:
Maintenance of temporary silt retention barrier as specified on the Plans, is measured by the linear foot (meter) where sediment is removed.

E. Temporary Sediment Basins:
Maintenance of temporary sediment basins as specified on the Plans, is measured as a single unit.

F. Sediment Barrier (baled straw)
Maintenance of sediment barrier (baled straw), is the actual linear feet (meter) of baled straw measured in place, where sediment is removed.

F. Triangular Silt Barrier:
Maintenance of triangular silt barrier as specified on the plans, is measured by the linear foot (meter) where sediment is removed.

G. Retrofit:
Maintenance of retrofit device at the location specified on the Plans is measured per each.

H. Construction Exit:
Maintenance of construction exit at the location specified on the Plans, or as directed by the Engineer is measured per each.

I. Inlet Sediment Trap
Maintenance of inlet sediment trap at the location specified on the Plans, or as added by the Engineer is measured per each.

165.4.01 Limits
General Provisions 101 through 150.

165.5 Payment
A. Temporary Silt Fence:
Maintenance of temporary silt fence, Type A, B, or C, is paid for at the contract unit price bid per linear foot (meter).

B. Silt Control Gates:
Maintenance of temporary silt control gates, Type I, II, III, or IV as specified on the Plans is paid for at the contract unit price bid per each.

C. Check Dams (All Types):
Maintenance of Check Dams as specified on the Plans is paid for at the contract unit price bid per linear foot (meter).

D. Silt Retention Barrier:
Maintenance of temporary silt retention barrier as specified on the Plans is paid for at the contract unit price bid per linear foot (meter).

E. Temporary Sediment Basins:
Maintenance of temporary sediment basins as specified on the Plans is paid for at the contract unit price bid per each.
F. Sediment Barrier (baled straw):
Maintenance of sediment barrier (baled straw) as specified on the Plans is paid for at the contract unit price bid per linear foot (meter).

G. Triangular Silt Barrier:
Maintenance of triangular silt barrier as specified on the Plans is paid for at the contract unit price bid per linear foot (meter).

H. Retrofit:
Maintenance of the retrofit device at the location specified on the Plans is paid for at the contract unit price bid per each.

I. Construction Exit:
Maintenance of the construction exit at the location specified on the Plans or as added by the Engineer is paid for at the contract unit price per each.

J. Inlet Sediment Trap
Maintenance of the inlet sediment trap at the location specified on the Plans or at the location specified by the Engineer is paid for at the contract unit price per each.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 165</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maintenance of temporary silt fence Type____</td>
<td>per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of silt control gate Type ____</td>
<td>per each</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of check dams - all types</td>
<td>per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of silt retention barrier</td>
<td>per foot (meter)</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of temporary sediment basin, Sta. No. ____</td>
<td>per each</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of sediment barrier - baled straw</td>
<td>per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of triangular silt barrier</td>
<td>per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of retrofit, Sta. No. ____</td>
<td>per each</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of construction exit</td>
<td>per each</td>
</tr>
<tr>
<td>Item No. 165</td>
<td>Maintenance of inlet sediment trap</td>
<td>per each</td>
</tr>
</tbody>
</table>

165.5.01 Adjustments
General Provisions 101 through 150.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 167—Water Quality Monitoring

Add the following:

167.1 General Description
This Specification establishes the Contractor’s responsibility to meet the requirements of the National Pollutant Discharge Elimination System (NPDES) Infrastructure Permit No. GAR 100002 as it pertains to Part IV. Erosion, Sedimentation and Pollution Control Plan.

167.1.01 Definitions
Certified Personnel—certified personnel are defined as persons who have successfully completed the appropriate certification course approved by the Georgia Soil and Water Conservation Commission. For Department projects the certified person must also have successfully completed the Department’s WECS certification course.

167.1.02 Related References
A. Standard Specifications
 Section 161—Control of Soil Erosion and Sedimentation
B. Referenced Documents
 NPDES Infrastructure Permit No. GAR 100002, Part IV
 GDOT WECS seminar.
 Environmental Protection Divisions Rules and Regulations (Chapter 391-3-26)
 Georgia Soil and Water Conservation Commission Certification Level IA course.
 OCGA 12-7

167.1.03 Submittals
General Provisions 101 through 150

167.2 Materials
General Provisions 101 through 150.

167.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

167.3 Construction Requirements
167.3.01 Personnel
Use certified personnel to perform all monitoring, sampling, inspections, and rainfall data collection.
Use the Contractor designated WECS or select a prequalified consultant from the Qualified Consultant List (QCL) to perform water quality monitoring.

Ensure that monitoring consultants’ employees who perform monitoring, sampling, inspections, and rainfall data collection are GASWCC Certified.

167.3.02 Equipment
Provide equipment necessary to complete the Work or as directed.

167.3.03 Preparation
General Provisions 101 through 150.

167.3.04 Fabrication
General Provisions 101 through 150.

167.3.05 Construction
A. General
Perform inspections, rainfall data collection, testing of samples, and reporting the test results on the project according to the requirements in Part IV of the NPDES Infrastructure permit and this Specification.
Take samples manually or with the use of automatic samplers, according to the permit. Analyze all according to the permit, regardless of the method used to collect the samples.
If samples are analyzed in the field using portable turbidimeters, the monitoring results shall state that they are being used and a digital readout of NTUs is what is provided.
Submit bench sheets, work sheets, etc., when using portable turbidimeters. There are no exceptions to this requirement.
Perform required inspections and submit all reports required by this Specification within the time frames specified. Failure to perform the inspections within the time specified will result in the cessation of all construction activities with the exception of traffic control and erosion control. Failure to submit the required reports within the times specified will result in non-refundable deductions as specified in Subsection 161.5.01.B.

B. Inspections
The Department will provide one copy of required inspection forms for use and duplication. Inspection forms may change during the contract to reflect regulatory agency needs or the need of the Department. Any costs associated with the change of inspection forms shall be considered incidental. Alternate formats of the provided forms maybe created, used and submitted by the Contractor provided the required content and/or data fields and verbatim certification statements from the Department’s current forms are included.
The Engineer shall inspect the installation and condition of each erosion control device required by the erosion control plan within seven days after initial installation. This inspection is performed for each stage of construction when new devices are installed. The WECS shall ensure all installation deficiencies reported by the Engineer are corrected within two business days.
Ensure that the inspections of the areas listed below are conducted by certified personnel and at the frequencies listed. Document all inspections on the appropriate form provided by the Department.
1. Daily:
 a. Petroleum product storage, usage and handling areas
 b. All locations where vehicles enter/exit the site
 Continue these inspections until all entry and exit sites are stabilized and fuel is not stored or transferred on the site. Utilize the Daily inspection form.
2. Weekly and after Rainfall Events:
 Conduct inspections on these areas every seven calendar days and within twenty-four hours after the end of a rainfall event that is 0.5 in (13 mm) or greater:
 a. Disturbed areas not permanently stabilized
 b. Material storage areas
c. Structural control measures, Best Management Practices (BMPs)
d. Water quality monitoring locations and equipment
 Continue these inspections until all BMPs have been removed. Utilize the EC-1 Form.

3. Monthly:
 Once per month, inspect all areas where final stabilization has been completed. Look for evidence
 of sediments or pollutants entering the drainage system and or receiving waters. Inspect all
 permanent erosion control devices that remain in place to verify the maintenance status and that
 the devices are functioning properly.
 Continue these inspections until the Notice of Termination is submitted. Utilize the Monthly
 inspection form.

C. Reports:

1. Inspection Reports:
 Summarize the results of inspections noted above in writing on the appropriate Daily, Weekly,
 Monthly or EC-1 form provided by the Department. Include the following information:
 - Date(s) of inspection
 - Name of personnel performing inspection
 - Status of devices
 - Observations
 - Action taken
 - Signature of personnel performing the inspection
 - Any incidents of non-compliance

 The inspection form certification sheet shall be signed by the project WECS and the inspector
 performing inspections on behalf of the WECS (if not the same person).
 Submit all inspection reports to the Engineer within twenty-four hours of the inspection.
 The Engineer will review the submitted reports and inspect the project to determine their accuracy.
 The Engineer will notify the certified personnel of any additional items that should be added to the
 inspection report.
 Correct any items listed in the inspection report requiring routine maintenance within 72 (seventy
 two) hours of notification.
 Assume responsibility for all costs associated with additional sampling as specified in Part
 IV.D.6.d.3.(c) of the NPDES GAR 100002 permit if either of these conditions arise:
 - BMPs shown in the Plans are not properly installed and maintained, or
 - BMPs designed by the Contractor are not properly designed, installed and maintained.

2. Monitoring Reports
 a. Report Requirements
 Include in all reports, the following certification statement, signed by the WECS or consultant
 providing monitoring on the project:
 "I certify under penalty of law that this document and all attachments were prepared
 under my direct supervision in accordance with a system designed to assure that certified
 personnel properly gather and evaluate the information submitted. Based on my inquiry
 of the person or persons who manage the system, or those persons directly responsible for
 gathering the information, the information is, to the best of my knowledge and belief,
 true, accurate and complete. I am aware that there are significant penalties for submitting
 false information, including the possibility of fine and imprisonment for knowing
 violations."
When a rainfall event requires a sample to be taken, submit a report of the monitoring results to the Engineer within seven working days of the date the sample was obtained. Include the following information:

1) Date of sampling
2) Rainfall amount on sample date (sample date only)
3) NTU of sample & analysis method
4) Location where sample was taken (station number, etc.)
5) Receiving water or outfall sample
6) Project number and county
7) Whether the sample was taken by automatic sampler or manually (grab sample)

b. Report Requirements with No Qualifying Rainfall Events

In the event that a qualifying rainfall event does not occur prior to the submittal of the NOT (Notice of Termination), submit a report that states “No qualifying rainfall event occurred and no samples were taken.”

c. Test Results

Provide monitoring test results to the Engineer within 48 hours of the samples being analyzed. This notification may be verbal or written. This notification does not replace the requirement to submit the formal monitoring summary to the Engineer within 7 working days of the samples being collected.

3. Rainfall Data Reports

Record the measurement of rainfall once each twenty-four hour period. Measure rainfall data at the active phase of construction on the site.

Project rain gauges and those used to trigger the automatic samplers are to be emptied after every rainfall event. This will prevent a cumulative effect and prevent automatic samplers from taking samples even though the rainfall event was not a qualifying event.

The daily rainfall data supplied by the WECS to the Engineer will be the official rainfall data for the project.

167.3.06 Quality Acceptance
General Provisions 101 through 150.

167.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

167.4 Measurement

Water Quality Inspections in accordance with the inspection and reports sub-sections will be measured for payment by the month up to the time the Contract Time expires. Required inspections and reports after Contract Time has expired will not be measured for payment.

Water Quality Monitoring and Sampling are measured per each. When the monitoring location is a receiving water, the upstream and downstream samples constitute one sample. When the monitoring location is an outfall, a single outfall sample constitutes one sample.

167.4.01 Limits
General Provisions 101 through 150. Submit the monitoring summary report to the Engineer within 7 working days.
167.5 Payment
Payment for Water Quality Monitoring and Sampling will be made as follows:
Water Quality Monitoring and Sampling per each is full compensation for meeting the requirements of the monitoring sections of the NPDES permit and this Specification, obtaining samples, analyzing samples, any and all necessary incidentals, and providing results of turbidity tests to the Engineer, within the time frame required by the NPDES Infrastructure permit, and this Specification.
This item is based on the rainfall events that require sampling as described in Part IV.D.5 of the permit.
The Department will not pay for samples taken and analyzed for rainfall events that are not qualifying events as compared to the daily rainfall data supplied by the WECS.
Water Quality Inspections will be paid at the Contract Price per month. This is full compensation for performing the requirements of the inspection section of the NPDES permit and this Specification, any and all necessary incidentals, and providing results of inspections to the Engineer, within the time frame required by the NPDES Infrastructure permit, and this Specification.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 167</th>
<th>Water quality inspections</th>
<th>Per month</th>
</tr>
</thead>
</table>

Water Quality Monitoring and Sampling will be paid per each.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 167</th>
<th>Water quality monitoring and sampling</th>
<th>Per each</th>
</tr>
</thead>
</table>

167.5.01 Adjustments
General Provisions 101 through 150.
Delete Subsection 170.3.05 and substitute the following:

170.3.05 Construction

Install a silt retention barrier as follows: Barriers shall be either staked or floating depending upon current, tides, water depth, and other variables, or as shown in the plans and contract.

A. Floating Silt Retention Barrier
 1. Confine dredged materials to ponding areas or settlement basins using standpipes or weirs.
 2. Place the barrier approximately 25 ft (7.5 m) outside the affected construction area, and at a depth within 5 ft (1.5 m) of the bottom.
 3. If the body of water has a significant current, place the barrier parallel to the water flow.
 4. Vary the dimensions and methods to suit the conditions and to meet the requirements of other local and State water control agencies to ensure that silt dispersion is effectively controlled.
 5. Provide a fabric that is weighted to prevent the bottom from floating.

B. Staked Silt Retention Barrier

 1. Where a staked barrier is used to protect a stream or inundated area, ensure the fabric:
 a. Extends to the bottom of the stream or inundated area and is weighted to prevent it from floating
 b. Is not trenched in at the bottom
 c. Extends 1 foot (300 mm) above normal water

 2. Posts:
 a. Options: 2 inch (50 mm) x 4 inch (100 mm) wood; or 2 ½ inch (62.5 mm min. diameter) wood; or steel at a minimum of 1.33 pounds per foot (1.980 kg/m)
 b. space posts at a maximum spacing of 4 feet (1.2 m)
 c. posts are minimum of 5 feet (1.5 m) in length
 d. posts extend a minimum of 18 inches (450 mm) into the soil
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SPECIAL PROVISION
Section 171—Silt Fence

Delete Section 171 and substitute the following:

171.1 General Description
This work includes furnishing, installing, and removing a water permeable filter fabric fence to remove suspended particles from drainage water.

171.1.01 Definitions
General Provisions 101 through 150.

171.1.02 Related References
A. Standard Specifications
 Section 163—Miscellaneous Erosion Control Items
 Section 700—Grassing
 Section 862—Wood Posts and Bracing
 Section 881—Fabrics
 Section 894—Fencing

B. Referenced Documents
 ASTM D 3786
 ASTM D 4355
 ASTM D 4632
 ASTM D 4751
 GDT 87
 QPL 36

171.1.03 Submittals
General Provisions 101 through 150.

171.2 Materials
Materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Fabrics</td>
<td>881</td>
</tr>
</tbody>
</table>
Conditions during Project construction will affect the quantity of the silt fence to be installed.

The Engineer may increase, decrease, or eliminate the quantity at his or her direction. Variations in quantity are not changes in details of construction or in the character of the work.

For Type A, B, and C fences, use fabric as specified in Subsection 881.2.07, “Silt Fence Filter Fabric.”

171.2.01 Delivery, Storage, and Handling
During shipment and storage, wrap the fabric in a heavy-duty covering that will protect the cloth from sunlight, mud, dust, dirt, and debris. Do not expose the fabric to temperatures greater than 140 °F (60 °C).

When installed, the Engineer will reject the fabric if it has defects, rips, holes, flaws, deterioration, or damage incurred during manufacture, transportation, or storage.

171.3 Construction Requirements

171.3.01 Personnel
General Provisions 101 through 150.

171.3.02 Equipment
General Provisions 101 through 150.

171.3.03 Preparation
General Provisions 101 through 150.

171.3.04 Fabrication
General Provisions 101 through 150.

171.3.05 Construction
Install the silt fence according to this Specification, as shown on the Plans, or as directed by the Engineer as; perimeter, ditch check or similar protection.

A. Install Silt Fence
Install silt fence by either of the following methods:

1. Excavated Trench Method
 a. Excavate a trench 4 to 6 in (100 to 150 mm) deep using equipment such as a trenching machine or motor grader. If equipment cannot be operated on the site, excavate the trench by hand.

2. Soil Slicing Method
 a. Create a mechanical slice in the soil 8 to 12 in (200 to 300 mm) deep to receive the silt fence. Ensure that the width of the slice is not more than 3 in (75 mm). Mechanically insert the silt fence fabric into the slice in a simultaneous operation with the slicing that ensures consistent depth and placement.

Install the first post at the center of the low point (if applicable). Space the remaining posts a maximum of 6 ft (1.8 m) apart for Types A and B fence and 4 ft (1.2 m) apart for Type C fence.

Bury the posts at least 18 in (450 mm) into the ground. If this depth cannot be attained, secure the posts enough to prevent the fence from overturning from sediment loading.

Attach the filter fabric to the post using wire, cord, staples, nails, pockets, or other acceptable means.
 a. Staples and Nails (Wood Posts): Evenly space staples or nails with at least five per post for Type A fence and four per post for Type B fence.
 b. Pockets: If using pockets and they are not closed at the top, attach the fabric to a wood post using at least one additional staple or nail, or to a steel post using wire. Ensure that the additional attachment is within the top 6 in (150 mm) of the fabric.
Install the filter fabric so that 6 to 8 in (150 to 200 mm) of fabric is left at the bottom to be buried. Provide a minimum overlap of 18 in (450 mm) at all splice joints.

For Type C fence:

1. Woven Wire Supported
 a. Steel Post: Use wire to attach the fabric to the top of the woven wire support fence at the midpoint between posts. Also, use wire to attach the fabric to the post.

2. Polypropylene Mesh Supported
 a. Wood Post: Use at least six staples per post. Use two staples in a crisscross or parallel pattern to secure the top portion of the fence. Evenly space the remaining staples down the post.
 b. Steel Post: Use wire to attach the fabric and polypropylene mesh to the post.

Install the fabric in the trench so that 4 to 6 in (100 to 150 mm) of fabric is against the side of the trench with 2 to 4 in (50 to 100 mm) of fabric across the bottom in the upstream direction.

Backfill and compact the trench to ensure that flow cannot pass under the barrier. When the slice method is used, compact the soil disturbed by the slice on the upstream side of the silt fence first, and then compact the downstream side.

When installing a silt fence across a waterway that produces significant runoff, place a settling basin in front of the fence to handle the sediment load, if required. Construct a suitable sump hole or storage area according to Section 163.

B. Install silt fence ditch checks

 Temporary Silt Fence Ditch Checks

Temporary silt fence ditch checks shall be constructed of the material type selected and shown on the approved erosion and sediment control plan. Item installation shall be constructed and placed according to approved Plan details. Temporary ditch checks shall remain in place until the permanent ditch protection is in place or being installed and the removal is approved by the Engineer.

C. Remove the Silt Fence

Keep all silt fence in place unless or until the Engineer directs it to be removed. A removed silt fence may be used at other locations if the Engineer approves of its condition.

After removing the silt fence, dress the area to natural ground, grass and mulch the area according to Section 700. The silt fence shall remain until the Project is accepted or until the fence is removed. Also, remove and dispose of the silt accumulations at the silt fence.

Remove and replace any deteriorated filter fabric that reduces the effectiveness of the silt fence.

Repair or replace any undermined silt fence at no additional cost to the Department.

171.3.06 Quality Acceptance

Approved silt fence is listed in QPL 36. Approved fabrics must consistently exceed the minimum requirements of this Specification as verified by the Office of Materials and Research. The Office of Materials and Research will remove fabric that fails to meet the minimum requirements of this specification from the QPL until the products’ acceptability has been reestablished to the Department’s satisfaction.

At the time of installation, the Engineer will reject the fabric if it has defects, rips, holes, flaws, deterioration, or damage incurred during manufacture, transportation, or storage.

171.3.07 Contractor Warranty

The silt fence shall remain until the Project is accepted or until the fence is removed. Also, remove and dispose of the silt accumulations at the silt fence.

Remove and replace any deteriorated filter fabric that reduces the effectiveness of the silt fence.

Repair or replace any undermined silt fence at no additional cost to the Department.
171.4 Measurement
The quantity of silt fence, silt fence ditch checks to be paid for is the actual number of linear feet (meters) of silt fence, measured in place from end post to end post of each separate installation. The silt fence must be complete and accepted.

171.4.01 Limits
General Provisions 101 through 150.

171.5 Payment
Silt fence Type A, B, or C measured as defined in Subsection 171.4, “Measurement,” is paid for at the Contract Unit Price bid per linear foot (meter).

Payment is full compensation for the following:
- Furnishing materials
- Erecting the fence
- Dressing and grassing, when required
- Removing the fence, when required

Payment for this Item is made as follows:
- Seventy-five percent of the Contract Price bid per linear foot (meter) is paid when each fence is complete in place.
- Twenty-five percent is paid at removal or acceptance.

If the silt fence must be repaired or removed, as the result of neglect or damage, perform the work at no additional cost to the Department.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Silt fence, type__</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

171.5.01 Adjustments
General Provisions 101 through 150.

Office of Materials and Research
DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA

SPECIAL PROVISION

Section 400—Hot Mix Asphaltic Concrete Construction

Delete Section 400 and substitute the following:

400.1 General Description
This work includes constructing one or more courses of bituminous plant mixture on the prepared foundation or existing roadway surface. The mixture shall conform with lines, grades, thicknesses, and typical cross sections shown on the Plans or established by the Engineer.

This section includes the requirements for all bituminous plant mixtures regardless of the gradation of the aggregates, type and amount of bituminous material, or pavement use.

Acceptance of work is on a lot-to-lot basis according to the requirements of this Section and Section 106.

400.1.01 Definitions
Segregated Mixture: Mixture lacking homogeneity in HMA constituents of such a magnitude that there is a reasonable expectation of accelerated pavement distress or performance problems. May be quantified by measurable changes in temperature, gradation, asphalt content, air voids, or surface texture.

New Construction: A roadway section more than 0.5 mile (800 m) long that is not longitudinally adjacent to the existing roadway. If more than one lane is added, and if any of the lanes are longitudinally adjacent to the existing lane, the lanes shall be tested under the criteria for a resurfacing project.

Trench Widening: Widening no more than 4 ft. (1.2 m) in width.

Comparison sample: Opposite quarter of material sampled by the Contractor.

Quality assurance sample: Independent sample taken by the Department.

Referee sample: A sample of the material remaining after quartering which is used for evaluation if a comparison of Contractor and Departmental test results is outside allowable tolerances.

400.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 109—Measurement and Payment
 Section 152—Field Laboratory Building
 Section 413—Bituminous Tack Coat
 Section 424—Bituminous Surface Treatment
Section 400—Hot Mix Asphaltic Concrete Construction

Section 802—Coarse Aggregate for Asphaltic Concrete
Section 828—Hot Mix Asphaltic Concrete Mixtures

B. Referenced Documents

AASHTO T 209
AASHTO T 202
AASHTO T 49

Laboratory Standard Operating Procedure (SOP) 27, “Quality Assurance for Hot Mix Asphaltic Concrete Plants in Georgia”

Department of Transportation Standard Operating Procedure (SOP) 15

GDT 38
GDT 73
GDT 78
GDT 83
GDT 93
GDT 119
GDT 125
GDT 134
GSP 15
GSP 21
QPL 1
QPL 2
QPL 7
QPL 26
QPL 30
QPL 39
QPL 41
QPL 45
QPL 65
QPL 67
QPL 70
QPL 77

400.1.03 Submittals

A. Invoices

When the Department requests, furnish formal written invoices from a supplier for all materials used in production of HMA. Show the following on the Bill of Lading:

- Date shipped
- Quantity in tons (megagrams)
- Included with or without additives (for asphalt cement)

Purchase asphaltic cement from a supplier who will provide copies of Bill of Lading upon the Department’s request.
B. Paving Plan

Before starting asphaltic concrete construction, submit a written paving plan to the Engineer for approval. Include the following on the paving plan:

- Proposed starting date
- Location of plant(s)
- Rate of production
- Average haul distance(s)
- Number of haul trucks
- Paver speed feet (meter)/minute for each placement operation
- Mat width for each placement operation
- Number and type of rollers for each placement operation
- Sketch of the typical section showing the paving sequence for each placement operation
- Electronic controls used for each placement operation
- Temporary pavement marking plan

If staged construction is designated in the Plans or contract, provide a paving plan for each construction stage.

If segregation is detected, submit a written plan of measures and actions to prevent segregation. Work will not continue until the plan is submitted to and approved by the Department.

C. Job Mix Formula

After the Contract has been awarded, submit to the Engineer a written job mix formula proposed for each mixture type to be used based on an approved mix design. Furnish the following information for each mix:

- Specific project for which the mixture will be used
- Source and description of the materials to be used
- Mixture I.D. Number
- Proportions of the raw materials to be combined in the paving mixture
- Single percentage of the combined mineral aggregates passing each specified sieve
- Single percentage of asphalt by weight of the total mix to be incorporated in the completed mixture
- Single temperature at which to discharge the mixture from the plant
- Theoretical specific gravity of the mixture at the designated asphalt content
- Name of the person or agency responsible for quality control of the mixture during production

Do the following to have the formulas approved and to ensure their quality:

1. Submit proposed job mix formulas for review at least two weeks before beginning the mixing operations.
2. Do not start hot mix asphaltic concrete work until the Engineer has approved a job mix formula for the mixture to be used. No mixture will be accepted until the Engineer has given approval.
3. Provide mix designs for all Superpave and 4.75 mm mixes to be used. The Department will provide mix design results for other mixes to be used.
4. After a job mix formula has been approved, assume responsibility for the quality control of the mixtures supplied to the Department according to Subsection 106.01, “Source of Supply and Quantity of Materials.”

D. Quality Control Program

Submit a Quality Control Plan to the Office of Materials and Research for approval. The Quality Control Program will be included as part of the certification in the annual plant inspection report.

400.2 Materials

Ensure that materials comply with the specifications listed in Table 1.

Table 1—Materials Specifications
Section 400—Hot Mix Asphaltic Concrete Construction

<table>
<thead>
<tr>
<th>Material</th>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cement, Grade Specified</td>
<td>820.2</td>
</tr>
<tr>
<td>Coarse Aggregates for Asphaltic Concrete</td>
<td>802.2.02</td>
</tr>
<tr>
<td>Fine Aggregates for Asphaltic Concrete</td>
<td>802.2.01</td>
</tr>
<tr>
<td>Mineral Filler</td>
<td>883.1</td>
</tr>
<tr>
<td>Heat Stable Anti-Stripping Additive</td>
<td>831.2.04</td>
</tr>
<tr>
<td>Hydrated Lime</td>
<td>882.2.03</td>
</tr>
<tr>
<td>Silicone Fluid</td>
<td>831.2.05</td>
</tr>
<tr>
<td>Bituminous Tack Coat: PG 58-22, PG 64-22, PG 67-22</td>
<td>820.2</td>
</tr>
<tr>
<td>Hot Mix Asphaltic Concrete Mixtures</td>
<td>828</td>
</tr>
<tr>
<td>Fiber Stabilizing Additives</td>
<td>819</td>
</tr>
</tbody>
</table>

When required, provide Uintaite material, hereafter referred to by the common trade name Gilsonite, as a reinforcing agent for bituminous mixtures. Supply a manufacturer’s certification that the Gilsonite is a granular solid which meets the following requirements:

- Softening Point (AASHTO: T-53) 300-350 °F (150-175 °C)
- Specific Gravity, 77 °F (25 °C) (AASHTO: T-228) 1.04 ± 0.02
- Flash Point, COC (AASHTO: T-48) 550 °F (290 °C) Min.
- Ash Content (AASHTO: T-111) 1.0% Max.
- Penetration, 77 °F (25 °C), 100 gm., 5 sec. (AASHTO: T-49) 0

400.2.01 Delivery, Storage, and Handling

Storage of material is allowed in a properly sealed and insulated system for up to 24 hours except that Stone Matrix Asphalt (SMA), Open-Graded Friction Course (OGFC), or Porous European Mix (PEM) mixtures shall not be stored more than 12 hours. Mixtures other than SMA, OGFC, or PEM may be stored up to 72 hours in a sealed and insulated system, equipped with an auxiliary inert gas system, with the Engineer’s approval. Segregation, lumpiness, drain-down, or stiffness of stored mixture is cause for rejection of the mixture. The Engineer will not approve using a storage or surge bin if the mixture segregates, loses excessive heat, or oxidizes during storage.

The Engineer may obtain mixture samples or recover asphalt cement according to GDT 119. AASHTO T 202 and T 49 will be used to perform viscosity and penetration tests to determine how much asphalt hardening has occurred.

A. Vehicles for Transporting and Delivering Mixtures

Ensure that trucks used for hauling bituminous mixtures have tight, clean, smooth beds.

Follow these guidelines when preparing vehicles to transport bituminous mixtures:

1. Use an approved releasing agent from QPL 39 in the transporting vehicle beds, if necessary, to prevent the mixture from sticking to the bed. Ensure that the releasing agent is not detrimental to the mixture. When applying the agent, drain the excess agent from the bed before loading. Remove from the project any transporting vehicles determined to contain unapproved releasing agents.

2. Protect the mixture with a waterproof cover large enough to extend over the sides and ends of the bed. Securely fasten the waterproof cover before the vehicle begins moving.

3. Insulate the front end and sides of each bed with an insulating material with the following specifications:
 - Consists of builders insulating board or equivalent
 - Has a minimum “R” value of 4.0
 - Can withstand approximately 400 °F (200 °C) temperatures

Install the insulating material so it is protected from loss and contamination. A “Heat Dump Body” may be used in lieu of insulation of the bed. “Heat Dump Body” refers to any approved transport vehicle that is capable of diverting

Page 4
Section 400—Hot Mix Asphaltic Concrete Construction

engine exhaust and transmitting heat evenly throughout the dump body to keep asphalt at required temperature. Mark the “Heat Dump Body” clearly with “OPEN” and “CLOSE” position at the exhaust diverter. Install a padlock and lock it in the “OPEN” position when the “Heat Dump Body” is used to transport bituminous mixtures.

4. Mark each transporting vehicle with a clearly visible identification number.

5. Create a hole in each side of the bed so that the temperature of the loaded mixture can be checked. The placement of these holes shall be located to assure that the thermometer is being placed in the hot mix asphaltic concrete.

Ensure that the mixture is delivered to the roadway at a temperature within ± 20 °F (± 11 °C) of the temperature on the job mix formula.

If the Engineer determines that a truck may be hazardous to the Project or adversely affect the quality of the work, remove the truck from the project.

B. Containers for Transporting, Conveying, and Storing Bituminous Material

To transport, convey, and store bituminous material, use containers free of foreign material and equipped with sample valves. Bituminous material will not be accepted from conveying vehicles if material has leaked or spilled from the containers.

400.3 Construction Requirements

400.3.01 Personnel

General Provisions 101 through 150.

400.3.02 Equipment

Hot mix asphaltic concrete plants that produce mix for Department use are governed by Quality Assurance for Hot Mix Asphaltic Concrete Plants in Georgia, Laboratory Standard Operating Procedure No. 27.

The Engineer will approve the equipment used to transport and construct hot mix asphaltic concrete. Ensure that the equipment is in satisfactory mechanical condition and can function properly during production and placement operations.

Place the following equipment at the plant or project site:

A. Field Laboratory

Provide a field laboratory according to Section 152.

B. Plant Equipment

1. Scales

Provide scales as follows:

a. Furnish (at the Contractor’s expense) scales to weigh bituminous plant mixtures, regardless of the measurement method for payment.

b. Ensure that the weight measuring devices that provide documentation comply with Subsection 109.01, “Measurement and Quantities.”

c. When not using platform scales, provide weight devices that record the mixture net weights delivered to the truck. A net weight system will include, but is not limited to:
 - Hopper or batcher-type weight systems that deliver asphaltic mixture directly to the truck
 - Fully automatic batching equipment with a digital recording device

d. Use a net weight printing system only with automatic batching and mixing systems approved by the Engineer.

e. Ensure that the net weight scale mechanism or device manufacturer, installation, performance, and operation meets the requirements in Subsection 109.01, “Measurement and Quantities.”

f. Provide information on the Project tickets according to Department of Transportation SOP-15.

2. Time-Locking Devices

Furnish batch type asphalt plants with automatic time-locking devices that control the mixing time automatically. Construct these devices so that the operator cannot shorten or eliminate any portion of the mixing cycle.

3. Surge- and Storage-Systems
Provide surge and storage bins as follows:
 a. Ensure that bins for mixture storage are insulated and have a working seal, top and bottom, to prevent outside air infiltration and to maintain an inert atmosphere during storage. Bins not intended as storage bins may be used as surge bins to hold hot mixtures for part of the working day. However, empty these surge bins completely at the end of the working day.
 b. Ensure that surge and storage bins can retain a predetermined minimum level of mixture in the bin when the trucks are loaded.
 c. Ensure that surge and storage systems do not contribute to mix segregation, lumpiness, drain-down, or stiffness.

4. Controls for Dust Collector Fines

Control dust collection as follows:
 a. When collecting airborne aggregate particles and returning them to the mixture, have the return system meter all or part of the collected dust uniformly into the aggregate mixture and waste the excess. The collected dust percentage returned to the mixture is subject to the Engineer’s approval.
 b. When the collected dust is returned directly to the hot aggregate flow, interlock the dust feeder with the hot aggregate flow and meter the flow to maintain a flow that is constant, proportioned, and uniform.

5. Mineral Filler Supply System

When mineral filler is required as a mixture ingredient:
 a. Use a separate bin and feed system to store and proportion the required quantity into the mixture with uniform distribution.
 b. Control the feeder system with a proportioning device that meets these specifications:
 - Is accurate to within ± 10 percent of the filler required
 - Has a convenient and accurate means of calibration
 - Interlocks with the aggregate feed or weigh system to maintain the correct proportions for all rates of production and batch sizes
 c. Provide flow indicators or sensing devices for the mineral filler system and interlock them with the plant controls to interrupt the mixture production if mineral filler introduction fails to meet the required target value after no longer than 60 seconds.
 d. Add mineral filler to the mixture as follows, according to the plant type:
 - Batch Type Asphalt Plant. Add mineral filler to the mixture in the weigh hopper.
 - Continuous Plant Using Pugmill Mixers. Feed the mineral filler into the hot aggregate before it is introduced into the mixer so that dry mixing is accomplished before the bituminous material is added.
 - Continuous Plants Using the Drier-Drum Mixers. Add the mineral filler so that dry mixing is accomplished before the bituminous material is added and ensure that the filler does not become entrained into the air stream of the drier.

6. Hydrated Lime Treatment System

When hydrated lime is required as a mixture ingredient:
 a. Use a separate bin and feed system to store and proportion the required quantity into the mixture.
 b. Ensure that the aggregate is uniformly coated with hydrated lime aggregate before adding the bituminous material to the mixture. Add the hydrated lime so that it will not become entrained in the exhaust system of the drier or plant.
 c. Control the feeder system with a proportioning device that meets these specifications:
 - Is accurate to within ± 10 percent of the amount required
 - Has a convenient and accurate means of calibration
 - Interlocks with the aggregate feed or weigh system to maintain the correct proportions for all rates of production and batch sizes and to ensure that mixture produced is properly treated with lime
 d. Provide flow indicators or sensing devices for the hydrated lime system and interlock them with the plant controls to interrupt mixture production if hydrated lime introduction fails to meet the required target value after no longer than 60 seconds.
7. Net Weight Weighing Mechanisms

Certify the accuracy of the net weight weighing mechanisms by an approved registered scale serviceperson at least once every 6 months. Check the accuracy of net weight weighing mechanisms at the beginning of Project production and thereafter as directed by the Engineer. Check mechanism accuracy as follows:

a. Weigh a load on a set of certified commercial truck scales. Ensure that the difference between the printed total net weight and that obtained from the commercial scales is no greater than 4 lbs/1,000 lbs (4 kg/Mg) of load.

Check the accuracy of the bitumen scales as follows:

- Use standard test weights.
- If the checks indicate that printed weights are out of tolerance, have a registered scale serviceperson check the batch scales and certify the accuracy of the printer.
- While the printer system is out of tolerance and before its adjustment, continue production only if using a set of certified truck scales to determine the truck weights.

b. Have plants that use batch scales maintain ten 50 lb (25 kg) standard test weights at the plant site to check batching scale accuracy.

Ensure that plant scales that are used only to proportion mixture ingredients, not to determine pay quantities, are within two percent throughout the range.

8. Fiber Supply System

When stabilizing fiber is required as a mixture ingredient:

a. Use a separate feed system to store and proportion by weight the required quantity into the mixture with uniform distribution.

b. Control the feeder system with a proportioning device that meets these Specifications:

- Is accurate to within ± 10 percent of the amount required. Automatically adjusts the feed rate to maintain the material within this tolerance at all times
- Has a convenient and accurate means of calibration
- Provide in-process monitoring, consisting of either a digital display of output or a printout of feed rate, in pounds (kg) per minute, to verify feed rate
- Interlocks with the aggregate feed or weigh system to maintain the correct proportions for all rates of production and batch sizes

c. Provide flow indicators or sensing devices for the fiber system and interlock them with the plant controls to interrupt the mixture production if fiber introduction fails or if the output rate is not within the tolerances given above.

d. Introduce the fiber as follows:

- When a batch type plant is used, add the fiber to the aggregate in the weigh hopper. Increase the batch dry mixing time by 8 to 12 seconds from the time the aggregate is completely emptied into the mixer to ensure the fibers are uniformly distributed prior to the injection of asphalt cement into the mixer.
- When a continuous or drier-drum type plant is used, add the fiber to the aggregate and uniformly disperse prior to the injection of asphalt cement. Ensure the fibers will not become entrained in the exhaust system of the drier or plant.

C. Equipment at Project Site

1. Cleaning Equipment

Provide sufficient hand tools and power equipment to clean the roadway surface before placing the bituminous tack coat. Use power equipment that complies with Subsection 424.3.02.F, “Power Broom and Power Blower.”

2. Pressure Distributor

To apply the bituminous tack coat, use a pressure distributor that complies with Subsection 424.3.02.B, “Pressure Distributor.”

3. Bituminous Pavers

To place hot mix asphaltic concrete, use bituminous pavers that can spread and finish courses that are:

- As wide and deep as indicated on the Plans
Section 400—Hot Mix Asphaltic Concrete Construction

- True to line, grade, and cross section
- Smooth
- Uniform in density and texture

a. **Continuous Line and Grade Reference Control.** Furnish, place, and maintain the supports, wires, devices, and materials required to provide continuous line and grade reference control to the automatic paver control system.

b. **Automatic Screed Control System.** Equip the bituminous pavers with an automatic screed control system actuated from sensor-directed mechanisms or devices that will maintain the paver screed at a pre-determined transverse slope and elevation to obtain the required surface.

c. **Transverse Slope Controller.** Use a transverse slope controller capable of maintaining the screed at the desired slope within ± 0.1 percent. Do not use continuous paving set-ups that result in unbalanced screed widths or off-center breaks in the main screed cross section unless approved by the Engineer.

d. **Screed Control.** Equip the paver to permit the following four modes of screed control. The method used shall be approved by the Engineer.
 - Automatic grade sensing and slope control
 - Automatic dual grade sensing
 - Combination automatic and manual control
 - Total manual control

Ensure that the controls are referenced with a taut string or wire set to grade, or with a ski-type device or mobile reference at least 30 ft (9 m) long when using a conventional ski. A non-contacting laser or sonar-type ski with at least four referencing mobile stations may be used with a reference at least 24 ft. (7.3 m) long. Under limited conditions, a short ski or shoe may be substituted for a long ski on the second paver operating in tandem, or when the reference plane is a newly placed adjacent lane.

Automatic screed control is required on all Projects; however, when the Engineer determines that Project conditions prohibit the use of such controls, the Engineer may waive the grade control, or slope control requirements, or both.

e. **Paver Screed Extension.** When the laydown width requires a paver screed extension, use bolt-on screed extensions to extend the screeds, or use an approved mechanical screed extension device. When the screed is extended, add auger extensions to assure a length of no more than 18 inches from the auger to the end gate of the paver. Auger extensions may be omitted when paving variable widths. Ensure the paver is equipped with tunnel extensions when the screed and augers are extended.

f. **30 - 45 Degree Wedge.** When shown on/required by the plans, equip the paver to ensure a 30 degree minimum up to a 45 degree maximum wedge along the outside edge of the roadway (measured from the horizontal plane) is in place after final compaction on the final surface course. Use an approved mechanical device that will:
 - Apply compactive effort to the asphalt mixture to eliminate objectionable voids as the mixture passes through the wedge device
 - Produce a wedge with a uniform texture, shape, and density while automatically adjusting to varying heights encountered along the roadway shoulder.

NOTE: Do not use extendible strike-off devices instead of approved screed extensions. Only use a strike-off device in areas that would normally be luted in by hand labor.

4. **Compaction Equipment**

 Ensure that the compaction equipment is in good mechanical condition and can compact the mixture to the required density. The compaction equipment number, type, size, operation, and condition is subject to the Engineer’s approval

5. **Materials Transfer Vehicle (MTV)**
Section 400—Hot Mix Asphalthic Concrete Construction

a. Use a Materials Transfer Vehicle (MTV) when placing asphaltic concrete mixtures on Projects on the state route system with the following conditions. If a project fails to meet any one of the following conditions, the MTV’s use is not required.

1) When to use:
 - The ADT is equal to or greater than 6000,
 - The project length is equal to or greater than 3000 linear feet (915 linear meters),
 - The total tonnage (megagrams) of all asphaltic concrete mixtures is greater than 2000 tons (1815 Mg).

2) Where to use:
 - Mainline of the traveled way
 - Collector/distributor (C/D) lanes on Interstates and limited access roadways
 - Leveling courses at the Engineer’s discretion

3) Do not use the MTV for the following conditions:
 - A resurfacing project that only 9.5 mm mix is required.
 - A project with lane width that is equal or less than 11 feet.
 - A passing lane only project.
 - When noted on the plans.

b. Ensure the MTV and conventional paving equipment meet the following requirements:

1) MTV
 - Has a truck unloading system which receives mixture from the hauling equipment and independently deliver mixtures from the hauling equipment to the paving equipment.
 - Has mixture remixing capability by either a storage bin in the MTV with a minimum capacity of 14 tons (13 megagrams) of mixture and a remixing system in the bottom of MTV storage bin, or a dual pugmill system located in the paver hopper insert with two full length transversely mounted paddle mixers to continuously blend the mixture as it discharges to a conveyor system.
 - Provides to the paver a homogeneous, non-segregated mixture of uniform temperature with no more than 20 °F (18 °C) difference between the highest and lowest temperatures when measured transversely across the width of the mat in a straight line at a distance of one foot to three feet from the screed while the paver is operating. Ensure that the MTV is capable of providing the paver a consistent material flow that is sufficient to prevent the paver from stopping between truck exchanges.

2) Conventional Paving Equipment
 - Has a paver hopper insert with a minimum capacity of 14 tons (13 Mg) installed in the hopper of conventional paving equipment when an MTV is used.

c. If the MTV malfunctions during spreading operations, discontinue placement of hot mix asphaltic concrete after there is sufficient hot mix placed to maintain traffic in a safe manner. However, placement of hot mix asphaltic concrete in a lift not exceeding 2 in. (50 mm) may continue until any additional hot mix in transit at the time of the malfunction has been placed. Cease spreading operations thereafter until the MTV is operational.

d. Ensure the MTV is empty when crossing a bridge and is moved across without any other Contractor vehicles or equipment on the bridge. Move the MTV across a bridge in a travel lane and not on the shoulder. Ensure the speed of the MTV is no greater than 5 mph (8 kph) without any acceleration or deceleration while crossing a bridge.

400.3.03 Preparation

A. Prepare Existing Surface

Prepare the existing surface as follows:

1. Clean the Existing Surface. Before applying hot mix asphaltic concrete pavement, clean the existing surface to the Engineer’s satisfaction.

2. Patch and Repair Minor Defects
 - Before placing leveling course:
a. Correct potholes and broken areas that require patching in the existing surface and base as directed by the Engineer.
b. Cut out, trim to vertical sides, and remove loose material from the areas to be patched.
c. Prime or tack coat the area after it has been cleaned. Compact patches to the Engineer’s satisfaction. Material for patches does not require a job mix formula, but shall meet the gradation range shown in Section 828. The Engineer must approve the asphalt content to be used.

3. Apply Bituminous Tack Coat
 Apply the tack coat according to Section 413. The Engineer will determine the application rate, which must be within the limitations Table 2.

<table>
<thead>
<tr>
<th>Table 2—Application Rates for Bituminous Tack, gal/yd² (L/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Under OGFC and PEM Mixes</td>
</tr>
<tr>
<td>All Other Mixes</td>
</tr>
</tbody>
</table>

*On thin leveling courses and freshly placed asphaltic concrete mixes, reduce the application rate to 0.02 to 0.04 gal/yd² (0.09 to 0.18 L/m²).

B. Place Patching and Leveling Course
1. When the existing surface is irregular, bring it to the proper cross section and grade with a leveling course of hot mix asphaltic concrete materials.
2. Place leveling at the locations and in the amounts directed by the Engineer.
3. Use leveling course mixtures that meet the requirements of the job mix formulas defined in:
 - Subsection 400.3.05.A, “Observe Composition of Mixtures”
 - Section 828
 - Leveling acceptance schedules in Subsection 400.3.06.A, “Acceptance Plans for Gradation and Asphalt Cement Content”
4. If the leveling and patching mix type is undesignated, determine the mix type by the thickness or spread rate according to Table 3, but do not use 4.75 mm mix on interstate projects.

<table>
<thead>
<tr>
<th>Table 3—Leveling and Patching Mix Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
</tr>
<tr>
<td>Up to 0.75 in (19 mm)</td>
</tr>
<tr>
<td>0.75 to 1.5 in (19 to 38 mm)</td>
</tr>
<tr>
<td>1.5 to 2 in (38 to 50 mm)</td>
</tr>
<tr>
<td>2 to 2.5 in (50 to 64 mm)</td>
</tr>
<tr>
<td>Over 2.5 in (64 mm)</td>
</tr>
</tbody>
</table>

* These mixtures may be used for isolated patches no more than 6 in. (150 mm) deep and no more than 4 ft. (1.2 m) in diameter or length.
400.3.04 Fabrication
General Provisions 101 through 150.

400.3.05 Construction
Provide the Engineer at least one day’s notice prior to beginning construction, or prior to resuming production if operations have been temporarily suspended.

A. Observe Composition of Mixtures
1. Calibration of plant equipment
 If the material changes, or if a component affecting the ingredient proportions has been repaired, replaced, or adjusted, check and recalibrate the proportions.
 Calibrate as follows:
 a. Before producing mixture for the Project, calibrate by scale weight the electronic sensors or settings for proportioning mixture ingredients.
 b. Calibrate ingredient proportioning for all rates of production.
2. Mixture control
 Compose hot mix asphaltic concrete from a uniform mixture of aggregates, bituminous material, and if required, hydrated lime, mineral filler, or other approved additive.
 Make the constituents proportional to produce mixtures that meet the requirements in Section 828. The general composition limits prescribed are extreme ranges within which the job mix formula must be established. Base mixtures on a design analysis that meets the requirements of Section 828. Ensure that the field performance of the in-place mixtures meet the requirements of Subsection 828.2B.
 If control test results show that the characteristic tested does not conform to the job mix formula control tolerances given in Section 828, take immediate action to ensure that the quality control methods are effective.
 Control the materials to ensure that extreme variations do not occur. Maintain the gradation within the composition limits in Section 828.

B. Prepare Bituminous Material
 Uniformly heat the bituminous material to the temperature specified in the job mix formula with a tolerance of ± 20 °F (± 10 °C).

C. Prepare the Aggregate
 Prepare the aggregate as follows:
 1. Heat the aggregate for the mixture, and ensure a mix temperature within the limits of the job mix formula.
 2. Do not contaminate the aggregate with fuel during heating.
 3. Reduce the absorbed moisture in the aggregate until the asphalt does not separate from the aggregate in the prepared mixture. If this problem occurs, the Engineer will establish a maximum limit for moisture content in the aggregates. When this limit is established, maintain the moisture content below this limit.

D. Prepare the Mixture
 Proportion the mixture ingredients as necessary to meet the required job mix formula. Mix until a homogenous mixture is produced.
 1. Add Mineral Filler
 When mineral filler is used, introduce it in the proper proportions and as specified in Subsection 400.3.02.B.5, “Mineral Filler Supply System.”
 2. Add Hydrated Lime
 When hydrated lime is included in the mixture, add it at a rate specified in Section 828 and the job mix formula. Use methods and equipment for adding hydrated lime according to Subsection 400.3.02.B.6, “Hydrated Lime Treatment System.”
 Add hydrated lime to the aggregate by using Method A or B as follows:
Method A—Dry Form—Add hydrated lime in its dry form to the mixture as follows, according to the type of plant:

a. Batch Type Asphalt Plant: Add hydrated lime to the mixture in the weigh hopper or as approved and directed by the Engineer.

b. Continuous Plant Using Pugmill Mixer: Feed hydrated lime into the hot aggregate before it is introduced into the mixer so that dry mixing is complete before the bituminous material is added.

c. Continuous Plant Using Drier-Drum Mixer: Add hydrated lime so that the lime will not become entrained into the air stream of the drier and so that thorough dry mixing will be complete before the bituminous material is added.

Method B—Lime/Water Slurry—Add the required quantity of hydrated lime (based on dry weight) in lime/water slurry form to the aggregate. This solution consists of lime and water in concentrations as directed by the Engineer.

Equip the plant to blend and maintain the hydrated lime in suspension and to mix it with the aggregates uniformly in the proportions specified.

3. Add Stabilizing Fiber

When stabilizing fiber is included in the mixture, add it at a rate specified in Section 819 and the Job Mix Formula. Introduce it as specified in Subsection 400.3.02.B.8, “Fiber Supply System.”

4. Add Gilsonite Modifier

When required, add the Gilsonite modifier to the mixture at a rate such that eight percent by weight of the asphalt cement is replaced by Gilsonite. Use either PG 64-22 or PG 67-22 asphalt cement as specified in Subsection 820.2.01. Provide suitable means to calibrate and check the rate of Gilsonite being added. Introduce Gilsonite modifier by either of the following methods.

a. For batch type plants, incorporate Gilsonite into the pugmill at the beginning of the dry mixing cycle. Increase the dry mix cycle by a minimum of 10 seconds after the Gilsonite is added and prior to introduction of the asphalt cement. For this method, supply Gilsonite in plastic bags to protect the material during shipment and handling and store the modifier in a waterproof environment. The bags shall be capable of being completely melted and uniformly blended into the combined mixture.

Gilsonite may also be added through a mineral filler supply system as described in Subsection 400.3.02.B.5, “Mineral Filler Supply System.” The system shall be capable of injecting the modifier into the weigh hopper near the center of the aggregate batching cycle so the material can be accurately weighed.

b. For drum drier plants, add Gilsonite through the recycle ring or through an acceptable means which will introduce the Gilsonite prior to the asphalt cement injection point. The modifier shall be proportionately fed into the drum mixer at the required rate by a proportioning device which shall be accurate within ± 10 percent of the amount required. The entry point shall be away from flames and ensure the Gilsonite will not be caught up in the air stream and exhaust system.

5. Materials from Different Sources

Do not use mixtures prepared from aggregates from different sources intermittently. This will cause the color of the finished pavement to vary.

E. Observe Weather Limitations

Do not mix and place asphaltic concrete if the existing surface is wet or frozen. Do not lay asphaltic concrete OGFC mix or PEM at air temperatures below 60 °F (16 °C). When using a MTV, OGFC mix or PEM may be placed at 55 °F (13 °C) when approved by the Engineer. For other courses, follow the temperature guidelines in the following table:

<table>
<thead>
<tr>
<th>Lift Thickness</th>
<th>Minimum Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in (25 mm) or less</td>
<td>55 °F (13 °C)</td>
</tr>
<tr>
<td>1.1 to 2 in (26 mm to 50 mm)</td>
<td>45 °F (8 °C)</td>
</tr>
<tr>
<td>2.1 to 3 in (51 mm to 75 mm)</td>
<td>40 °F (4 °C)</td>
</tr>
<tr>
<td>3.1 to 4 in (76 mm to 100 mm)</td>
<td>35 °F (2 °C)</td>
</tr>
<tr>
<td>4.1 to 8 in (101 mm to 200 mm)</td>
<td>32 °F (0 °C) and rising. Base Material must not be frozen.</td>
</tr>
</tbody>
</table>
Section 400—Hot Mix Asphaltic Concrete Construction

F. Perform Spreading and Finishing

Spread and finish the course as follows:

1. Determine the course’s maximum compacted layer thickness by the type mix being used according to Table 5.

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>Minimum Layer Thickness</th>
<th>Maximum Layer Thickness</th>
<th>Maximum Total Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm Superpave</td>
<td>2 1/2 in (64 mm)</td>
<td>4 in (100 mm) *</td>
<td>—</td>
</tr>
<tr>
<td>19 mm Superpave</td>
<td>1 3/4 in (44 mm)</td>
<td>3 in (75 mm) *</td>
<td>—</td>
</tr>
<tr>
<td>12.5 mm Superpave</td>
<td>1 3/8 in (35 mm)</td>
<td>2 1/2 in (64 mm)*</td>
<td>8 in (200 mm)</td>
</tr>
<tr>
<td>9.5 mm Superpave Type 2</td>
<td>1 1/8 in.(28 mm)</td>
<td>1 1/2 in (38 mm)</td>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>9.5 mm Superpave Type 1</td>
<td>7/8 in (22 mm)</td>
<td>1 1/4 in (32 mm)</td>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>4.75 mm Mix</td>
<td>3/4 in (19 mm)</td>
<td>1 1/8 in (28 mm)</td>
<td>2 in (50 mm)</td>
</tr>
<tr>
<td>9.5 mm OGFC</td>
<td>55 lbs/yd² (30 kg/m²)</td>
<td>65 lbs/yd² (36 kg/m²)</td>
<td>—</td>
</tr>
<tr>
<td>12.5 mm OGFC</td>
<td>85 lbs/yd² (47 kg/m²)</td>
<td>95 lbs/yd² (53 kg/m²)</td>
<td>—</td>
</tr>
<tr>
<td>12.5 mm PEM</td>
<td>110 lbs/yd² (80 kg/m²)</td>
<td>165 lbs/yd² (90 kg/m²)</td>
<td>—</td>
</tr>
<tr>
<td>9.5 mm SMA</td>
<td>1 1/8 in (28 mm)</td>
<td>1 1/2 in (38 mm)</td>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>12.5 mm SMA</td>
<td>1 1/4 in (32 mm)</td>
<td>3 in (75 mm)</td>
<td>6 in (150 mm)</td>
</tr>
<tr>
<td>19 mm SMA</td>
<td>1 3/4 in (44 mm)</td>
<td>3 in (75 mm)</td>
<td>—</td>
</tr>
</tbody>
</table>

* Allow up to 6 in (150 mm) per lift on trench widening. Place 9.5 mm Superpave and 12.5 mm Superpave up to 4 in (100 mm) thick for driveway and side road transition.

2. Unload the mixture into the paver hopper or into a device designed to receive the mixture from delivery vehicles.

3. Except for leveling courses, spread the mixture to the loose depth for the compacted thickness or the spread rate. Use a mechanical spreader true to the line, grade, and cross section specified.

4. For leveling courses, use a motor grader equipped with a spreader box and smooth tires to spread the material or use a mechanical spreader meeting the requirements in Subsection 400.3.02.C, “Equipment at Project Site.”

5. Obtain the Engineer’s approval for the sequence of paving operations, including paving the adjoining lanes. Minimize tracking tack onto surrounding surfaces.

6. Ensure that the outside edges of the pavement being laid are aligned and parallel to the roadway center line.

7. For New Construction or Resurfacing Contracts that contain multiple lifts or courses, arrange the width of the individual lifts so that the longitudinal joints of each successive lift are offset from the previous lift at least 1 ft (300 mm). This requirement does not apply to the lift immediately over thin lift leveling courses. Ensure that the longitudinal joint(s) in the surface course and the mix immediately underneath asphaltic concrete OGFC or PEM are at the lane line(s).

NOTE: Perform night work with artificial light provided by the Contractor and approved by the Engineer.

8. Where mechanical equipment cannot be used, spread and rake the mixture by hand. Obtain the Engineer’s approval of the operation sequence, including compactive methods, in these areas.

9. Keep small hand raking tools clean and free from asphalt build up. Do not use fuel oil or other harmful solvents to clean tools during the work.

10. Do not use mixture with any of these characteristics:
 - Segregated
 - Nonconforming temperature
Deficient or excessive asphalt cement content
Otherwise unsuitable to place on the roadway in the work

11. Remove and replace mixture placed on the roadway that the Engineer determines has unacceptable blemish levels from segregation, streaking, pulling and tearing, or other characteristics. Replace with acceptable mixture at the Contractor’s expense. Do not continually place mixtures with deficiencies. Do not place subsequent course lifts over another lift or courses placed on the same day while the temperature of the previously placed mix is 140 °F (60 °C) or greater.

12. Obtain the Engineer’s approval of the material compaction equipment. Perform the rolling as follows:
 a. Begin the rolling as close behind the spreader as possible without causing excessive distortion of the asphaltic concrete surface.
 b. Continue rolling until roller marks are no longer visible.
 c. Use pneumatic-tired rollers with breakdown rollers on all courses except asphaltic concrete OGFC, PEM and SMA or other mixes designated by the Engineer.

13. If applicable, taper or “feather” asphaltic concrete from full depth to a depth no greater than 0.5 in (13 mm) along curbs, gutters, raised pavement edges, and areas where drainage characteristics of the road must be retained. The Engineer will determine the location and extent of tapering.

G. Maintain Continuity of Operations
Coordinate plant production, transportation, and paving operations to maintain a continuous operation. If the spreading operations are interrupted, construct a transverse joint if the mixture immediately behind the paver screed cools to less than 250 °F (120 °C).

H. Construct the Joints

1. Construct Transverse Joints
 a. Construct transverse joints to facilitate full depth exposure of the course before resuming placement of the affected course.
 b. Properly clean and tack the vertical face of the transverse joint before placing additional material.
 c. Straightedge transverse joints immediately after forming the joint.
 d. Immediately correct any irregularity that exceeds 3/16 in. in 10 ft (5 mm in 3 m).

2. Construct Longitudinal Joints
 Clean and tack the vertical face of the longitudinal joint before placing adjoining material. Construct longitudinal joints so that the joint is smooth, well sealed, and bonded.

3. Construction Joint Detail for OGFC and PEM Mixtures
 In addition to meeting joint requirements described above, construct joints and transition areas for 12.5 mm OGFC and 12.5 mm PEM mixtures as follows:
 a. For projects which do not have milling included as a pay item:
 1) Place OGFC mixture meeting gradation requirements of 9.5 mm OGFC as specified in Section 828 on entrance and exit ramp gore areas and end of project construction joints.
 • Taper mixture from 3/8 in (10 mm) at end of project to full plan depth within maximum distance of spread for one load of mixture
 • Taper mixture placed on gore areas from thickness of the edge of the mainline to 3/8 in (10 mm) at the point of the ramp transverse joint.
 2) Construct the ramp transverse joint at the point specified in the plans or as directed by the Engineer.
 3) Mixture placed in the transition and gore areas will be paid for at the contract unit price for 12.5 mm OGFC or 12.5 mm PEM as applicable.
 b. For projects which have milling included as a pay item:
 1) Taper milling for a distance of no less than 50 ft (15 m) to a depth of 2 1/4 in (59 mm) at the point of the transverse joint
Section 400—Hot Mix Asphaltic Concrete Construction

2) Taper thickness, if needed, of the dense-graded surface mix within the 50 ft (15 m) distance to 1 1/2 in (40 mm) at the point of the transverse joint

3) Taper thickness of the 12.5 mm OGFC or 12.5 mm PEM to 3/4 in (19 mm) so that it ties in at grade level with the existing surface at the point of the transverse joint

I. Protect the Pavement

Protect sections of the newly finished pavement from traffic until the traffic will not mar the surface or alter the surface texture. If directed by the Engineer, use artificial methods to cool the newly finished pavement to open the pavement to traffic more quickly.

J. Modify the Job Mix Formula

If the Engineer determines that undesirable mixture or mat characteristics are being obtained, the job mix formula may require immediate adjustment.

400.3.06 Quality Acceptance

A. Acceptance Plans for Gradation and Asphalt Cement Content

The Contractor will randomly sample and test mixtures for acceptance on a lot basis. The Department will monitor the Contractor testing program and perform comparison and quality assurance testing.

1. Determine Lot Amount

A lot consists of the tons (megagrams) of asphaltic concrete produced and placed each production day. If this production is less than 500 tons (500 Mg), or its square yard (meter) equivalent, production may be incorporated into the next working day. The Engineer may terminate a lot when a pay adjustment is imminent if a plant or materials adjustment resulting in a probable correction has been made. Terminate all open lots at the end of the month, except for materials produced and placed during the adjustment period. The lot will be terminated as described in Subsection 400.5.01, "Adjustments.

If the final day’s production does not constitute a lot, the production may be included in the lot for the previous day’s run; or, the Engineer may treat the production as a separate lot with a corresponding lower number of tests.

2. Determine Lot Acceptance

Determine lot acceptance as found in Subsection 400.5.01, "Adjustments.

The Department will perform the following task:

Determine the pay factor by using the mean of the deviations from the job mix formula of the tests in each lot and apply it to Table 9—Mixture Acceptance Schedule for Surface Mixes or Table 10—Mixture Acceptance Schedule for Subsurface Mixes, whichever is appropriate. This mean will be determined by averaging the actual numeric value of the individual deviations from the job mix formula, disregarding whether the deviations are positive or negative amounts. Do not calculate lot acceptance using test results for materials not used in the Work. Determine the pay factor for each lot by multiplying the contract unit price by the appropriate pay factor from the Mixture Acceptance Schedule - Table 9 or Table 10. When two or more pay factors for a specific lot are less than 1.0, determine the adjusted payment by multiplying the contract unit price by the lowest pay factor.

If the mean of the deviations from the job mix formula of the lot acceptance tests for a control sieve or for asphalt cement content exceeds the tolerances established in the appropriate Mixture Acceptance Schedule, and if the Engineer determines that the material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer. If the Engineer determines that the material is not acceptable to leave in place, the materials shall be removed and replaced at the Contractor's expense.

3. Provide Quality Control Program

Provide a Quality Control Program as established in SOP 27 which includes:

- Assignment of quality control responsibilities to specifically named individuals who have been certified by the Office of Materials and Research
- Provisions for prompt implementation of control and corrective measures
- Provisions for communication with Project Manager, Bituminous Technical Services Engineer, and Testing Management Operations Supervisor at all times
- Provisions for reporting all test results daily through the Office of Materials and Research computerized Field Data Collection System; other checks, calibrations and records will be reported on a form developed by the Contractor and will be included as part of the project records
● Notification in writing of any change in quality control personnel

a. Certification Requirements:
 ● Use laboratory and testing equipment certified by the Department. (Laboratories which participate in and maintain AASHTO accreditation for testing asphaltic concrete mixtures will be acceptable in lieu of Departmental certification.)
 ● Provide certified quality control personnel to perform the sampling and testing. A Quality Control Technician (QCT) may be certified at three levels:
 1) Temporary Certification – must be a technician trainee who shall be given direct oversight by a certified Level 1 or Level 2 QCT while performing acceptance testing duties during the first 5 days of training. The trainee must complete qualification requirements within 30 production days after being granted temporary certification. A trainee who does not become qualified within 30 production days will not be re-eligible for temporary certification. A certified Level 1 or Level 2 QCT shall be at the plant at all times during production and shipment of mixture to monitor work of the temporarily certified technician.
 2) Level 1 – must demonstrate they are competent in performing the process control and acceptance tests and procedures related to hot mix asphalt production and successfully pass a written exam.
 3) Level 2 – must meet Level 1 requirements and must be capable of and responsible for making process control adjustments, and successfully pass a written exam.
 ● Technician certification is valid for 3 years from the date on the technician’s certificate unless revoked or suspended. Eligible technicians may become certified through special training and testing approved by the Office of Materials and Research. Technicians who lose their certification due to falsification of test data will not be eligible for recertification in the future unless approved by the State Materials and Research Engineer.

b. Quality Control Management
 1) Designate at least one Level 2 QCT as manager of the quality control operation. The Quality Control Manager shall meet the following requirements:
 ● Be accountable for actions of other QCT personnel
 ● Ensure that all applicable sampling requirements and frequencies, test procedures, and Standard Operating Procedures are adhered to
 ● Ensure that all reports, charts, and other documentation is completed as required
 2) Provide QCT personnel at the plant as follows:
 ● If daily production for all mix types is to be greater than 250 tons (megagrams), have a QCT person at the plant at all times during production and shipment of mixture until all required acceptance tests have been completed
 ● If daily production for all mix types will not be greater than 250 tons (megagrams) a QCT may be responsible for conducting tests at up to two plants, subject to random number sample selection
 ● Have available at the plant or within immediate contact by phone or radio a Level 2 QCT responsible for making prompt process control adjustments as necessary to correct the mix
 3) Sampling, Testing, and Inspection Requirements.
 Provide all sample containers, extractants, forms, diaries, and other supplies subject to approval of the Engineer.
 Perform daily sampling, testing, and inspection of mixture production that meets the following requirements:
 (a) Randomly sample mixtures according to GSP 15, and GDT 73 (Method C) and test on a lot basis. In the event less than the specified number of samples are taken, obtain representative 6 in (150 mm) cores from the roadway at a location where the load not sampled was placed. Take enough cores to ensure minimum sample size requirements are met for each sample needed.
 (b) Maintain a printed copy of the computer generated random sampling data as a part of the project records.
 (c) Perform sampling, testing, and inspection duties of GSP 21.
(d) Perform extraction or ignition test (GDT 83 or GDT 125) and extraction analysis (GDT 38). If the ignition oven is used, a printout of sample data including weights shall become a part of the project records. For asphalt cement content only, digital printouts of liquid asphalt cement weights may be substituted in lieu of an extraction test for plants with digital recorders. Calculate the asphalt content from the ticket representing the mixture tested for gradation.

(e) Save extracted aggregate, opposite quarters, and remaining material (for possible referee testing) of each sample as follows:
 • Store in properly labeled, suitable containers
 • Secure in a protected environment
 • Store for three working days. If not obtained by the Department, within three days they may be discarded.

(f) Add the following information on load tickets from which a sample or temperature check is taken:
 • Mixture temperature
 • Signature of the QCT person performing the testing

(g) Calibrate the lime system when hydrated lime is included in the mixture:
 • Perform a minimum of twice weekly during production
 • Post results at the plant for review
 • Provide records of materials invoices upon request (including asphalt cement, aggregate, hydrated lime, etc.)

(h) Take action if acceptance test results are outside Mixture Control Tolerances of Section 828.
 • One sample out of tolerance
 1) Contact Level 2 - QCT to determine if a plant adjustment is needed
 2) Immediately run a process control sample. Make immediate plant adjustments if this sample is also out of tolerance

 3) Test additional process control samples as needed to ensure corrective action taken appropriately controls the mixture
 • Two consecutive acceptance samples of the same mix type out of tolerance regardless of Lot or mix design level, or three consecutive acceptance samples out of tolerance regardless of mix type
 1) Stop plant production immediately
 2) Reject any mixture already in storage that:
 • Deviates more than 10 percent in gradation from the job mix formula based on the acceptance sample
 • Deviates more than 0.7 percent in asphalt content from the job mix formula based on the acceptance sample
 3) Make a plant correction to any mix type out of tolerance prior to resuming production
 • Do not send any mixture to the project before test results of a process control sample meets Mixture Control Tolerances
 • Reject any mixture produced at initial restarting that does not meet Mixture Control Tolerances

 4) Comparison Testing and Quality Assurance Program
 Periodic comparison testing by the Department will be required of each QCT to monitor consistency of equipment and test procedures. The Department will take independent samples to monitor the Contractor's quality control program.
 a) Comparison Sampling and Testing

NOTE: Determine mixture temperature at least once per hour of production for OGFC and PEM mixes.

(3) Test additional process control samples as needed to ensure corrective action taken appropriately controls the mixture

• Two consecutive acceptance samples of the same mix type out of tolerance regardless of Lot or mix design level, or three consecutive acceptance samples out of tolerance regardless of mix type
 1) Stop plant production immediately
 2) Reject any mixture already in storage that:
 • Deviates more than 10 percent in gradation from the job mix formula based on the acceptance sample
 • Deviates more than 0.7 percent in asphalt content from the job mix formula based on the acceptance sample
 3) Make a plant correction to any mix type out of tolerance prior to resuming production
 • Do not send any mixture to the project before test results of a process control sample meets Mixture Control Tolerances
 • Reject any mixture produced at initial restarting that does not meet Mixture Control Tolerances

4) Comparison Testing and Quality Assurance Program
 Periodic comparison testing by the Department will be required of each QCT to monitor consistency of equipment and test procedures. The Department will take independent samples to monitor the Contractor's quality control program.
 a) Comparison Sampling and Testing

258
Retain samples for comparison testing and referee testing if needed as described in Subsection 400.3.06.A.3.b.3. Discard these samples only if the Contractor's acceptance test results meet a 1.00 pay factor and the Department does not procure the samples within three working days.

The Department will test comparison samples on a random basis. Results will be compared to the respective contractor acceptance tests and the maximum difference shall be as follows:

Table 6—Allowable Percent Difference Between Department and Contractor Acceptance Tests

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>SURFACE</th>
<th>SUB-SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 in. (12.5 mm)</td>
<td>3.5%</td>
<td>4.0%</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm)</td>
<td>3.5%</td>
<td>4.0%</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>3.5%</td>
<td>3.5%</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>2.5%</td>
<td>3.0%</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>2.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>A.C.</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

NOTE: Pavement courses to be overlaid with OGFC or PEM mixes are considered surface mixes.

(1) If test comparisons are within these tolerances:
- Continue production
- Use the Contractor's tests for acceptance of the lot

(2) If test comparisons are not within these tolerances:
- Another Departmental technician will test the corresponding referee sample
- Results of the referee sample will be compared to the respective contractor and Departmental tests using the tolerance for comparison samples given above.
 (a) If referee test results are within the above tolerances when compared to the Contractor acceptance test, use the Contractor's test for acceptance of the effected lot.
 (b) If referee test results are not within the above tolerances when compared to the Contractor acceptance test, the Department will review the Contractor's quality control methods and determine if a thorough investigation is needed.

b) Quality Assurance Sampling and Testing

(1) Randomly take a minimum of two quality assurance samples from the lesser of five days or five lots of production regardless of mix type or number of projects.

(2) Compare test deviation from job mix formula to Mixture Control Tolerances in Section 828. If results are outside these tolerances, another sample from the respective mix may be taken.

NOTE: For leveling courses less than 110 lb/yd² (60 kg/m²) that have quality assurance test results outside the Mixture Control Tolerances of Section 828, use the Department's test results only and applicable pay factors will apply.
If test results of the additional sample are not within Mixture Control Tolerances, the Department will take the following action:

- Take random samples from throughout the lot as in Subsection 400.3.06.A.3.b.3 and use these test results for acceptance and in calculations for the monthly plant rating. Applicable pay factors will apply and the contractor QCT test results will not be included in pay factor calculations nor in the monthly plant rating.
- Determine if the Contractor's quality control program is satisfactory and require prompt corrective action by the Contractor if specification requirements are not being met.
- Determine if the QCT has not followed Departmental procedures or has provided erroneous information.
- Take samples of any in-place mixture represented by unacceptable QCT tests and use the additional sample results for acceptance and in calculations for the monthly plant rating and apply applicable pay factors. The Contractor QCT tests will not be included in the pay factor calculations nor in the monthly plant rating.

B. Compaction

Determine the mixture compaction using either GDT 39 or GDT 59. The compaction is accepted in lots defined in Subsection 400.3.06.A. —Acceptance Plans for Gradation and Asphalt Cement Content™ and is within the same lot boundaries as the mixture acceptance.

1. Calculate Pavement Mean Air Voids

 The Department will calculate the pavement air voids placed within each lot as follows:
 a. One test per sub-lot.
 b. Average the results of all tests run on randomly selected sites in that lot.
 c. Select the random sites using GDT 73.

Density tests are not required for asphaltic concrete placed at 90 lbs/yard² (50 kg/m²) or less, 4.75 mm mix, and asphaltic concrete OGFC, PEM and mixes placed as variable depth or width leveling. Compact these courses to the Engineer’s satisfaction. Density tests will not be performed on turn-outs and driveways.

The targeted maximum Pavement Mean Air Void content for all Superpave and Stone Matrix Asphalt mixtures is 5.0 percent. Ensure that the maximum Pavement Mean Air Voids for all Superpave and Stone Matrix Asphalt mixtures does not exceed 7.0 percent. The maximum Pavement Mean Air Voids for 2 foot shoulder widening is 9.0 percent. The adjustment period for density shall be four lots or four production days, whichever is less, in order for the contractor to ensure maximum compactive effort has been achieved which will yield no more than the specified maximum allowed Mean Air Voids. If the contractor needs to adjust the mixture to improve density results, a change in the job mix formula may be requested for approval during the adjustment period so long as the following values are not exceeded:

- Coarse pay sieve ± 4%
- No. 8 (2.36 mm) sieve ± 2%
- No. 200 (75 μm) sieve ± 1%
- Asphalt Content ± 0.2%

 All value changes must still be within specification limits

If the Office of Materials and Research is satisfied that the contractor has exerted the maximum compactive effort and is not able to maintain Pavement Mean Air Voids at no more than 7.0%, the Engineer may establish a maximum target for Pavement Mean Air Voids. Mixture placed during the adjustment period for density shall meet the requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01.C. —Calculate Mean Pavement Air Voids.” Mixture which does not meet these density requirements shall be paid for using the applicable pay factor.

If the mean air voids of the pavement placed within a lot exceeds 100% of the maximum target air voids, if established and the Engineer determines that the material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer.

2. Obtain Uniform Compaction
For a lot to receive a pay factor of 1.00 for compaction acceptance, the air void range cannot exceed 4 percent for new construction or 5 percent for resurfacing projects. The range is the difference between the highest and lowest acceptance test results within the affected lot. If the air void range exceeds these tolerances, apply a Pay Factor of 95%.

The 5% reduced pay factor for the compaction range does not apply in these instances:
- The mixture is placed during the adjustment period as defined in Subsection 400.5.01.A, “Materials Produced and Placed During the Adjustment Period.”
- All air void results within a given lot are less than 7.0%.
- A lot containing two sublot or less.
- On two foot trench widening.

C. Surface Tolerance

In this Specification, pavement courses to be overlaid with an Open-Graded Friction Course or PEM are considered surface courses. All Open-Graded Friction Courses or PEM are to be evaluated after the roadway has been opened to traffic for a minimum of 5 days and a maximum of 15 days. Other asphalt paving is subject to straightedge and visual inspection and irregularity correction as shown below:

1. Visual and Straightedge Inspection

 Paving is subject to visual and straightedge inspection during and after construction operations until Final Acceptance. Locate surface irregularities as follows:
 a. Keep a 10 ft (3 m) straightedge near the paving operation to measure surface irregularities on courses. Provide the straightedge and the labor for its use.
 b. Inspect the base, intermediate, and surface course surfaces with the straightedge to detect irregularities.
 c. Correct irregularities that exceed 3/16 in. in 10 ft (5 mm in 3 m) for base and intermediate courses, and 1/8 in. in 10 ft (3 mm in 3 m) for surface courses.

 Mixture or operating techniques will be stopped if irregularities such as rippling, tearing, or pulling occur and the Engineer suspects a continuing equipment problem. Stop the paving operation and correct the problem. Correct surface course evaluations on individual Laser Road Profiler test sections, normally 1 mile (1 km) long.

2. Target Surface Smoothness

 The Department will use the Laser Road Profiler method to conduct acceptance testing for surface course tolerance according to GDT 126. This testing will be performed only on:
 - Surface courses on Projects with mainline traveled way measuring a minimum distance of 1 mile
 - Ramps more than 0.5 mile (800 m) long

 Achieve the smoothest possible ride during construction. Do not exceed the target Laser Road Profiler smoothness index as shown below:

 Table 7—Pavement Smoothness Requirements—New Construction

<table>
<thead>
<tr>
<th>Construction Description</th>
<th>Smoothness Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphallic concrete OGFC and PEM on interstates and asphallic concrete OGFC and PEM on new construction on state routes</td>
<td>750</td>
</tr>
<tr>
<td>Asphallic Concrete SMA and other resurfacing on interstates, asphallic concrete OGFC and PEM resurfacing on state routes, and new construction</td>
<td>825</td>
</tr>
<tr>
<td>All other resurfacing on state routes (excluding LARP, PR, airports, etc.)</td>
<td>900</td>
</tr>
</tbody>
</table>

 If the target values are not achieved, immediately adjust the operations to meet the target values. Corrective work is required if the surface smoothness exceeds the Laser Road Profiler smoothness index shown below:
Table 8—Pavement Smoothness Requirements—Corrective Work

<table>
<thead>
<tr>
<th>Construction Description</th>
<th>Smoothness Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic concrete OGFC and PEM on interstates and asphaltic concrete OGFC and PEM on new construction on state routes</td>
<td>825</td>
</tr>
<tr>
<td>Asphaltic Concrete SMA and other resurfacing on interstates, asphaltic concrete OGFC and PEM resurfacing on state routes, and new construction</td>
<td>900</td>
</tr>
<tr>
<td>All other resurfacing on state routes (excluding LARP, PR, airports, etc.)</td>
<td>1025</td>
</tr>
</tbody>
</table>

If surface tolerance deficiencies need correction, obtain the Engineer’s approval of the methods and type mix used.

3. Bridge Approach Ride Quality

The following are subject to a ride quality test by the Department for 100 ft. (30 m) of roadway approaching each end of a bridge using the Lightweight Profiler:

- A state road with 4 lanes or more
- A 2-lane state road with a current traffic count of 2,000 vpd or more
- Locations designated on the Plans

All other bridge approaches shall meet the 1/8 in. in 10 ft (3 mm in 3 m) straightedge requirement. Test ride quality as follows:

a. The Department will determine a profile index value according to test method GDT 134.
b. The Department will average the profile index value from the right and left wheelpath for each 100 ft (30 m) section for each lane. Keep the profile index value under 30 in/mile (475 mm/km).
c. Meet the profile index value for the 100 ft (30 m) section of roadway up to the joint with the approach slab.
d. Schedule the ride quality testing 5 days before needed by contacting the Office of Materials and Research. Clean and clear obstructions from the test area.
e. Correct the sections that do not meet the ride quality criteria of this Specification. After correction, these sections are subject to retesting with the Lightweight Profiler. The Engineer shall direct the type of correction method, which may include:

- Milling
- Grinding
- Removing and replacing the roadway

No additional compensation will be made.

The Department will perform ride quality testing up to two times on the bridge approaches at no cost to the Contractor. Additional profilograph testing will cost the Contractor $500 per test.

D. Reevaluation of Lots

When lots are reevaluated as shown in Subsection 106.03, “Samples, Tests, Cited Specifications,” sampling and testing is according to GDT 73. Request for reevaluation shall be made within 5 working days of notification of the lot results. The following procedures apply:

1. Mixture Acceptance

 The Department will take the same number of new tests on cores taken at a location where the load sampled was placed and will use only those core results for acceptance.

 The Department will use the mean of the deviations from the job mix formula for these tests to determine acceptance based on the appropriate column in the Asphalt Cement Content and Aggregate Gradation of Asphalt Concrete Mixture Acceptance Schedule—Table 9 or 10.

2. Compaction Acceptance

 The Department will reevaluate the lot through additional testing by cutting the same number of cores originally obtained and averaging these results with the results from the original density tests. The Department will use the
average to determine acceptance according to the Compaction Acceptance Schedule in Subsection 400.5.01.C, "Calculate Pavement Mean Air Voids".
Table 9—Mixture Acceptance Schedule—Surface Mixes

<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Pay Factor</th>
<th>1 Test</th>
<th>2 Tests</th>
<th>3 Tests</th>
<th>4 Tests</th>
<th>5 Tests</th>
<th>6 Tests</th>
<th>7 Tests</th>
<th>8 Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cement Content (Extraction, Ignition)</td>
<td>1.00</td>
<td>0.00 - 0.70</td>
<td>0.00 - 0.54</td>
<td>0.00 - 0.46</td>
<td>0.00 - 0.41</td>
<td>0.00 - 0.38</td>
<td>0.00 - 0.35</td>
<td>0.00 - 0.32</td>
<td>0.00 - 0.30</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.71 - 0.80</td>
<td>0.55 - 0.61</td>
<td>0.47 - 0.52</td>
<td>0.42 - 0.46</td>
<td>0.39 - 0.43</td>
<td>0.36 - 0.39</td>
<td>0.33 - 0.36</td>
<td>0.31 - 0.34</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.81 - 0.90</td>
<td>0.62 - 0.68</td>
<td>0.53 - 0.58</td>
<td>0.47 - 0.51</td>
<td>0.44 - 0.47</td>
<td>0.40 - 0.45</td>
<td>0.37 - 0.40</td>
<td>0.35 - 0.37</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>0.91 - 1.00</td>
<td>0.69 - 0.75</td>
<td>0.59 - 0.64</td>
<td>0.52 - 0.56</td>
<td>0.48 - 0.52</td>
<td>0.44 - 0.47</td>
<td>0.41 - 0.44</td>
<td>0.38 - 0.41</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>1.01 - 1.19</td>
<td>0.76 - 0.82</td>
<td>0.65 - 0.69</td>
<td>0.57 - 0.61</td>
<td>0.53 - 0.56</td>
<td>0.48 - 0.51</td>
<td>0.45 - 0.47</td>
<td>0.42 - 0.44</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>1.20 - 1.40</td>
<td>0.83 - 0.85</td>
<td>0.70 - 0.72</td>
<td>0.62 - 0.64</td>
<td>0.57 - 0.59</td>
<td>0.52 - 0.55</td>
<td>0.48 - 0.51</td>
<td>0.45 - 0.48</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm) Sieve (12.5 mm OGFC, 12.5 mm PEM, 12.5 mm Superpave)</td>
<td>1.00</td>
<td>0.00 - 0.9</td>
<td>0.00 - 6.6</td>
<td>0.00 - 5.6</td>
<td>0.00 - 5.0</td>
<td>0.00 - 4.6</td>
<td>0.00 - 4.2</td>
<td>0.00 - 3.9</td>
<td>0.00 - 3.6</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>9.1 - 10.0</td>
<td>6.7 - 7.5</td>
<td>5.7 - 6.3</td>
<td>5.1 - 5.6</td>
<td>4.7 - 5.2</td>
<td>4.3 - 4.7</td>
<td>4.0 - 4.4</td>
<td>3.7 - 4.1</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>10.1 - 11.9</td>
<td>7.6 - 8.4</td>
<td>6.4 - 7.0</td>
<td>5.7 - 6.3</td>
<td>5.3 - 5.8</td>
<td>4.8 - 5.3</td>
<td>4.5 - 5.0</td>
<td>4.2 - 4.6</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>12.0 - 13.0</td>
<td>8.5 - 9.3</td>
<td>7.1 - 7.7</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.3</td>
<td>5.4 - 5.8</td>
<td>5.1 - 5.4</td>
<td>4.7 - 5.0</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>13.1 - 14.0</td>
<td>9.4 - 10.2</td>
<td>7.8 - 8.6</td>
<td>7.0 - 7.6</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.3</td>
<td>5.5 - 5.9</td>
<td>5.1 - 5.5</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.1 - 14.5</td>
<td>10.3 - 10.5</td>
<td>8.7 - 8.9</td>
<td>7.7 - 8.0</td>
<td>7.0 - 7.5</td>
<td>6.4 - 6.8</td>
<td>6.0 - 6.4</td>
<td>5.6 - 6.0</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm) Sieve (12.5 mm SMA)</td>
<td>1.00</td>
<td>0.0 - 6.8</td>
<td>0.00 - 5.0</td>
<td>0.00 - 4.2</td>
<td>0.00 - 3.8</td>
<td>0.00 - 3.4</td>
<td>0.00 - 3.2</td>
<td>0.00 - 2.9</td>
<td>0.00 - 2.7</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>6.9 - 7.5</td>
<td>5.1 - 5.6</td>
<td>4.6 - 4.7</td>
<td>3.9 - 4.2</td>
<td>3.5 - 3.9</td>
<td>3.3 - 3.5</td>
<td>3.0 - 3.3</td>
<td>2.8 - 3.1</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>7.6 - 8.9</td>
<td>5.7 - 6.3</td>
<td>4.8 - 5.2</td>
<td>4.3 - 4.7</td>
<td>4.0 - 4.4</td>
<td>3.6 - 4.0</td>
<td>3.4 - 3.8</td>
<td>3.2 - 3.4</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>9.0 - 9.8</td>
<td>6.4 - 7.0</td>
<td>5.3 - 5.8</td>
<td>4.8 - 5.2</td>
<td>4.5 - 4.8</td>
<td>4.1 - 4.4</td>
<td>3.9 - 4.1</td>
<td>3.5 - 3.8</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>9.9 - 10.5</td>
<td>7.1 - 7.6</td>
<td>5.9 - 6.4</td>
<td>5.3 - 5.7</td>
<td>4.9 - 5.2</td>
<td>4.5 - 4.7</td>
<td>4.2 - 4.4</td>
<td>3.9 - 4.1</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>10.6 - 10.9</td>
<td>7.7 - 7.9</td>
<td>6.5 - 6.7</td>
<td>5.8 - 6.0</td>
<td>5.3 - 5.6</td>
<td>4.8 - 5.1</td>
<td>4.5 - 4.8</td>
<td>4.2 - 4.5</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) Sieve (9.5 mm OGFC, 9.5 mm Superpave)</td>
<td>1.00</td>
<td>0.00 - 9.0</td>
<td>0.00 - 6.7</td>
<td>0.00 - 5.7</td>
<td>0.00 - 5.2</td>
<td>0.00 - 4.8</td>
<td>0.00 - 4.4</td>
<td>0.00 - 4.1</td>
<td>0.00 - 3.8</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>9.1 - 10.0</td>
<td>6.8 - 7.6</td>
<td>5.8 - 6.3</td>
<td>5.3 - 5.8</td>
<td>4.9 - 5.4</td>
<td>4.5 - 4.9</td>
<td>4.2 - 4.6</td>
<td>3.9 - 4.3</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>10.1 - 11.9</td>
<td>7.7 - 8.5</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.4</td>
<td>5.5 - 5.9</td>
<td>5.0 - 5.4</td>
<td>4.7 - 5.0</td>
<td>4.4 - 4.7</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>12.0 - 13.0</td>
<td>8.6 - 9.4</td>
<td>7.0 - 7.5</td>
<td>6.5 - 7.0</td>
<td>6.0 - 6.5</td>
<td>5.5 - 5.9</td>
<td>5.1 - 5.5</td>
<td>4.8 - 5.1</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>13.1 - 14.0</td>
<td>9.5 - 10.2</td>
<td>7.6 - 8.0</td>
<td>7.1 - 7.6</td>
<td>6.6 - 7.0</td>
<td>6.0 - 6.4</td>
<td>5.6 - 5.9</td>
<td>5.2 - 5.5</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.1 - 14.5</td>
<td>10.3 - 10.5</td>
<td>8.1 - 8.3</td>
<td>7.7 - 8.0</td>
<td>7.1 - 7.5</td>
<td>6.5 - 6.9</td>
<td>6.0 - 6.4</td>
<td>5.6 - 5.9</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 6.8</td>
<td>0.00 - 5.0</td>
<td>0.00 - 4.3</td>
<td>0.00 - 3.9</td>
<td>0.00 - 3.6</td>
<td>0.00 - 3.3</td>
<td>0.00 - 3.1</td>
<td>0.00 - 2.8</td>
</tr>
</tbody>
</table>
Section 400—Hot Mix Asphaltic Concrete Construction

<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Pay Factor</th>
<th>Mean of the Deviations from the Job Mix Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 Test</td>
</tr>
<tr>
<td>(9.5 mm SMA)</td>
<td>0.98</td>
<td>6.9 - 7.5</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>7.6 - 8.9</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>9.0 - 9.8</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>9.9 - 10.5</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>10.6 - 10.9</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve (OGFC, PEM, Superpave and 4.75 mm mixes)</td>
<td>1.00</td>
<td>0.00 - 7.0</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>7.1 - 8.0</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>8.1 - 9.0</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>9.1 - 10.9</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>11.0 - 12.0</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>12.1 - 12.5</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve (12.5 mm SMA, 9.5 mm SMA)</td>
<td>1.00</td>
<td>0.00 - 5.3</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>5.4 - 6.0</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>6.1 - 6.8</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>6.9 - 8.2</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>8.3 - 9.0</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>9.1 - 9.4</td>
</tr>
</tbody>
</table>

No. 8 (2.36 mm) Sieve for OGFC and PEM mixes: When the mean of the deviations from the Job Mix Formula for a particular lot exceeds the tolerance for a 1.00 pay factor in the appropriate column, the lot will be paid for at 0.50 of the Contract Price.
Table 10—Mixture Acceptance Schedule—Subsurface Mixes

<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Pay Factor</th>
<th>Mean of the Deviations from the Job Mix Formula</th>
<th>1 Test</th>
<th>2 Tests</th>
<th>3 Tests</th>
<th>4 Tests</th>
<th>5 Tests</th>
<th>6 Tests</th>
<th>7 Tests</th>
<th>8 Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cement Content</td>
<td>1.00</td>
<td>0.00 - 0.80</td>
<td>0.00 - 0.61</td>
<td>0.00 - 0.52</td>
<td>0.00 - 0.46</td>
<td>0.00 - 0.43</td>
<td>0.00 - 0.39</td>
<td>0.00 - 0.36</td>
<td>0.00 - 0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.81 - 0.90</td>
<td>0.62 - 0.68</td>
<td>0.53 - 0.58</td>
<td>0.47 - 0.51</td>
<td>0.44 - 0.47</td>
<td>0.40 - 0.43</td>
<td>0.37 - 0.40</td>
<td>0.35 - 0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.91 - 1.00</td>
<td>0.69 - 0.75</td>
<td>0.59 - 0.64</td>
<td>0.52 - 0.56</td>
<td>0.48 - 0.52</td>
<td>0.44 - 0.47</td>
<td>0.41 - 0.44</td>
<td>0.38 - 0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>1.01 - 1.19</td>
<td>0.76 - 0.82</td>
<td>0.65 - 0.69</td>
<td>0.57 - 0.61</td>
<td>0.53 - 0.56</td>
<td>0.48 - 0.51</td>
<td>0.45 - 0.47</td>
<td>0.42 - 0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>1.20 - 1.40</td>
<td>0.83 - 0.85</td>
<td>0.70 - 0.72</td>
<td>0.62 - 0.64</td>
<td>0.57 - 0.59</td>
<td>0.52 - 0.55</td>
<td>0.48 - 0.51</td>
<td>0.45 - 0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>1.41 - 1.60</td>
<td>0.86 - 0.88</td>
<td>0.73 - 0.75</td>
<td>0.65 - 0.67</td>
<td>0.60 - 0.63</td>
<td>0.56 - 0.60</td>
<td>0.52 - 0.56</td>
<td>0.49 - 0.52</td>
<td></td>
</tr>
<tr>
<td>1/2 in. (12.5 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 12.9</td>
<td>0.00 - 8.1</td>
<td>0.00 - 6.9</td>
<td>0.00 - 6.1</td>
<td>0.00 - 5.5</td>
<td>0.00 - 5.0</td>
<td>0.00 - 4.7</td>
<td>0.00 - 4.4</td>
<td></td>
</tr>
<tr>
<td>(25 mm Superpave)</td>
<td>0.98</td>
<td>13.0 - 14.0</td>
<td>8.2 - 9.1</td>
<td>7.0 - 7.7</td>
<td>6.2 - 6.8</td>
<td>5.6 - 6.1</td>
<td>5.1 - 5.6</td>
<td>4.8 - 5.2</td>
<td>4.5 - 4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>14.1 - 15.0</td>
<td>9.2 - 10.1</td>
<td>7.8 - 8.5</td>
<td>6.9 - 7.5</td>
<td>6.2 - 6.7</td>
<td>5.7 - 6.1</td>
<td>5.3 - 5.7</td>
<td>5.0 - 5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>15.1 - 16.0</td>
<td>10.2 - 11.1</td>
<td>8.6 - 9.3</td>
<td>7.6 - 8.2</td>
<td>6.8 - 7.4</td>
<td>6.2 - 6.7</td>
<td>5.8 - 6.3</td>
<td>5.5 - 5.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>16.1 - 17.0</td>
<td>11.2 - 11.5</td>
<td>9.4 - 9.6</td>
<td>8.3 - 8.6</td>
<td>7.5 - 7.8</td>
<td>6.8 - 7.0</td>
<td>6.4 - 6.5</td>
<td>6.0 - 6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>17.1 - 18.0</td>
<td>11.6 - 11.9</td>
<td>9.7 - 9.9</td>
<td>8.7 - 9.0</td>
<td>7.9 - 8.1</td>
<td>7.1 - 7.3</td>
<td>6.6 - 6.8</td>
<td>6.2 - 6.4</td>
<td></td>
</tr>
<tr>
<td>1/2 in. (12.5 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 9.7</td>
<td>0.00 - 6.0</td>
<td>0.00 - 5.2</td>
<td>0.00 - 4.6</td>
<td>0.00 - 4.1</td>
<td>0.00 - 3.8</td>
<td>0.00 - 3.5</td>
<td>0.00 - 3.3</td>
<td></td>
</tr>
<tr>
<td>(19 mm SMA)</td>
<td>0.98</td>
<td>9.8 - 10.5</td>
<td>6.2 - 6.8</td>
<td>5.3 - 5.8</td>
<td>4.7 - 5.1</td>
<td>4.2 - 4.6</td>
<td>3.9 - 4.2</td>
<td>3.6 - 3.9</td>
<td>3.4 - 3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>10.6 - 11.2</td>
<td>6.9 - 7.8</td>
<td>5.9 - 6.4</td>
<td>5.2 - 5.6</td>
<td>4.7 - 5.0</td>
<td>4.3 - 4.6</td>
<td>4.0 - 4.3</td>
<td>3.8 - 4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>11.3 - 12.0</td>
<td>7.9 - 8.3</td>
<td>6.5 - 7.0</td>
<td>5.7 - 6.1</td>
<td>5.1 - 5.6</td>
<td>4.7 - 5.0</td>
<td>4.4 - 4.7</td>
<td>4.1 - 4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>12.1 - 12.8</td>
<td>8.4 - 8.6</td>
<td>7.1 - 7.2</td>
<td>6.2 - 6.5</td>
<td>5.7 - 5.9</td>
<td>5.1 - 5.3</td>
<td>4.8 - 4.9</td>
<td>4.5 - 5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>12.9 - 13.5</td>
<td>8.7 - 8.9</td>
<td>7.3 - 7.4</td>
<td>6.6 - 6.8</td>
<td>6.0 - 6.1</td>
<td>5.4 - 5.5</td>
<td>5.0 - 5.1</td>
<td>4.7 - 4.8</td>
<td></td>
</tr>
<tr>
<td>3/8 in. (9.5 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 10.0</td>
<td>0.00 - 7.5</td>
<td>0.00 - 6.3</td>
<td>0.00 - 5.6</td>
<td>0.00 - 5.2</td>
<td>0.00 - 4.7</td>
<td>0.00 - 4.4</td>
<td>0.00 - 4.1</td>
<td></td>
</tr>
<tr>
<td>(19 mm Superpave, 12.5</td>
<td>0.98</td>
<td>10.1 - 11.9</td>
<td>7.6 - 8.4</td>
<td>6.4 - 7.0</td>
<td>5.7 - 6.3</td>
<td>5.3 - 5.8</td>
<td>4.8 - 5.3</td>
<td>4.5 - 5.0</td>
<td>4.2 - 4.6</td>
<td></td>
</tr>
<tr>
<td>mm Superpave)</td>
<td>0.95</td>
<td>12.0 - 13.0</td>
<td>8.5 - 9.3</td>
<td>7.1 - 7.7</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.3</td>
<td>5.4 - 5.8</td>
<td>5.1 - 5.4</td>
<td>4.7 - 5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>13.1 - 14.0</td>
<td>9.4 - 10.2</td>
<td>7.8 - 8.6</td>
<td>7.0 - 7.6</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.3</td>
<td>5.5 - 5.9</td>
<td>5.1 - 5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>14.1 - 14.5</td>
<td>10.3 - 10.5</td>
<td>8.7 - 8.9</td>
<td>7.7 - 8.0</td>
<td>7.0 - 7.5</td>
<td>6.4 - 6.8</td>
<td>6.0 - 6.4</td>
<td>5.6 - 6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.6 - 15.0</td>
<td>10.6 - 10.8</td>
<td>9.0 - 9.2</td>
<td>8.1 - 8.4</td>
<td>7.6 - 7.8</td>
<td>6.9 - 7.3</td>
<td>6.5 - 6.8</td>
<td>6.1 - 6.5</td>
<td></td>
</tr>
<tr>
<td>No. 4 (4.75 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 10.0</td>
<td>0.00 - 7.6</td>
<td>0.00 - 6.3</td>
<td>0.00 - 5.8</td>
<td>0.00 - 5.4</td>
<td>0.00 - 4.9</td>
<td>0.00 - 4.6</td>
<td>0.00 - 4.3</td>
<td></td>
</tr>
</tbody>
</table>
Section 400—Hot Mix Asphaltic Concrete Construction

<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Pay Factor</th>
<th>Mean of the Deviations from the Job Mix Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 Test</td>
</tr>
<tr>
<td>(9.5 mm Superpave)</td>
<td>0.98</td>
<td>10.1 - 11.9</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>12.0 - 13.0</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>13.1 - 14.0</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>14.1 - 14.5</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.6 - 15.0</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 8.0</td>
</tr>
<tr>
<td>(All mixes except SMA)</td>
<td>0.98</td>
<td>8.1 - 9.0</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>9.1 - 10.0</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>10.1 - 11.9</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>12.0 - 13.0</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>13.1 - 14.0</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 6.0</td>
</tr>
<tr>
<td>(19 mm SMA)</td>
<td>0.98</td>
<td>6.1 - 6.8</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>6.9 - 7.5</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>7.6 - 8.9</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>9.0 - 9.8</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>9.9 - 10.5</td>
</tr>
</tbody>
</table>
E. Segregated Mixture

Prevent mixture placement that yields a segregated mat by following production, storage, loading, placing, and handling procedures. Also, make needed plant modifications and provide necessary auxiliary equipment. (See Subsection 400.1.01, “Definitions.”)

If the mixture is segregated in the finished mat, the Department will take actions based on the degree of segregation. The actions are described below.

1. Unquestionably Unacceptable Segregation
 When the Engineer determines that the segregation in the finished mat is unquestionably unacceptable, follow these measures:
 a. Suspend Work and require the Contractor to take positive corrective action. The Department will evaluate the segregated areas to determine the extent of the corrective work to the in-place mat as follows:
 - Perform extraction and gradation analysis by taking 6 in (150 mm) cores from typical, visually unacceptable segregated areas.
 - Determine the corrective work according to Subsection 400.3.06.E.3.
 b. Require the Contractor to submit a written plan of measures and actions to prevent further segregation. Work will not continue until the plan is submitted to and approved by the Department.
 c. When work resumes, place a test section not to exceed 500 tons (500 Mg) of the affected mixture for the Department to evaluate. If a few loads show that corrective actions were not adequate, follow the measures above beginning with step 1.a. above. If the problem is solved, Work may continue.

2. Unacceptable Segregation Suspected
 When the Engineer observes segregation in the finished mat and suspects that it may be unacceptable, follow these measures:
 a. Allow work to continue at Contractor’s risk.
 b. Require Contractor to immediately and continually adjust operation until the visually apparent segregated areas are eliminated from the finished mat. The Department will immediately investigate to determine the severity of the apparent segregation as follows:
 - Take 6 in (150 mm) cores from typical areas of suspect segregation.
 - Test the cores for compliance with the mixture control tolerances in Section 828.
 When these tolerances are exceeded, suspend work for corrective action as outlined in Subsection 400.3.06.E.3.

3. Corrective Work
 a. Remove and replace (at the Contractor’s expense) any segregated area where the gradation on the control sieves is found to vary 10 percent or more from the approved job mix formula, the asphalt cement varies 1.0% or more from the approved job mix formula, or if in-place air voids exceed 13.5% based on GDT 39. The control sieves for each mix type are shown in Subsection 400.5.01.B “Determine Lot Acceptance.”
 b. Subsurface mixes. For subsurface mixes, limit removal and replacement to the full lane width and no less than 10 ft. (3 m) long and as approved by the Engineer.
 c. Surface Mixes. For surface mixes, ensure that removal and replacement is not less than the full width of the affected lane and no less than the length of the affected areas as determined by the Engineer. Surface tolerance requirements apply to the corrected areas for both subsurface and surface mixes.

400.3.07 Contractor Warranty and Maintenance

A. Contractor’s Record

Maintain a dated, written record of the most recent plant calibration. Keep this record available for the Engineer’s inspection at all times. Maintain records in the form of:

- Graphs
- Tables
- Charts
- Mechanically prepared data
400.4 Measurement

Thickness and spread rate tolerances for the various mixtures are specified in Subsection 400.4.A.2.b, Table 11, Thickness and Spread Rate Tolerance at Any Given Location. These tolerances are applied as outlined below:

A. Hot Mix Asphaltic Concrete Paid for by Weight

1. Plans Designate a Spread Rate
 a. Thickness Determinations. Thickness determinations are not required when the Plans designate a spread rate per square yard (meter).
 If the spread rate exceeds the upper limits outlined in the Subsection 400.4.A.2.b, Table 11, Thickness and Spread Rate Tolerance at Any Given Location, the mix in excess will not be paid for.
 If the rate of spread is less than the lower limit, correct the deficient course by overlaying the entire lot.
 The mixture used for correcting deficient areas is paid for at the Contract Unit Price of the course being corrected and is subject to the Mixture Acceptance Schedule—Table 9 or 10.
 b. Recalculate the Total Spread Rate. After the deficient hot mix course has been corrected, the total spread rate for that lot is recalculated, and mix in excess of the upper tolerance limit as outlined in the Subsection 400.4.A.2.b, Table 11, Thickness and Spread Rate Tolerance at Any Given Location is not paid for.
 The quantity of material placed on irregular areas such as driveways, turnouts, intersections, feather edge section, etc., is deducted from the final spread determination for each lot.

2. Plans Designate Thickness
 If the average thickness exceeds the tolerances specified in the Subsection 400.4.A.2.b, Table 11, Thickness and Spread Rate Tolerance at Any Given Location, the Engineer shall take cores to determine the area of excess thickness. Excess quantity will not be paid for.
 If the average thickness is deficient by more than the tolerances specified in the Thickness and Spread Rate Tolerance at Any Given Location table below, the Engineer shall take additional cores to determine the area of deficient thickness. Correct areas with thickness deficiencies as follows:
 a. Overlay the deficient area with the same mixture type being corrected or with an approved surface mixture.
 The overlay shall extend for a minimum of 300 ft (90 m) for the full width of the course.
 b. Ensure that the corrected surface course complies with Subsection 400.3.06.C.1, Visual and Straightedge Inspection. The mixture required to correct a deficient area is paid for at the Contract Unit Price of the course being corrected.
 The mixture is subject to the Mixture Acceptance Schedule—Table 9 or 10. The quantity of the additional mixture shall not exceed the required calculated quantity used to increase the average thickness of the overlaid section to the maximum tolerance allowed under the following table.

Table 11—Thickness and Spread Rate Tolerance at Any Given Location

<table>
<thead>
<tr>
<th>Course</th>
<th>Thickness Specified</th>
<th>Spread Rate Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic concrete base course</td>
<td>± 0.5 in (±13 mm)</td>
<td>+40 lbs, -50 lbs (+20 kg, -30 kg)</td>
</tr>
<tr>
<td>Intermediate and/or wearing course</td>
<td>± 0.25 in (± 6 mm)</td>
<td>+20 lbs, -25 lbs (+10 kg, -15 kg)</td>
</tr>
<tr>
<td>Overall of any combination of 1 and 2</td>
<td>± 0.5 in (±13 mm)</td>
<td>+40 lbs, -50 lbs (+20 kg, -30 kg)</td>
</tr>
</tbody>
</table>

Note 1: For asphaltic concrete 9.5 mm OGFC and 12.5 mm OGFC, control the spread rate per lot within 5 lbs/yd² (3 kg/m²) of the designated spread rate. For asphaltic concrete 12.5 mm PEM, control the spread rate per lot within 10 lbs/yd² (6 kg/m²) of the designated spread rate.

Note 2: Thickness and spread rate tolerances are provided to allow normal variations within a given lot. Do not continuously operate at a thickness of spread rate not specified.
When the Plans specify a thickness, the Engineer may take as many cores as necessary to determine the average thickness of the intermediate or surface course. The Engineer shall take a minimum of one core per 1,000 ft (300 m) per two lanes of roadway. Thickness will be determined by average measurements of each core according to GDT 42.

If the average exceeds the tolerances specified in the Subsection 400.4.A.2.b, Table 11, “Thickness and Spread Rate Tolerance at Any Given Location”, additional cores will be taken to determine the area of excess thickness and excess tonnage will not be paid for.

B. Hot Mix Asphaltic Concrete Paid for by Square Yard (Meter)

1. The thickness of the base course or the intermediate or surface course will be determined by the Department by cutting cores and the thickness will be determined by averaging the measurements of each core.
2. If any measurement is deficient in thickness more than the tolerances given in the table above, additional cores will be taken by the Department to determine the area of thickness deficiency. Correct thickness deficiency areas as follows:
 a. Overlay the deficient area with the same type mixtures being corrected or with surface mixture. Extend the overlay at least 300 ft (90 m) for the full width of the course.
 b. Ensure that the corrected surface course complies with Subsection 400.3.06.C.1, Visual and Straightedge Inspection.
 c. The mixture is subject to the Mixture Acceptance Schedule—Table 9 or 10.
3. No extra payment is made for mixtures used for correction.
4. No extra payment is made for thickness in excess of that specified.

NOTE: Thickness tolerances are provided to allow normal variations within a given lot. Do not continuously operate at a thickness not specified.

C. Asphaltic Concrete

Hot mix asphaltic concrete, complete in place and accepted, is measured in tons (megagrams) or square yards (meters) as indicated in the Proposal. If payment is by the ton (megagram), the actual weight is determined by weighing each loaded vehicle on the required motor truck scale as the material is hauled to the roadway, or by using recorded weights if a digital recording device is used.

The weight measured includes all materials. No deductions are made for the weight of the individual ingredients. The actual weight is the pay weight except when the aggregates used have a combined bulk specific gravity greater than 2.75. In this case the pay weight is determined according to the following formula:

\[
T_1 = T \times \left(\frac{\% \text{ AC} + \left(\frac{\% \text{ Aggregate} \times 2.75}{\text{combined bulk Specific Gravity}} \right)}{100} + \% Y \right)
\]

Where:

<table>
<thead>
<tr>
<th>T1</th>
<th>Pay weight, tonnage (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=</td>
<td>Actual weight</td>
</tr>
<tr>
<td>% AC=</td>
<td>Percent asphalt cement by weight of total mixture</td>
</tr>
<tr>
<td>% Aggregate =</td>
<td>Percent aggregate by weight of total mixture</td>
</tr>
</tbody>
</table>
D. Bituminous Material

Bituminous material is not measured for separate payment.

E. Hydrated Lime

When hydrated lime is used as an anti-stripping additive, it is not measured for separate payment.

F. Field Laboratory

The field laboratory required in this Specification is not measured for separate payment.

G. Asphaltic Concrete Leveling

Payment of hot mix asphaltic concrete leveling, regardless of the type mix, is full compensation for furnishing materials, bituminous materials, and hydrated lime (when required) for patching and repair of minor defects, surface preparation, cleaning, hauling, mixing, spreading, and rolling.

Mixture for leveling courses is subject to the acceptance schedule as stated in Subsection 400.3.06.A and Subsection 400.3.06.B.

H. Asphaltic Concrete Patching

Hot mix asphaltic concrete patching, regardless of the type mix, is paid for at the Contract Unit Price per ton (Megagram), complete in place and accepted. Payment is full compensation for:

- Furnishing materials such as bituminous material and hydrated lime (when required)
- Preparing surface to be patched
- Cutting areas to be patched, trimmed, and cleaned
- Hauling, mixing, placing, and compacting the materials

400.4.01 Limits

When the asphaltic concrete is paid for by the square yard (meter) and multiple lifts are used, the number and thickness of the lifts are subject to the Engineer’s approval and are used to prorate the pay factor for the affected roadway section.

400.5 Payment

When materials or construction are not within the tolerances in this Specification, the Contract Price will be adjusted according to Subsection 106.03, „Samples, Tests, Cited Specifications“ and Subsection 400.3.06, „Quality Acceptance.”

Hot mix asphaltic concrete of the various types are paid for at the Contract Unit Price per ton (megagram) or per square yard (meter). Payment is full compensation for furnishing and placing materials including asphalt cement, hydrated lime when required, approved additives, and for cleaning and repairing, preparing surfaces, hauling, mixing, spreading, rolling, and performing other operations to complete the Contract Item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 400</th>
<th>Asphaltic concrete type Suprpave, group-blend, Including polymer-modified bituminous materials and hydrated lime</th>
<th>Per ton (megagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 400</td>
<td>Asphaltic concrete type, Suprpave, group-blend, including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 400</td>
<td>Asphaltic concrete type Suprpave, group-blend, Including bituminous materials, Gilsonite modifier, and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

| Item No. 400 | ________ inches asphaltic concrete, type Suprpave, group-blend including bituminous materials, Gilsonite modifier and hydrated lime | Per square yard (meter) |
400.5.01 Adjustments

A. Materials Produced and Placed During the Adjustment Period

An adjustment period is allowed at the start of mixing operations for each type of mix placed on the Contract except for Asphaltic Concrete OGFC or PEM. The adjustment period is provided to adjust or correct the mix and to establish the construction procedures and sequence of operations.

The adjustment period consists of the tons (megagrams) of the affected mix produced and placed on the first day of operation. If this quantity is less than 500 tons (500 Mg), the Engineer may combine the tons (megagrams) produced and placed on the first day of operation with the tons (megagrams) produced and placed on the next production day of the affected mix for the adjustment period.

The material produced and placed during the mixture adjustment period is one lot. If the mix is adjusted during this period, a new lot may be necessary, but a new adjustment period will not be permitted.

This material shall be paid for at 100 percent of the Contract Unit Price provided it meets the minimum requirements for a 1.00 pay factor for asphalt cement content and a 0.90 pay factor for gradation in the Mixture Acceptance Schedule—Table 9 or 10.

If the material placed during the adjustment period fails to meet the above requirements, it will be paid for using the applicable acceptance schedule. However, when mixture used for leveling at a spread rate of 90 lbs/yd² (50 kg/m²) or less is also used for the surface mix at a spread rate greater than 90 lbs/yd² (50 kg/m²), an additional adjustment period will be allowed for compaction only. This material will be paid for at a 1.00 pay factor provided it:

- Meets the minimum requirements for a 1.00 pay factor in the Mixture Acceptance Schedule—Table 9 or 10 for both asphalt content and gradation.
- Meets the minimum requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01C, Calculate Mean Pavement Air Voids.

Mixture which does not meet these requirements shall be paid for using the applicable acceptance schedule.

B. Determine Lot Acceptance

Pay factor adjustments are based on control sieves and asphalt cement content. The control sieves used in the mixture acceptance schedule for the various types of mix are indicated below:

<table>
<thead>
<tr>
<th>Control Sieves Used in the Mixture Acceptance Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic concrete 25 mm Superpave</td>
</tr>
<tr>
<td>Asphaltic concrete 19 mm SMA</td>
</tr>
<tr>
<td>Asphaltic concrete 19 mm Superpave</td>
</tr>
<tr>
<td>Asphaltic concrete 12.5 mm Superpave</td>
</tr>
<tr>
<td>Asphaltic concrete 12.5 mm SMA</td>
</tr>
<tr>
<td>Asphaltic concrete 12.5 mm PEM</td>
</tr>
<tr>
<td>Asphaltic concrete 12.5 mm OGFC</td>
</tr>
<tr>
<td>Asphaltic concrete 9.5 mm Superpave</td>
</tr>
</tbody>
</table>
Section 400—Hot Mix Asphaltic Concrete Construction

Control Sieves Used in the Mixture Acceptance Schedule

<table>
<thead>
<tr>
<th>Asphaltic concrete 9.5 mm SMA</th>
<th>No. 4, No. 8 (4.75 mm, 2.36 mm) sieves and asphalt cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic concrete 9.5 mm OGFC</td>
<td>No. 4, No. 8 (4.75 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphaltic concrete 4.75 mm Mix</td>
<td>No. 8 (2.36 mm) sieve and asphalt cement</td>
</tr>
</tbody>
</table>

For projects which do not have milling quantities established as a Pay Item, the Department will pay for 12.5 mm OGF and PEM placed on ramps and end of project transitions under the appropriate mixture pay item, but the mix shall be subject to the same gradation and control sieve requirements as asphaltic concrete 9.5 mm OGF. Add polymer-modified bituminous material, hydrated lime, and stabilizing fiber to this mix.

The Department will perform the following tasks:

1. Using the Mixture Acceptance Schedule—Table 9 or 10, determine the mean of the deviations from the job mix formula per test results per lot.
2. Determine this mean by averaging the actual numeric value of the individual deviations from the job mix formula; disregard whether the deviations are positive or negative amounts.
3. Use the Asphalt Cement Content and Aggregate Gradation of Asphalt Concrete Mixture Acceptance Schedule—Table 9, to determine acceptance of surface mixes and the Mixture Acceptance Schedule—Table 10 to determine acceptance of subsurface mixes.

On Contracts involving 1,000 tons (1000 Mg) or less of asphaltic concrete, the mixture is accepted for 100 percent payment of the asphaltic concrete Unit Price provided it meets the following:

1. Minimum requirements for a 1.00 pay factor for asphalt cement content and a 0.90 pay factor for gradation in the applicable Mixture Acceptance Schedule—Table 9 or 10.
2. Minimum requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01C, Calculate Pavement Mean Air Voids.

If the material placed on Contracts involving 1,000 tons (1000 Mg) or less of asphaltic concrete does not meet the above requirements, the material will be paid for using the applicable acceptance schedule.

C. Calculate Pavement Mean Air Voids

The Department will determine the percent of maximum air voids for each lot by dividing the pavement mean air voids by the maximum pavement mean air voids acceptable.

The Department will determine the payment for each lot by multiplying the Contract Unit Price by the adjusted pay factor shown in the following Air Voids Acceptance schedule:

Table 12 - Air Voids Acceptance Schedule

<table>
<thead>
<tr>
<th>Pay Factor</th>
<th>Percent of Maximum Air Voids (Lot Average of Tests)</th>
<th>Percent of Maximum Air Voids (Lot Average all Tests) (for Reevaluations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>≤100</td>
<td>≤100</td>
</tr>
<tr>
<td>0.97</td>
<td>100.1 — 105</td>
<td>100.1 — 104</td>
</tr>
<tr>
<td>0.95</td>
<td>105.1 — 112</td>
<td>104.1 — 109</td>
</tr>
<tr>
<td>0.90</td>
<td>112.1 — 124</td>
<td>109.1 — 118</td>
</tr>
<tr>
<td>0.80</td>
<td>124.1 — 149</td>
<td>118.1 — 136</td>
</tr>
<tr>
<td>0.70</td>
<td>149.1 — 172</td>
<td>136.1 — 153</td>
</tr>
<tr>
<td>0.50</td>
<td>172.1 — 191</td>
<td>153.1 — 166</td>
</tr>
</tbody>
</table>

When the range tolerance is exceeded, the Department will apply a pay factor of 0.95 as described in Subsection 400.3.06.B.2.
D. Asphaltic Concrete For Temporary Detours

Hot mix asphaltic concrete placed on temporary detours that will not remain in place as part of the permanent pavement does not require hydrated lime. Hot mix used for this purpose is paid for at an adjusted Contract Price.

Where the Contract Price of the asphaltic concrete for permanent pavement is let by the ton (megagram), the Contract Price for the asphaltic concrete placed on temporary detours is adjusted by subtracting $0.75/ton ($0.85/mg) of mix used.

Where the Contract price of the mix in the permanent pavement is based on the square yard (meter), obtain the adjusted price for the same mix used on the temporary detour by subtracting $0.04/yd² ($0.05/ m²) per 1-in (25-mm) plan depth.

Further price adjustments required in Section 400.3.06, “Quality Acceptance,” are based on the appropriate adjusted Contract Price for mix used in the temporary detour work.

E. Determine Lot Payment

Determine the lot payment as follows:

1. When one of the pay factors for a specific acceptance lot is less than 1.0, determine the payment for the lot by multiplying the Contract Unit Price by the adjusted pay factor.

2. When two or more pay factors for a specific acceptance lot are less than 1.0, determine the adjusted payment by multiplying the Contract Unit Price by the lowest pay factor.

If the mean of the deviations from the job mix formula of the tests for a sieve or asphalt cement content exceeds the tolerances established in the Mixture Acceptance Schedule—Table 9 or 10 and if the Engineer determines that the material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer. If the pavement mean air voids exceed the tolerances established in the Air Voids Acceptance Schedule—Table 12, remove and replace the materials at the Contractor’s expense.

If the Engineer determines that the material is not acceptable to leave in place, remove and replace the materials at the Contractor’s expense.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SPECIAL PROVISION

Section 400—Hot Mix Asphaltic Concrete Construction

Retain Special Provision Section 400.3.02 B and Add the following:

9. Crumb Rubber Modifier Supply System
 Crumb rubber modifier may be substituted at the Contractor’s discretion to produce a PG 76-22 asphaltic cement at the production facility:
 a. Use a separate feed system to store and proportion by weight of the total asphaltic cement, the required percentage of crumb rubber into the mixture.
 b. Control the feeder system with a proportioning device meeting these Specifications:
 • Is accurate to within ± 5 percent of the amount required. Automatically adjusts the feed rate to maintain the material within this tolerance at all times.
 • Has a convenient and accurate means of calibration.
 • Provide in-process monitoring, consisting of either a digital display of output or a printout of feed rate, in pounds per minute, to verify feed rate. The supply system shall report the feed in 1 lb increments using load cells that will enable the user to monitor the depletion of the modifier. Monitoring the system volumetrically will not be allowed.
 • Interlocks with the aggregate weigh system and asphaltic cement pump to maintain the correct proportions for all rates of production and batch sizes.
 c. Provide flow indicators or sensing devices for the system and interlock them with the plant controls to interrupt the mixture production if the crumb rubber introduction output rate is not within the ± 5 percent tolerance given above. This interlock will immediately notify the operator if the targeted rate exceeds introduction tolerances. All plant production will cease if the incorporation rate is not brought back within tolerance after 30 seconds. When the interlock system interrupts production and the plant has to be restarted, upon restarting operations; the modifier system shall run until a uniform feed can be observed on the output display. All mix produced prior to this point shall be rejected.
 d. Introduce the crumb rubber modifier as follows:
 • When a batch type plant is used, add the rubber to the aggregate in the weigh hopper. Increase the batch dry mixing time by 15 to 20 seconds from the time the aggregate is completely emptied into the mixer to ensure the modifiers are uniformly distributed prior to the injection of asphalt cement into the mixer. Increase the batch wet mix time by 15 to 20 seconds to ensure the crumb rubber modifier is uniformly blended with the asphaltic cement.
- When a continuous or drier-drum type plant is used, add the rubber to the aggregate and uniformly disperse prior to the injection of asphalt cement. The point of introduction in the drum mixer will be approved by the Engineer prior to production. Ensure the crumb rubber modifier will not become entrained in the exhaust system of the drier or plant and will not be exposed to the drier flame at any point after induction.

e. No separate measurement and payment will be made if Contractor elects to utilize crumb rubber.
Delete Section 402 and substitute the following:

402.1 General Description
This work includes producing and placing hot mix recycled asphaltic concrete that incorporates reclaimed asphalt pavement (RAP), reclaimed asphalt shingles (RAS), virgin aggregate, hydrated lime, and neat asphalt cement.

402.1.01 Definitions
General Provisions 101 through 150.

402.1.02 Related References
A. Standard Specifications
Section 400—Hot Mix Asphaltic Concrete Construction
Section 800—Coarse Aggregate
Section 828—Hot Mix Asphaltic Concrete Mixtures

B. Referenced Documents
SOP 41 “Guidelines for RAP Stockpile Approval”

402.1.03 Submittals
A. Certified Weight Tickets
Notify the Engineer before removing RAP from a stockpile that belongs to the Department. Submit to the Engineer the certified weight tickets of materials removed from the stockpile.

B. Affidavit
Submit to the laboratory an affidavit stating the sources of stockpiled materials to be used on a State project. Include the following information in the letter:

- State project number
- Location from which the material was removed
- Approximate removal dates
- Mix types removed and the estimated quantity of each type in the stockpiles
- Other available information about the stockpiled material such as percentage of local sand in the RAP

Obtain specific approval from the laboratory to use RAP or RAS stockpiles. Adhere to Guidelines for RAP Stockpile Approval.
402.2 Materials

A. RAP Material Composition

Use RAP materials from any of the following:

- Existing roadway
- Contractor’s RAP stockpile that has been approved by the Department
- Department stockpile

NOTE: The location of Department RAP material stockpiles will be given on the Plans.

Do not use RAP materials that contain alluvial gravel or local sand in any mixture placed on interstate projects except for mixtures used in shoulder construction. When used in shoulder construction, limit RAP containing local sand or alluvial gravel so that the sand or gravel contributes no more than 20% of the total aggregate portion of the mix.

1. RAP Percentage

 For non-interstate projects, limit the percentage of RAP allowed in recycled mixes so that the overall amount of alluvial gravel does not exceed 5 percent of the total mix. The percentage of alluvial gravel, local sand, and Group I material in the RAP will be determined through petrographic analysis or available records.

 RAP furnished to the Contractor but not used in the work remains the Contractor’s property.

 RAP used in the recycled mixtures for mainline or ramps (if applicable) may make up from 0 to 40 percent of the mixture depending on the amount of RAP available, the production facilities, and whether the mixture meets the requirements in Section 828.

 The maximum ratio of RAP material to the recycled mixtures other than SMA is 40 percent for continuous mix type plants and 25 percent for batch type plants. The maximum ratio of RAP material to the recycled mixture is 15 percent for Stone Matrix Asphalt (SMA) mixes.

2. Process RAP Material

 Process RAP material to be used in the recycled mixture so that 100 percent will pass the 2 in (50 mm) sieve. Additional crushing and sizing may be required if the RAP aggregate exceeds the maximum sieve size for the mix type as shown in Section 828. Obtain representative materials from the RAP stockpile for the mix design.

B. RAS Material

RAS materials are produced as a by-product of manufacturing roofing shingles and/or discarded shingle scrap from the reroofing of buildings.

1. Limit the amount of RAS material used in the recycled mixture to no greater than 5 percent of the total mixture weight.

2. Shred the RAS material before incorporating it into the mix to ensure that 100 percent of the shredded pieces are less than 1/2 in (12.5 mm) in any dimension.

3. Remove all foreign materials such as paper, roofing nails, wood, or metal flashing.

4. Provide test results for Bulk Sample Analysis, known as Polarized Light Microscopy, if post-consumer shingles are used to certify the RAS material is free of asbestos. Test stockpiles at the rate of one test per 1000 tons (megagrams) prior to processing.

Other than as specifically stated in this Subsection, ensure that RAS material is used according to the same requirements as described for RAP material.

C. Asphaltic Concrete Removed from an Existing Roadway

Asphaltic concrete removed from an existing roadway becomes the Contractor’s property unless specified otherwise on the Plans. RAP material retained by the Department is designated on the Plans, and the RAP shall be stockpiled at the location specified on the Plans.
D. Local Sand and Group I Material in RAP

Use of local sand in recycled mixes is restricted as stipulated in Section 828 for the Project. However, RAP which contains local sand may be used in surface and intermediate layers of non-interstate projects so long as the RAP percentage used does not contribute more than 5% local sand to the total aggregate portion of the mix. The amount of local sand in the RAP material shall be considered when determining the percentage of local sand in the total mix.

Where Pay Items specify that Group II only aggregate is to be used, RAP which consists primarily of Group II aggregate, but contains some Group I aggregate, shall be limited such that the Group I aggregate makes up no more than 5% of the total aggregate portion of the mix. When a Blend I mix is specified, any Group I materials in the RAP will be considered when determining the Group I portion allowed in the total mix as specified in Subsection 828.2.A.2.

E. Asphalt Cement

Using laboratory evaluations, the Department will determine the asphalt cement grade to be used in the recycled mixture. The asphalt cement shall meet the requirements of Section 820.

When the asphalt cement is blended with asphalt cement recovered from the RAP material and after tests on residue from thin film oven tests, the asphalt cement shall have a viscosity of 6,000 to 16,000 poises (600 to 1600 Pa) or as approved by the Engineer. Recover asphalt cement from the recycled mixture to verify that the specified viscosity is being met.

If the Engineer determines during construction that the selected asphalt cement grade is not performing satisfactorily, the Department may change the asphalt cement grade in the mixture, with no change in the Contract Unit Price.

F. Recycled Mixture

The recycled mixture shall be a homogenous mixture of RAP or RAS material, virgin aggregate, hydrated lime, and neat asphalt cement. Ensure that the mixture conforms to an approved mixture design outlined in Section 828.

402.2.01 Delivery, Storage, and Handling

Separate the stockpiles by Project sources and by Group I and Group II aggregate types. Erect a sign on each stockpile to identify the source(s).

If RAP material from different project sources becomes intermixed in a stockpile, only use those materials when approved by the laboratory.

The Department may reject by visual inspection stockpiles that are not clean and free of foreign materials.

402.3 Construction Requirements

402.3.01 Personnel

General Provisions 101 through 150.

402.3.02 Equipment

A. Hot Mix Plant

Use a hot mix plant for the recycling process with necessary modifications approved by the Engineer to process recycled material. Design, equip, and operate the plant so that the proportioning, heating, and mixing yields a uniform final mixture within the job mix formula tolerances.

B. Cold Feed Bin

Proportion the RAP or RAS material using a separate cold feed bin. Ensure that the material meets the size requirements in Subsection 402.2, “Materials.” The ratio of the RAP or RAS to virgin aggregate shall be controlled gravimetrically.

C. Electronic Belt Weighing Devices

Use electronic belt weighing devices to monitor the flow of RAP or RAS and the flow of virgin aggregate. For batch-type plants, the RAP or RAS portion of the mix may be weighed in a weigh hopper before incorporating it into the pugmill. The RAP shall be screened through a 2-inch maximum sized screen prior to crossing the cold feed weigh.
Ensure the amount of RAP material incorporated into the asphalt plant does not change after this final measurement is processed by the asphalt plant computer.

D. Feeders and Conveyors

Equip plants with an interlocking system of feeders and conveyors that synchronize the RAP or RAS material flow with the virgin aggregate flow. Ensure that the electronic controls track the flow rates indicated by the belt weighing devices and develop the signal to automatically maintain the desired ratio at varying production rates. Design the RAP or RAS feeder bins, conveyor system, and auxiliary bins (if used) to prevent RAP material from segregating and sticking.

402.3.03 Preparation
General Provisions 101 through 150.

402.3.04 Fabrication
General Provisions 101 through 150.

402.3.05 Construction
Follow the requirements in Section 400 for hot mix recycled asphaltic concrete production and placement, materials, equipment, and acceptance plans except as noted or modified in this Specification.

402.3.06 Quality Acceptance
The Department may require additional quality control tests to determine the RAP stockpile consistency and the RAP aggregate quality. In this case, conduct at least three extraction/gradation tests from each individual source. Ensure that aggregate meets the quality standards in Section 800.

402.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

402.4 Measurement
Recycled asphaltic concrete mixture, complete in place and accepted, is measured in tons (megagrams). The weight is determined by recorded weights if an approved recording device is used. Or, the weight is determined by weighing each loaded vehicle on an approved motor truck scale as the material is hauled to the roadway.

402.4.01 Limits
General Provisions 101 through 150.

402.5 Payment
The work performed and the materials furnished as described in this Specification will be paid for at the Contract Unit Price per ton (megagram). Payment is full compensation for providing materials, hauling and necessary crushing, processing, placing, rolling and finishing the recycled mixture, and providing labor, tools, equipment, and incidentals necessary to complete the work, including hauling and stockpiling RAP or RAS material.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 402</th>
<th>Recycled asphaltic concrete ___ mm Superpave, group-blend, including bituminous materials</th>
<th>Per ton (megagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 402</td>
<td>Recycled asphaltic concrete ___ mm Superpave, group-blend, including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 402</td>
<td>Recycled asphaltic concrete ___ mm Superpave, group-blend, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 402</td>
<td>Recycled asphaltic concrete ___ mm Superpave, Type__, group-blend, including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 402</td>
<td>Recycled asphaltic concrete ________mm mix, group-blend,</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>
A. Materials Produced and Placed During the Adjustment Period

An adjustment period is allowed at the start of mixing operations for each type of mix placed on the Contract. A new adjustment period shall not be granted for a change of producer, mix design or asphalt plant location. The adjustment period is provided to adjust or correct the mix and to establish the construction procedures and sequence of operations.

The adjustment period consists of the tons (megagrams) of the affected mix produced and placed on the first day of operation. If this quantity is less than 500 tons (500 Mg), the Engineer may combine the tons (megagrams) produced and placed on the first day of operation with the tons (megagrams) produced and placed on the next production day of the affected mix for the adjustment period.

The material produced and placed during the mixture adjustment period is one lot. If the mix is adjusted during this period, a new lot may be necessary, but a new adjustment period will not be permitted.

This material shall be paid for at 100 percent of the Contract Unit Price provided it meets the minimum requirements for a 1.00 pay factor for asphalt cement content and a 0.90 pay factor for gradation in the Mixture Acceptance Schedule—Table 9 or 10.

If the material placed during the adjustment period fails to meet the above requirements, it will be paid for using the applicable acceptance schedule. However, when mixture used for leveling at a spread rate of 90 lbs/yd² (50 kg/m²) or less is also used for the surface mix at a spread rate greater than 90 lbs/yd² (50 kg/m²), an additional adjustment period will be allowed for compaction only. This material will be paid for at a 1.00 pay factor provided it:

- Meets the minimum requirements for a 1.00 pay factor in the Mixture Acceptance Schedule—Table 9 or 10 for both asphalt content and gradation.
- Meets the minimum requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01C, “Calculate Mean Pavement Air Voids.”

Mixture which does not meet these requirements shall be paid for using the applicable acceptance schedule.

B. Determine Lot Acceptance

Pay factor adjustments are based on control sieves and asphalt cement content. The control sieves used in the mixture acceptance schedule for the various types of mix are indicated below:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>402</td>
<td>including bituminous materials and hydrated lime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⭕ in (mm) recycled asphaltic concrete type Superpave, group-blend, including bituminous materials</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td></td>
<td>⭕ in (mm) recycled asphaltic concrete type Superpave, group-blend, including bituminous materials and hydrated lime</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td></td>
<td>⭕ in (mm) recycled asphaltic concrete type Superpave, group-blend, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td></td>
<td>⭕ in (mm) recycled asphaltic concrete mm mix, group-blend, including bituminous materials and hydrated lime</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td></td>
<td>Recycled asphaltic concrete patching including bituminous materials</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td></td>
<td>Recycled asphaltic concrete patching including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td></td>
<td>Recycled asphaltic concrete leveling including bituminous materials</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td></td>
<td>Recycled asphaltic concrete leveling including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td></td>
<td>Recycled asphaltic concrete type Stone Matrix Asphalt, group-blend, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>
Control Sieves Used in the Mixture Acceptance Schedule

<table>
<thead>
<tr>
<th>Asphaltic concrete 25 mm Superpave</th>
<th>1/2 in., No. 8 (12.5 mm, 2.36 mm) sieves and asphalt cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic concrete 19 mm Superpave</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphaltic concrete 12.5 mm Superpave</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphaltic concrete 9.5 mm Superpave</td>
<td>No. 4, No. 8 (4.75 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphaltic concrete 4.75 mm Mix</td>
<td>No. 8 (2.36 mm) sieve and asphalt cement</td>
</tr>
</tbody>
</table>

The Department will perform the following tasks:

5. Using the Mixture Acceptance Schedule—Table 9 or 10, of Subsection 400.3.06 to determine the mean of the deviations from the job mix formula per test results per lot.

2. Determine this mean by averaging the actual numeric value of the individual deviations from the job mix formula; disregard whether the deviations are positive or negative amounts.

3. Use the Asphalt Cement Content and Aggregate Gradation of Asphalt Concrete Mixture Acceptance Schedule—Table 9, of Subsection 400.3.06 to determine acceptance of surface mixes and the Mixture Acceptance Schedule—Table 10 of Subsection 400.3.06, to determine acceptance of subsurface mixes.

On Contracts involving 1,000 tons (1000 Mg) or less of asphaltic concrete, the mixture is accepted for 100 percent payment of the asphaltic concrete Unit Price provided it meets the following:

6. Minimum requirements for a 1.00 pay factor for asphalt cement content and a 0.90 pay factor for gradation in the applicable Mixture Acceptance Schedule—Table 9 or 10 of Subsection 400.3.06.

7. Minimum requirements for a 0.90 pay factor in Table 12 of Subsection 402.5.01.C, “Calculate Pavement Mean Air Voids.

If the material placed on Contracts involving 1,000 tons (1000 Mg) or less of asphaltic concrete does not meet the above requirements, the material will be paid for using the applicable acceptance schedule.

C. Calculate Pavement Mean Air Voids

The Department will determine the percent of maximum air voids for each lot by dividing the pavement mean air voids by the maximum pavement mean air voids acceptable.

The Department will determine the payment for each lot by multiplying the Contract Unit Price by the adjusted pay factor shown in the following Air Voids Acceptance schedule:

<table>
<thead>
<tr>
<th>Pay Factor</th>
<th>Percent of Maximum Air Voids (Lot Average of Tests)</th>
<th>Percent of Maximum Air Voids (Lot Average all Tests) (for Reevaluations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>≤100</td>
<td>≤100</td>
</tr>
<tr>
<td>0.97</td>
<td>100.1 — 105</td>
<td>100.1 — 104</td>
</tr>
<tr>
<td>0.95</td>
<td>105.1 — 112</td>
<td>104.1 — 109</td>
</tr>
<tr>
<td>0.90</td>
<td>112.1 — 124</td>
<td>109.1 — 118</td>
</tr>
<tr>
<td>0.80</td>
<td>124.1 — 149</td>
<td>118.1 — 136</td>
</tr>
<tr>
<td>0.70</td>
<td>149.1 — 172</td>
<td>136.1 — 153</td>
</tr>
<tr>
<td>0.50</td>
<td>172.1 — 191</td>
<td>153.1 — 166</td>
</tr>
</tbody>
</table>

When the range tolerance is exceeded, the Department will apply a pay factor of 0.95 as described in Subsection 400.3.06.B.2.
D. Asphaltic Concrete For Temporary Detours

Hot mix asphaltic concrete placed on temporary detours that will not remain in place as part of the permanent pavement does not require hydrated lime. Hot mix used for this purpose is paid for at an adjusted Contract Price. The payment for this item shall cover all cost of construction, maintenance and removal of all temporary mix. Hot mix asphaltic concrete placed as temporary mix shall meet requirements established in Subsection 400.3.05.F.

Where the Contract Price of the asphaltic concrete for permanent pavement is let by the ton (megagram), the Contract Price for the asphaltic concrete placed on temporary detours is adjusted by subtracting $0.75/ton ($0.85/mg) of mix used.

Where the Contract price of the mix in the permanent pavement is based on the square yard (meter), obtain the adjusted price for the same mix used on the temporary detour by subtracting $0.04/yd² ($0.05/ m²) per 1-in (25-mm) plan depth.

Further price adjustments required in Subsection 400.3.06, “Quality Acceptance,” which are based on the appropriate adjusted Contract Price for mix used in the temporary detour work shall apply should temporary mix be left in place. Hot mix asphalt produced as temporary mix containing no hydrated lime shall be removed and replaced with permanent mix containing hydrated lime.

E. Determine Lot Payment

Determine the lot payment as follows:

8. When one of the pay factors for a specific acceptance lot is less than 1.0, determine the payment for the lot by multiplying the Contract Unit Price by the adjusted pay factor.

2. When two or more pay factors for a specific acceptance lot are less than 1.0, determine the adjusted payment by multiplying the Contract Unit Price by the lowest pay factor.

If the mean of the deviations from the job mix formula of the tests for a sieve or asphalt cement content exceeds the tolerances established in the Mixture Acceptance Schedule—Table 9 or 10 and if the Engineer determines that the material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer. If the pavement mean air voids exceed the tolerances established in the Air Voids Acceptance Schedule—Table 12, remove and replace the materials at the Contractor’s expense.

If the Engineer determines that the material is not acceptable to leave in place, remove and replace the materials at the Contractor’s expense.
Georgia Department of Transportation

State of Georgia

Special Provision

Section 413—Bituminous Tack Coat

413.1 General Description
This work includes furnishing and applying a bituminous tack coat on a prepared road surface including cleaning the road surface.

413.1.01 Definitions
General Provisions 101 through 150.

413.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 400—Hot Mix Asphaltic Concrete Construction
 Section 424—Bituminous Surface Treatment
 Section 427—Emulsified Asphalt Slurry Seal
 Section 820—Asphalt Cement
 Section 824—Cationic Asphalt Emulsion
B. Referenced Documents
 General Provisions 101 through 150.

413.1.03 Submittals
General Provisions 101 through 150.

413.2 Materials
Ensure that materials meet the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt cement, performance grade PG 58-22, PG 64-22, or PG 67-22</td>
<td>820.2.01</td>
</tr>
<tr>
<td>Cationic emulsified asphalt CRS-2h or CRS-3</td>
<td>824.2.01</td>
</tr>
</tbody>
</table>

Asphalt cement of performance grade PG 58-22, PG 64-22 or PG 67-22 is used for bituminous tack coat in work performed in Section 400. Use cationic emulsified asphalt as a special application material only if directed by the Engineer.

The Department may change the grade or type of bituminous materials without a change in the Contract Unit Price if the Engineer determines that the grade or type selected is not performing satisfactorily.
413.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

413.3 Construction Requirements

413.3.01 Personnel
General Provisions 101 through 150.

413.3.02 Equipment
Provide equipment in good repair, including the following units that meet the requirements of Subsection 424.3.02, Equipment."

- Power broom and blower
- Pressure distributor

413.3.03 Preparation
General Provisions 101 through 150.

413.3.04 Fabrication
General Provisions 101 through 150.

413.3.05 Construction

A. Seasonal and Weather Limitation
Do not apply tack coat if the existing surface is wet or frozen. Do not place emulsified asphalt if the air temperature in the shade is less than 40 °F (4 °C).

B. Application
Coat the entire areas to be paved with the tack coat unless directed otherwise by the Engineer. Apply tack coat with distributor spray bars instead of hand hoses, except in small areas that are inaccessible to spray bars.

C. Temperature of Material
Apply bituminous materials within the temperature ranges specified below.

<table>
<thead>
<tr>
<th>Bituminous Materials</th>
<th>Temperature of Application °F (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt cement</td>
<td>350 - 400 (175 - 205)</td>
</tr>
<tr>
<td>CRS-2h</td>
<td>140 - 180 (60 - 80)</td>
</tr>
<tr>
<td>CRS-3</td>
<td>140 - 180 (60 - 80)</td>
</tr>
</tbody>
</table>

D. Cleaning
Immediately before applying the tack coat, clean the entire area free of loose dirt, clay, and other foreign materials.

E. Application Rate
The Engineer will determine the application rate of the bituminous tack coat.

F. Limitations and Areas Coated
Apply only enough tack coat to the prepared road surface that can be covered with the new pavement course the same working day the tack coat is applied.

G. Maintenance and Protection
After applying the tack coat material, allow it to break until it is tacky enough to receive the surface course. Do not allow traffic on the tack.
413.3.06 Quality Acceptance
General Provisions 101 through 150.

413.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

413.4 Measurement
Bituminous materials for tack coat applied and accepted are measured as outlined in Subsection 109.02, “Measurement of Bituminous Materials.”

Diluting emulsified tack coat is not ordinarily allowed except when used underneath slurry seal. The composition of diluted emulsified tack coat defined in Subsection 427.3.05, “Construction” is measured by the gallon (liter) of diluted mix.

413.4.01 Limits
General Provisions 101 through 150.

413.5 Payment
The accepted volume of bituminous material will be paid for at the Contract Unit Price per gallon (liter) for bituminous tack coat of the type and grade approved by the Engineer, complete in place. Payment is full compensation for preparing, cleaning, furnishing, hauling, applying material, and providing incidentals to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 413</th>
<th>Bituminous tack coat</th>
<th>Per gallon (liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 413</td>
<td>Diluted emulsified asphalt tack coat</td>
<td>Per gallon (liter)</td>
</tr>
</tbody>
</table>
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SUPPLEMENTAL SPECIFICATION
Section 424—Bituminous Surface Treatment

Delete Section 424 and substitute the following:

424.1 General Description
This work includes placing one or more applications of bituminous material and aggregate on a previously prepared base or pavement.

424.1.01 Definitions
- **Single Surface Treatment**: One application of bituminous material that is covered with aggregate.
- **Double Surface Treatment**: A bituminous material application that is covered with aggregate of the size specified in the proposal followed by a second bituminous material application that is covered with a second specified size aggregate.
- **Triple Surface Treatment**: A bituminous material application that is covered with a specified size aggregate followed by subsequent applications of bituminous material that are covered with successively smaller size nominal aggregates.

424.1.02 Related References
A. Standard Specifications
 - Section 105—Control of Work
 - Section 800—Coarse Aggregate
 - Section 802—Aggregates for Asphaltic Concrete
 - Section 820—Asphalt Cement
 - Section 824—Cationic Asphalt Emulsion

B. Referenced Documents
 - QPL 65

424.1.03 Submittals
General Provisions 101 through 150.

424.2 Materials
A. Bituminous Material

 Select the bituminous material from any type and grade listed in the materials table below. Notify the Engineer at least 10 days before ordering the bituminous material. The Engineer must approve the bituminous material choice.

 For a list of latex sources, see QPL 65.

 Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cement, Performance Grade PG 58-22 or PG 64-22*</td>
<td>820.2.01</td>
</tr>
<tr>
<td>Cationic Asphalt Emulsion, Grade CRS-2h or CRS-3*</td>
<td>824.2.01</td>
</tr>
<tr>
<td>Latex-Modified Cationic Asphalt Emulsion, Grade CRS-2L</td>
<td>824.2.02</td>
</tr>
</tbody>
</table>
B. Aggregates

The size and group of aggregates used in the surface treatment are specified in the Proposal under the appropriate Line Item.

Do not use unconsolidated limerock unless provided for in the Plans or Proposal.

Use Class B aggregates only where the surface treatment is used for shoulder construction or where it is to be overlaid with asphaltic concrete.

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate, Class A Crushed Stone or Crushed Slag, Group I or II</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Fine Aggregate for Asphaltic Concrete*</td>
<td>802.2.01</td>
</tr>
</tbody>
</table>

*For sand seal application, use WA 10 washed screenings made from Group II aggregates.

424.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

424.3 Construction Requirements

424.3.01 Personnel

General Provisions 101 through 150.

424.3.02 Equipment

Have the Engineer approve equipment types and quantities before using equipment on the Project.

Ensure that the equipment used to construct the surface treatment:

- Produces work that complies with the standards in this section
- Is on the Project and in proper working order before construction begins and during construction.

A. Aggregate Spreader

The Department will inspect annually the aggregate spreader before it is used in the work. If the spreader is approved, the Department will attach an equipment certification sticker to the spreader.

Use a self-propelled aggregate spreader that can apply aggregate at the desired rate uniformly and accurately without corrugation, overlaps, or excess deficient areas.

Ensure that the spreader can spread courses to the required widths. Provide spreaders to promptly cover the full width of the asphalt application.

B. Pressure Distributor

The Department will inspect annually the pressure distributor before it is used in the work. If the distributor is approved, the Department will attach an equipment certification sticker to the distributor. The pressure distributor should be equipped as follows:

1. Mount the pressure distributor on pneumatic tires wide enough to prevent damage to the road surface.
2. Design, equip, maintain, and operate the distributor so that the bituminous material will be heated and applied evenly throughout the length of the spray bars. Ensure that it maintains a constant, uniform pressure on the nozzles.
3. Install screens between the tank and the nozzles and clean them frequently to prevent clogging.
4. Use an adjustable distributor that can deliver controlled amounts of bituminous material from 0.04 to 1.0 gal/yd², ± 0.02 gal/yd² (0.18 to 4.53 L/m², ± 0.10 L/m²) up to 24 ft (7.2 m) wide without atomization, streaking, or pulsation in the flow.
5. Use a distributor equipped with the following:
 - A tachometer and thermometers to indicate the application rate and the temperature of the tank contents
 - Measuring devices to accurately indicate the amount of bituminous material, in gallons (liters), in the distributor before and after each application
 - Full circulating spray bars that can be adjusted laterally to conform to a stringline and capable of vertical and horizontal adjustment.
• A positive shut-off control to prevent dripping bituminous material on the roadway
• A distributor tank equipped with a sample valve in a safe and convenient location to obtain bituminous material samples

C. Heating Equipment

Ensure that heating equipment will heat and maintain the bituminous material uniformly at the temperature required. Provide an accurate thermometer.

D. Steel-Wheeled Rollers

Use self-propelled, tandem-type steel-wheeled rollers. The rollers shall weigh from 3 to 8 tons (3 to 7 Mg). Ensure that the roller weights within these limits can properly seat the aggregate without fracturing the aggregate particles. Equip the roller drums with scrapers to prevent pick up of material. Combination rollers with pneumatic-tired wheels that can be alternated with a steel drum are permitted as a substitute for steel-wheeled rollers.

E. Pneumatic-Tired Rollers

Use self-propelled, two axles, pneumatic-tired rollers with smooth-tread rubber tires aligned such that gaps between the tires on one axle are covered by the tires of the other axle. Equip the roller tires with scrapers and scrubbers to prevent pick up of material. Ensure that all tires are of the same size and ply rating and inflated to a minimum of 60 psi (415 kPa). Maintain tire pressure such that the difference in pressure between any two tires does not exceed 5 psi (35 kPa). Provide ballast as directed by the Engineer.

F. Power Broom and Power Blower

Provide at least one power broom and one power blower, or a combination power broom and blower, that can remove dust or loose materials from the road surface.

424.3.03 Preparation

Firmly compact, finish, and prime new bases. Ensure that the bases conform to the lines, grades, and cross sections within the tolerances specified.

A. Removing Foreign Material

Use power brooms, power blowers, hand brooms, or other means to remove loose material, dust, dirt, clay, and other materials that prevent bituminous materials from adhering to the base.

Take special care to clean the outer edges thoroughly. Where necessary, use a motor grader blade to remove excess material off the paving edge.

B. Condition of Prime

Check the condition of prime as follows:
1. Ensure the prime is cured before placing the mat course.
2. Repair the prime if it is loose, soft, unbonded, removed, or damaged.
3. Remove concentrations of excess prime.
4. Perform additional rolling with a pneumatic-tired roller before surface treatment when directed by the Engineer.

424.3.04 Fabrication

General Provisions 101 through 150.

424.3.05 Construction

A. Observing Seasonal and Weather Limitations

Apply bituminous surface treatment only between April 15 and October 15 and only when:
• Ambient temperature has not been less than 45 °F (7 °C) for 48 hours immediately prior to application.
• No forecast of ambient temperature less than 45 °F (7 °C) for 48 hours immediately following application.
• Ambient temperature and road surface temperature is at least 60 °F (16 °C) and stable at the time of application.

No exceptions are permitted except as authorized by the Engineer.

Do not apply asphalt cement to a wet surface.

NOTE 1: When the relative humidity exceeds 80%, the ambient temperature exceeds 95 °F (35 °C), the pavement temperature exceeds 125 °F (52 °C) or the weather is windy or overcast, application of bituminous surface treatment will be at the discretion of the Engineer.
B. Using PG 64-22 or CRS-3

Only use PG 64-22 or CRS-3 when directed by the Engineer due to a problem with excessive aggregate pickup during high ambient temperature.

C. Observing Sequence of Operations and Quantities of Materials

The sequence of operations and quantities of materials are shown in Table 1, Table 2 and Table 3 (Table 1a—metric, Table 2a—metric and Table 3a—metric).

The Engineer will determine the material quantities to be used during construction and may change the minimum or maximum application rate of any course during construction if the total quantities are within the amounts shown in the Tables. Any deviation, or minus from the table quantities, will require a negotiated adjustment of the Contract price, which will be authorized by an approved Supplemental Agreement.

When a single application of bituminous surface treatment is used as a Crack-Relief Interlayer, use the quantities of materials shown in Table 2 (Table 2a—Metric).

When a sand seal application is Specified, use the quantities of materials shown in Table 3 (Table 3a—Metric).
Section 424—Bituminous Surface Treatment – Table 1

<table>
<thead>
<tr>
<th>Stone Sizes</th>
<th>Application</th>
<th>Single</th>
<th>Double</th>
<th>Triple</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st appl.</td>
<td>#89</td>
<td>#7</td>
<td>#6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#7</td>
<td>#6</td>
</tr>
<tr>
<td></td>
<td>2nd appl.</td>
<td>#89</td>
<td>#7</td>
<td>#7</td>
</tr>
<tr>
<td></td>
<td>3rd appl.</td>
<td>#89</td>
<td>#89</td>
<td></td>
</tr>
</tbody>
</table>

Control Tolerance

<table>
<thead>
<tr>
<th>1st Application Bituminous Materials (gal/yd²)</th>
<th>Control Tolerance</th>
<th>Control Tolerance</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG58-22 or PG64-22</td>
<td>± .02</td>
<td>.17–.19</td>
<td>.18–.25</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .02</td>
<td>.20–.22</td>
<td>.21–.29</td>
</tr>
<tr>
<td>1st Application Stone (ft³/yd²)</td>
<td>± .03</td>
<td>.14–.18</td>
<td>.18–.26</td>
</tr>
<tr>
<td>2nd Application Bituminous Materials (gal/yd²)</td>
<td>± .02</td>
<td>.18–.24</td>
<td>.24–.31</td>
</tr>
<tr>
<td>PG58-22 or PG64-22</td>
<td>± .02</td>
<td>.18–.24</td>
<td>.24–.31</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .02</td>
<td>.21–.28</td>
<td>.28–.36</td>
</tr>
<tr>
<td>2nd Application Stone (ft³/yd²)</td>
<td>± .03</td>
<td>.14–.18</td>
<td>.18–.26</td>
</tr>
<tr>
<td>3rd Application Bituminous Materials (gal/yd²)</td>
<td>± .02</td>
<td>.18–.24</td>
<td>.18–.24</td>
</tr>
<tr>
<td>PG58-22 or PG64-22</td>
<td>± .02</td>
<td>.18–.24</td>
<td>.18–.24</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .02</td>
<td>.21–.28</td>
<td>.21–.28</td>
</tr>
<tr>
<td>3rd Application Stone (ft³/yd²)</td>
<td>± .03</td>
<td>.14–.18</td>
<td>.14–.18</td>
</tr>
<tr>
<td>Total Bituminous Materials (gal/yd²)</td>
<td>± .02</td>
<td>.17–.19</td>
<td>.18–.25</td>
</tr>
<tr>
<td>PG58-22 or PG64-22</td>
<td>± .03</td>
<td>.38–.51</td>
<td>.50–.65</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .02</td>
<td>.20–.22</td>
<td>.21–.29</td>
</tr>
<tr>
<td>Total Stone (ft³/yd²)</td>
<td>± .03</td>
<td>.14–.18</td>
<td>.18–.26</td>
</tr>
</tbody>
</table>

Notes:
- The bituminous material and stone for each application may be varied by the Engineer, at no increase in cost, outside of the minimum or maximum shown in the table provided the total of the materials is within the limits of the total minimum and total maximum of all courses.
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Apply at least one seal coat to the mat course on the same day when multiple applications are specified.
Section 424—Bituminous Surface Treatment, Crack-Relief Interlayer – Table 2

<table>
<thead>
<tr>
<th>Bituminous Material Application (gal/yd²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 58-22 or PG 64-22</td>
<td>0.20 – 0.25</td>
<td>± 0.02</td>
</tr>
<tr>
<td>CRS-2h, CRS-2L or CRS 3</td>
<td>0.25 – 0.29</td>
<td>± 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate Application (ft³/yd²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7</td>
<td>0.22 – 0.26</td>
<td>± 0.02</td>
</tr>
</tbody>
</table>

Notes:
- Target application rates for bituminous material and cover aggregate will be established by the Engineer within the limits shown in Table 2.
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Cover the single surface treatment Crack-Relief Interlayer with HMA Leveling on the same day.

Section 424—Bituminous Surface Treatment, Sand Seal – Table 3

<table>
<thead>
<tr>
<th>Bituminous Material Application (gal/yd²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 58-22 or PG 64-22</td>
<td>0.18 – 0.22</td>
<td>± 0.02</td>
</tr>
<tr>
<td>CRS-2h, CRS-2L or CRS 3</td>
<td>0.20 – 0.26</td>
<td>± 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate Application (ft³/yd²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA 10 Washed Screenings</td>
<td>0.10 – 0.14</td>
<td>± 0.02</td>
</tr>
</tbody>
</table>

Notes:
- Target application rates for bituminous material and seal sand will be established by the Engineer within the limits shown in Table 3.
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Cover the coarse aggregate seal stone with seal sand on the same day.
Section 424—Bituminous Surface Treatment – Table 1a (Metric)

<table>
<thead>
<tr>
<th>Stone Sizes</th>
<th>Application</th>
<th>Type Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st appl.</td>
<td>Single</td>
</tr>
<tr>
<td></td>
<td>2nd appl.</td>
<td>Double</td>
</tr>
<tr>
<td></td>
<td>3rd appl.</td>
<td>Triple</td>
</tr>
<tr>
<td>Stone Sizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#89 #7 #6</td>
<td>#89 #7</td>
<td>#89 #7 #6</td>
</tr>
<tr>
<td>#89 #7</td>
<td>#7 #7</td>
<td>#6 #5</td>
</tr>
<tr>
<td>#89 #89</td>
<td>#89 #89</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>Control</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>Tolerance</td>
<td>Tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Application Bituminous Materials (L/m²)</td>
<td>± .09</td>
<td>.77–.86</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .09</td>
<td>.91–1.00</td>
</tr>
<tr>
<td>1st Application Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .09</td>
<td>.82–1.09</td>
</tr>
<tr>
<td>2nd Application Bituminous Materials (L/m²)</td>
<td>± .09</td>
<td>.005–.006</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .09</td>
<td>.95–1.26</td>
</tr>
<tr>
<td>2nd Application Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .09</td>
<td>.82–1.09</td>
</tr>
<tr>
<td>3rd Application Bituminous Materials (L/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .09</td>
<td>.91–1.00</td>
</tr>
<tr>
<td>Total Bituminous Materials (L/m²)</td>
<td>± .09</td>
<td>.77–.86</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td>± .09</td>
<td>.91–1.00</td>
</tr>
<tr>
<td>Total Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
</tr>
</tbody>
</table>

Notes:
- The bituminous material and stone for each application may be varied by the Engineer, at no increase in cost, outside of the minimum or maximum shown in the table provided the total of the materials is within the limits of the total minimum and total maximum of all courses.
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Apply at least one seal coat to the mat course on the same day when multiple applications are specified.
Section 424—Bituminous Surface Treatment, Crack-Relief Interlayer – Table 2a (Metric)

<table>
<thead>
<tr>
<th>Bituminous Material Application (L/m²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 58-22 or PG 64-22</td>
<td>0.91 – 1.13</td>
<td>± 0.09</td>
</tr>
<tr>
<td>CRS-2h, CRS-2L or CRS 3</td>
<td>1.13 – 1.31</td>
<td>± 0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate Application (m³/m²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7</td>
<td>0.007 – 0.009</td>
<td>± 0.0007</td>
</tr>
</tbody>
</table>

Notes:
- Target application rates for bituminous material and cover aggregate will be established by the Engineer within the limits shown in Table 2a (Metric).
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Cover the single surface treatment Crack-Relief Interlayer with HMA Leveling on the same day.

Section 424—Bituminous Surface Treatment, Sand Seal – Table 3a (Metric)

<table>
<thead>
<tr>
<th>Bituminous Material Application (L/m²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 58-22 or PG 64-22</td>
<td>0.81 – 1.00</td>
<td>± 0.09</td>
</tr>
<tr>
<td>CRS-2h, CRS-2L or CRS 3</td>
<td>0.90 – 1.18</td>
<td>± 0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate Application (m³/m²)</th>
<th>Application Rate</th>
<th>Control Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA 10 Washed Screenings</td>
<td>0.003 – 0.005</td>
<td>± 0.0007</td>
</tr>
</tbody>
</table>

Notes:
- Target application rates for bituminous material and seal sand will be established by the Engineer within the limits shown in Table 3.
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Cover the coarse aggregate seal stone with seal sand on the same day.

D. Heating Bituminous Material

Evenly heat the entire mass of bituminous material for each application under positive control. While the material is being applied, maintain it within the specified temperature range.

E. Applying Bituminous Material

The following are temperatures at which bituminous material shall be applied.

<table>
<thead>
<tr>
<th>Bituminous Material</th>
<th>Asphalt Cement</th>
<th>CRS-2h</th>
<th>CRS-3</th>
<th>CRS-2L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application temperature °F (°C)</td>
<td>275–350 (135–177)</td>
<td>140–180 (60–82)</td>
<td>140–180 (60–82)</td>
<td>140–180 (60–82)</td>
</tr>
</tbody>
</table>

NOTE 1: Do not store emulsified asphalts at temperatures exceeding 150 °F (65 °C) for any extended time.

NOTE 2: Do not place bituminous surface treatment on fresh asphaltic concrete, except for paved shoulders, until the asphaltic concrete has been in place at least 30 days.

The Engineer will designate the maximum area to which bituminous material may be applied at one time. Apply the material as follows:

1. After applying the bituminous material to the section, immediately cover it with the correct application rate of aggregate before beginning the next section.
 Do not apply the bituminous material to the full width of the pavement unless the aggregate spreader can immediately cover the full width of the applied material.

NOTE: Never allow bituminous material to chill, set up, dry, or reach a condition that impairs the retention of cover aggregate before the aggregate is applied.

2. When a longitudinal joint is necessary:
 - Do not overlap the applications more than 4 in (100 mm).
• Do not leave any area uncovered.
• Never allow excess quantities of bituminous materials to build up.

3. On curves that require widening:
 a. Shoot the extra width on the outside first.
 b. Shoot the normal width with the distributor and follow the inside paving edge.

4. Ensure that the spray of bituminous material is uniform at all times. If the spray is not uniform:
 a. Stop the work.
 b. Change equipment, personnel, or methods to attain the required uniformity.
 c. Apply bituminous material at one-half the width of the roadway, if necessary.

5. If streaking develops:
 a. Stop the distributor and correct the problem before proceeding.
 b. Use a hand hose or a hand pouring pot to cover the streaked areas at approximately the same application rate of bituminous material.

6. If a part of the work cannot be reached by the distributor, treat it by hand hoses with nozzles.
7. Protect curbs, gutters, handrails, and other structures from discoloration by the bituminous material. Remove bituminous material that is sprayed or spilled on these structures.
8. Ensure that the bituminous material joins neatly in place by beginning and ending the asphalt application from a heavy paper or tight trough that is longer than the width of the treatment being applied. Place it to catch and hold the surplus material.
9. When cleaning and emptying the distributor, empty it where the bituminous material can be covered with dirt and completely disposed of without damaging the Rights-of-Way.

F. Spreading Aggregates

Spread the aggregates as follows:

1. Ensure that aggregates do not contain free moisture when spread.
2. Apply aggregate immediately after applying bituminous materials.
3. Uniformly spread the aggregate at the specified rate without corrugations, overlaps, excess, or deficient areas.
4. Move the spreader at a uniform speed, regardless of the grade.
5. Ensure that the distance that the aggregate free falls remains constant during spreading.
6. Remove corrugations. Operate the spreader to prevent overlap of aggregates. If overlap occurs, remove the excess aggregate before rolling.
7. Ensure a uniform aggregate spread by hand spotting and brooming as necessary.

G. Rolling

Observe the following guidelines for rolling bituminous surface treatment:

1. Synchronize the speed of the distributor and aggregate spreader with that of the rolling operation.
2. Use a minimum of two (2) individual rollers, one of which must be a pneumatic-tired roller meeting the requirements of Subsection 424.3.02.E.
3. If a steel-wheeled roller will fracture the aggregate, use pneumatic-tired rollers only.
4. Begin rolling within one minute after spreading the aggregate.
5. Operate rollers at speeds not exceeding 5 mph.
6. Proceed in a longitudinal direction, beginning at the outside edge of the aggregate application.
7. A roller pass is defined as one trip in a single direction.
8. Overlap each roller pass by approximately 1/2 the roller width.
9. Provide a minimum of three (3) roller passes per roller for each layer of aggregate to properly embed the aggregate particles.

Note: Unless a sufficient number of rollers are in operation to complete the above requirements, do not make subsequent applications of bituminous material until rolling of the previous application is completed.

H. Brooming
Use a revolving broom as necessary, supplemented by hand brooming, to remove or redistribute excess stone. Sweep the completed surface treatment within the first three hours of the next available workday following placement. Take care not to unseat bonded stone when sweeping.

I. Controlling Traffic

Do not allow traffic on the surface treatment until the bituminous material has cured sufficiently to ensure that the aggregate will not be loosened, dislodged, or whipped off by slow moving traffic.

Control traffic to speeds not exceeding 25 mph for a minimum of two hours after application of the seal stone and until the Engineer permits the road to be opened to normal traffic speeds.

Use pilot vehicles to control traffic speeds.

424.3.06 Quality Acceptance

General Provisions 101 through 150.

424.3.07 Contractor Warranty and Maintenance

Maintain and protect the surface course as specified in Section 105 until the Project has been accepted. Make repairs as the Engineer directs. The cost of maintenance, protection, and repair is included in the Unit Prices Bid for the Item for which they apply.

424.4 Measurement

The area to be measured is the number of square yards (meters) of each type surface treatment completed and accepted.

424.4.01 Limits

The length is measured along the surface. The width is specified on the Plans, plus or minus any authorized changes. Irregular areas are measured by the surface square yard (meter) within the lines shown on the Plans or authorized changes.

424.5 Payment

The accepted area of surface treatment will be paid for at the Contract Unit Price per square yard (meter) complete for each type and stone size specified.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 424</th>
<th>Single surface treatment stone size ___ group ___</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 424</td>
<td>Double surface treatment stone size ___ and ___ group ___</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 424</td>
<td>Double surface treatment stone size ___ and ___ group ___ with Seal Sand ___ and Latex-Modified Emulsion</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 424</td>
<td>Double surface treatment stone size ___ and ___ group ___ with Seal Sand ___</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 424</td>
<td>Triple surface treatment stone sizes ___, ___, and ___, group ___</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

Office of Materials and Research
Delete Section 445 and substitute the following:

445.1 General Description
This work includes waterproofing joints and cracks in the pavement by cleaning the existing surface and placing a membrane over joints and random cracks as shown on the Plans.

445.1.01 Definitions
General Provisions 101 through 150.

445.1.02 Related References
A. Standard Specifications
 Section 150—Traffic Control
 Section 400—Hot Mix Asphalitic Concrete Construction
 Section 888—Waterproofing Membrane Material

B. Referenced Documents
 General Provisions 101 through 150.

445.1.03 Submittals
General Provisions 101 through 150.

445.2 Materials
Use membranes that meet the requirements of Subsection 888.2.02. For a list of sources, see QPL 22.

445.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

445.3 Construction Requirements

445.3.01 Personnel
General Provisions 101 through 150.

445.3.02 Equipment
General Provisions 101 through 150.

445.3.03 Preparation
A. Primer
 Place primer on:
 • Portland cement concrete
Old asphaltic concrete surfaces

The Engineer will determine when to place primer on new asphaltic concrete surfaces.

Before placing the membrane:

1. Prime the surface according to the manufacturer’s recommendations.
2. Correct spalls greater than 3 in. (75 mm) in diameter that will prevent the material from bonding to the pavement or that will leave a cavity under the material.
 Repair spalls using asphaltic concrete that meets the requirements of Section 400 or other materials such as cold mixes approved by the Engineer.
3. Place the primer on the surface at the rate specified by the primer manufacturer. Extend it 1 in (25 mm) wider than the membrane. Before applying the membrane, allow the primer to dry until it is tack-free.
4. Cover the sections that are primed with membrane within the same day or repriming will be required.

Section 445—Waterproofing Pavement Joints and Cracks

445.3.04 Fabrication

General Provisions 101 through 150.

445.3.05 Construction

A. Placing the Membrane

Place the membrane on joints and cracks over concrete pavements on interstate mainline and ramps and designated state routes that will be surfaced with asphaltic concrete, unless otherwise noted on the Plans.

1. Place the membrane only when the temperature is above 40 °F (4 °C) and the pavement surfaces are dry and free of dirt or debris.
2. Install the membrane in widths of at least 11-3/8 in (290 mm) and center them over the joint or crack within a 2 in (50 mm) tolerance.
3. Seal joints as follows:
 a. Seal transverse joints and cracks first, starting at the outside edge of the pavement and extending the full length of the joints.
 b. Seal the longitudinal joint(s) after the transverse joints, placing the membrane in the direction that the Project will be paved.

If laps are needed, place them in the transverse and longitudinal membranes with an overlap of at least 2.5 in (65 mm).

4. Install the membrane straight and wrinkle-free with no curled or uplifted edges. Slit and fold down wrinkles over 3/8 in (10 mm) wide.
5. Press the membrane against the concrete or asphalt surface using a hand roller or other equipment to ensure proper bonding.
6. Bond the edges and corners of the strips securely to the surface. Before placing the overlay, rebond or replace strips that have loose edges or corners at no expense to the Department.
7. Place the asphaltic concrete overlay when the membrane surface is dry.
8. Traffic will be allowed to enter the section between the time of placing the membrane and placing the paving, for a maximum of 7 calendar days. Before paving, replace damaged or disbonded membrane at no additional cost to the Department.
9. Fill joints or cracks flush with the pavement if they are wider than 0.5 in (13 mm) or deeper than 3/8 in (10 mm) and not adequately filled to provide support for the membrane over the joint. Use PG 64-22 asphalt cement, hot pour, or other approved sealant material before placing the membrane as directed by the Engineer.
10. Clean the joint to remove dirt and debris before filling the joint. Comply with the short-term pavement marking requirements of Section 150.

445.3.06 Quality Acceptance
General Provisions 101 through 150.

445.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

445.4 Measurement
The membrane quantity, complete in place and accepted, is measured in linear feet (meters). The length for transverse joints waterproofed is based on the typical cross section in the Plans, except that, where widening occurs for extra lanes, field measurements are made to determine the exact length waterproofed.

The length for longitudinal joints and random cracks waterproofed are measured in place along the center line of the joint on the surface of the pavement. No allowance is made for laps.

445.4.01 Limits
General Provisions 101 through 150.

445.5 Payment
Payment will be made at the Contract Unit Price per linear foot (meter) of joint and crack waterproofed, which will include cleaning the surface and furnishing and placing the primer and membrane.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 445</th>
<th>Waterproofing pavement joints and cracks (width)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

445.5.01 Adjustments
General Provisions 101 through 150.

Office of Materials and Research
Delete Subsection 500.3.05.T.9.c and substitute the following:

c. After belting, dragging, or brooming and when shown on the Plans, groove the bridge deck and approach slabs perpendicular to the center line as follows:

1) Do not begin grooving until the bridge deck is cured according to Subsection 500.3.05.Z, “Cure Concrete”.
2) If necessary, groove in conjunction with planing required to make the surface corrections specified in Subsection 500.3.06.D, “Bridge Deck Surface Check”. Wait until the concrete is hard enough to support the equipment without distorting.
3) Cut Grooves into the hardened concrete using a mechanical saw device capable of producing grooves 0.125 in (3 mm) wide, 0.125 in (3 mm) deep, and 0.5 in (13 mm) apart, center-to-center.
4) Extend the grooves across the slab to within 1 ft (300 mm) of the gutter lines.

Office of Materials and Research
Delete Section 550 and Substitute the following:

550.1 General Description

This work includes furnishing and installing the following:

- Storm drain pipe
- Pipe-arch and elliptical culverts
- Side drain pipe flared end sections
- Tapered pipe inlets

Install structures according to the Specifications and the details shown on the Plans, or as directed by the Engineer.

550.1.01 Definitions

General Provisions 101 through 150.

550.1.02 Related References

A. Standard Specifications

- Section 205—Roadway Excavation
- Section 207—Excavation and Backfill for Minor Structures
- Section 208—Embankments
- Section 645—Repair of Galvanized Coatings
- Section 815—Graded Aggregate
- Section 834—Masonry Materials
- Section 840—Corrugated Aluminum Alloy Pipe
- Section 841—Iron Pipe
- Section 843—Concrete Pipe
- Section 844—Steel Pipe
- Section 845—Smooth Lined Corrugated High Density Polyethylene (HDPE) Culvert Pipe
- Section 846—Polyvinyl chloride (PVC) Drain Pipe
- Section 847—Miscellaneous Pipe
- Section 848—Pipe Appurtenances

B. Referenced Documents

General Provisions 101 through 150.
GDOT Manual on Drainage Design for Highways
Ga. Std. 1030D
550.1.03 Submittals
General Provisions 101 through 150.

550.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backfill Materials</td>
<td>207</td>
</tr>
<tr>
<td>Graded Aggregate</td>
<td>815.2.01</td>
</tr>
<tr>
<td>Reinforced Concrete Pipe</td>
<td>843.2.01</td>
</tr>
<tr>
<td>Nonreinforced Concrete Pipe</td>
<td>843.2.02</td>
</tr>
<tr>
<td>Mortar And Grout</td>
<td>834.2.03</td>
</tr>
<tr>
<td>Bituminous Plastic Cement</td>
<td>848.2.05</td>
</tr>
<tr>
<td>Rubber Type Gasket Joints (Concrete Pipe)</td>
<td>848.2.01</td>
</tr>
<tr>
<td>Preformed Plastic Gaskets</td>
<td>848.2.06</td>
</tr>
<tr>
<td>Corrugated Steel Pipe</td>
<td>844.2.01</td>
</tr>
<tr>
<td>Bituminous Coated Corrugated Steel Pipe</td>
<td>844.2.02</td>
</tr>
<tr>
<td>Corrugated Aluminum Alloy Pipe</td>
<td>840.2.01</td>
</tr>
<tr>
<td>Bituminous Coated Corrugated Aluminum Pipe</td>
<td>840.2.03</td>
</tr>
<tr>
<td>Aluminized Type 2 Corrugated Steel Pipe</td>
<td>844.2.06</td>
</tr>
<tr>
<td>Ductile Iron Pipe, Fittings and Joints</td>
<td>841</td>
</tr>
<tr>
<td>Precoated, Galvanized Steel Culverts</td>
<td>844.2.05</td>
</tr>
<tr>
<td>Smooth Lined Corrugated High Density (HDPE) Polyethylene Culvert Pipe</td>
<td>845.2.01</td>
</tr>
<tr>
<td>Polyvinyl Chloride (PVC) Profile Wall Drain Pipe</td>
<td>846.2.01</td>
</tr>
<tr>
<td>Polyvinyl Chloride (PVC) Corrugated Smooth Interior Drain Pipe</td>
<td>846.2.02</td>
</tr>
<tr>
<td>Miscellaneous Pipe</td>
<td>847</td>
</tr>
</tbody>
</table>

Use any of the following types of pipe:

- Reinforced concrete
- Nonreinforced concrete
- Corrugated steel or Aluminum
- Smooth-lined corrugated high density polyethylene (HDPE)
- Ductile iron
- Polyvinyl Chloride (PVC) Profile Wall Drain Pipe
- Polyvinyl Chloride (PVC) Corrugated Smooth Interior Drain Pipe

Use the type of pipe designated on the Plans, or acceptable alternate types when applicable. For a display of acceptable alternate pipe types see Selection Guideline for Culvert, Slope and Underdrain Pipe in Chapter 10 – Material Selection of the Department’s Manual on Drainage Design for Highways. This document summarizes general applications for pipe.

For concrete, corrugated steel and aluminum pipe see Ga. Std. 1030D for minimum thicknesses, minimum cover, maximum fill, allowable pipe diameters and trench construction detail.

For HDPE and PVC pipe see Ga. Std. 1030P for minimum cover, maximum fill, allowable pipe diameters and trench construction detail.

550.2.01 Delivery, Storage, and Handling
550.3 Construction Requirements

550.3.01 Personnel
General Provisions 101 through 150.

550.3.02 Equipment
General Provisions 101 through 150.

550.3.03 Preparation and Backfill
Before installing pipe, shape the foundation material as shown on the Plans.
Prepare structure excavations and foundation according to Section 207. Except, for HDPE and PVC pipe use the following requirements for backfill:

1. Cross drain applications use material that meets Subsection 815.2.01.
2. Longitudinal and side drain applications use material according to Section 207. Except, when Type I backfill material is required use Class II B2 soil or better per Subsection 810.2.01.

550.3.04 Fabrication
General Provisions 101 through 150.

550.3.05 Construction

A. Drainage
Provide necessary temporary drainage. Periodically remove any debris or silt that constricts the pipe flow to maintain drainage throughout the life of the Contract.

B. Damage
Before allowing construction traffic over a culvert, protect the structure by providing sufficient depth and width of compacted backfill. Repair damage or displacement from construction traffic or erosion that occurs after installing and backfilling at no additional cost to the Department.

C. Installation
1. Concrete Pipe
 Lay sections in a prepared trench with the socket ends pointing upstream. To join sections, use any of the following joint types:
 - Mortar
 - Bituminous plastic cement
 - Rubber gasket
 - Preformed flexible sealant
 If using mortar and bituminous plastic cement joints:
 a. Fill the annular space with the joint material and wipe the inside of each joint smooth.
 b. Construct mortar joints in the same manner, but thoroughly wet the annular space before filling it with joint material.
 c. Install rubber and preformed flexible sealant joints according to the manufacturer’s recommendations.

2. Ductile Iron Pipe
 Lay pipe sections in a prepared trench, with bells pointing upstream. Construct joints according to Subsection 841.2.02.A.

3. Corrugated Aluminum or Steel Pipe and Pipe-Arches
 Lay pipe sections in a prepared trench, with outside laps of circumferential joints pointing upstream and longitudinal joints at the sides. Join the sections with coupling bands, fastened by two or more bolts. Before backfilling the structure:
a. Repair exposed base metal in metal coating according to Section 645.
b. Recount exposed base metal in bituminous coating with asphalt.

4. Smooth-Lined Corrugated HDPE Pipe
 Install smooth-lined corrugated HDPE pipe according to ASTM D 2321. Use fitting and couplings that comply with the joint performance criteria of AASHTO Standard Specifications for Highway Bridges, Division II. Ensure that all joints are "silt tight" as stated in the AASHTO bridge specifications.

5. Specials (Wyes, Tees, and Bends)
 Install wyes, tees, and bends as shown on the Plans or as directed.

6. Tapered Pipe Inlets
 Locate and install tapered pipe inlet end sections as shown on the Plans or as directed.

7. Elongation
 Elongate metal pipe as shown on the Plans. Order the elongation of the vertical axis of the pipe to be done in the shop.
 Have the manufacturer ship metal pipe with wire ties in the pipe ends. Remove wire-ties immediately after completing the fill.

8. Flared End Sections
 Use flared end sections on the inlet, outlet, or on both ends of storm drain pipe, according to Plan details.

9. PVC Drain Pipe
 Install PVC drain pipe according to ASTM D 2321. Use fittings and couplings that comply with the joint performance criteria of AASHTO Standard Specifications for Highway Bridges, Division II. Ensure that all joints are "silt tight" as stated in the AASHTO bridge specifications.

550.3.06 Quality Acceptance
Clean pipe before final acceptance of the Work.

The Department may conduct video surveillance on storm drain (cross drain and longitudinal drain) installations after all activities are complete that may damage the pipe, but before the placement of the base and paving when applicable. If video surveillance shows problems such as pipe deformation, cracking, or joint separation, the Contractor shall repair or replace these pipes at no cost to the Department.

Use a nine-point mandrel to test 100% of the installed length of smooth-lined corrugated HDPE or PVC drain pipe for deformation. Use a mandrel that has an effective diameter equal to 95% of the base inside diameter. Provide the Engineer with a proving ring to verify the mandrel size. Mandrel testing shall not be paid for separately.

Ensure that smooth-lined corrugated HDPE or PVC drain pipe installations have a maximum of 5% deflection when checked after completing all construction activities that may damage the pipe, but before placing the base and paving when applicable. Remove and replace pipe with over 5% deflection at no cost to the Department.

550.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

550.4 Measurement
A. Excavation and Backfill
 Backfill materials types II and III are measured according to Subsection 207.4, "Measurement."

B. Flat Bottom and Circular Pipe (All Types)
 The overall length of pipe installed, excluding tapered inlets, is measured in linear feet (meters), along the central axis of the diameter of the pipe. Wyes, tees, and bends are included in this measurement.

C. Pipe-Arches
 The overall length of pipe-arch installed is measured in linear feet (meters), along the bottom center line of the pipe.

D. Multiple Installations
 In multiple installations, each single line of culvert structure is measured separately.
E. Tapered Pipe Inlets

Tapered pipe inlet sections are measured as a unit; do not include them in the overall length of the pipe.

F. Flared-End Sections

Flared-end sections are measured separately by the unit and not included in the overall pipe length.

G. Smooth-Flow Pipe

Smooth-flow pipe is measured by the linear foot (meter) along the pipe invert.

H. Elliptical Pipe

Elliptical pipe is measured in linear feet (meters) along the bottom center line of the pipe.

550.4.01 Limits

Excavation and normal backfill are not measured for payment.

550.5 Payment

A. Backfill

Backfill will be paid for according to Section 207.

B. Pipe Installations

Pipe installations complete in place and accepted will be paid for at the Contract Price for each item.

This payment is full compensation for excavating, furnishing, and hauling materials; installing, cutting pipe where necessary; repairing or replacing damaged sections; making necessary connections; strutting, elongating, providing temporary drainage; joining an extension to an existing structure where required; and removing, disposing of, or using excavated material as directed by the Engineer.

1. Smooth Flow Pipe

The quantity of each diameter and steel thickness of smooth flow pipe as measured will be paid for at the Contract Unit Price per linear foot (meter) bid for the various sizes. Payment is full compensation for furnishing labor, materials, tools, O-ring mechanical joints, equipment, and incidentals to complete this Item, including removing and disposing excavation material.

2. Flared-End Sections

Flared-end sections, measured as specified above, will be paid for at the Contract Unit Price for each section of the specified size.

Payment will also include sawing, removing, and replacing existing pavement removed to install a new drainage structure.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 550</th>
<th>Storm drain pipe____ in (mm), H=____</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 550</td>
<td>Side drain pipe____ in (mm), H=____</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Pipe arch (span)____ in (mm) x (rise)____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Tapered pipe inlet____ in (mm),</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Flared-end section____ in (mm),</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Elliptical pipe____ in (mm) wide x____ in (mm) high</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

550.5.01 Adjustments

Excavation will not be paid for separately, but the other provisions of Section 205 and Section 208 shall govern.

Office of Materials and Research
Add the following:

Section 620—Temporary Barrier

620.1 General Description
This work provides for Method 1 and Method 2 temporary barrier systems.

620.1.01 Definitions
Method 1 - Method of furnishing, placing, maintaining, moving, and reusing where required, and removing temporary barrier of the length and at the locations shown on the Plans. Method 1 barrier is not suitable on bridges where the distance from the centerline of the barrier to the free edge of the bridge deck is less than or equal to 6'-0" (1.8 m) measured normal to the barrier.

Method 2 - Method of furnishing, placing, maintaining, moving, and reusing where required, and removing manufactured barrier of the length, and at the locations shown on the Plans. Method 2 barrier is to be used on bridges and bridge approaches where the distance from the centerline of the barrier to the free edge of the bridge deck is less than or equal to 6'-0" (1.8 m) measured normal to the barrier.

620.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 501—Steel Structures
 Section 511—Reinforcement Steel

B. Referenced Documents
 General Provisions 101 through 150

620.1.03 Submittals
Method 1 - Submit certification from the manufacturer that the proposed barrier and its interconnecting hardware replicates an NCHRP-350 “Test Level 3” approved documented in an acceptance letter from FHWA or certification that the barrier meets the requirements of Ga. Std. 4961. Submit all certification documents to the engineer prior to delivery of the barrier to the project.

Method 2 - Submit certification from the manufacturer that the proposed barrier and its interconnecting hardware replicates an NCHRP 350 “Test Level 3” approved documented in an acceptance letter from FHWA and that the barrier does not deflect more than 1'-0" (300mm) under NCHRP test conditions. Attach the acceptance letter stating that the proposed is in compliance with NCHRP 350 “Test Level 3” and
that the barrier meets the deflection criteria to the certification. Submit all certification documents to the engineer prior to delivery of the barrier to the project.

620.2 Materials

A. Method 1

Supply a temporary barrier.

Ensure that materials are in accordance with the manufacturer’s recommendations, specifications, and details or that the materials meet the requirements of the Standard Specifications and Ga. Std. 4961.

B. Method 2

Supply a temporary barrier.

Ensure that materials used in the barrier are in accordance with the manufacture’s recommendations, Specifications, and details.

620.2.01 Delivery, Storage, and Handling

A. General

Deliver, store, and handle barrier in accordance with the manufacturer’s recommendations.

Repair damage to the barrier and its connections in accordance with the manufacturer’s recommendations at no additional cost to the Department prior to acceptance for use by the Department.

620.3 Construction Requirements

620.3.01 Personnel

General Provisions 101 through 150.

620.3.02 Equipment

General Provisions 101 through 150.

620.3.03 Preparation

General Provisions 101 through 150

620.3.04 Fabrication

A. Method 1

Perform barrier fabrication as detailed on Ga. Std. 4961 or in accordance with the manufacturer’s recommendations.

B. Method 2

Perform barrier fabrication in accordance with the manufacturer’s recommendations.

620.3.05 Construction

A. General

Handle and transport units to prevent damage and/or as recommended by the manufacturer. When required, use units at one or more sites on the same project.
Ensure that the units are complete and in acceptable condition and located where designated on the Plans or directed by the Engineer before acceptance by the Department.

Use the Plan quantity of barrier effectively to complete The Work within the Contract time. If scheduling The Work requires additional barrier, furnish it at no additional expense to the Department.

Use only one section shape, length, and connection type in a single run of interconnected barrier.

B. Method 2

Rigidly attach the barrier to the bridge deck and extend it off the bridge a transition distance indicated in the Standard Plans.

Interconnect all barrier sections within each single run of barrier.

Use non-shrink grout to fill all holes remaining in permanent bridge decks after barrier is removed.

620.3.06 Quality Assurance

General Provisions 101 through 150.

620.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

620.4 Measurement

This work will be measured per unit {per linear foot (meter)} of accepted barrier delivered and used. The quantity shall be computed by multiplying the number of units by the length of each unit as per Standard 4961 or approved alternate, subject to the maximum amount specified in Subsection 620.3.05.

620.4.01 Limits

General Provisions 101 through 150.

620.5 Payment

This work is paid for at the Contract Price per linear foot (meter) of temporary barrier Method 1 or barrier Method 2 as designated complete in place. Payment includes fabrication, use, moving, reuse, and removal of the units.

No separate payment will be made for moving and/or reusing units during the work or for using additional units beyond the Plan quantity to facilitate the construction schedule.

No separate payment will be made for filling holes used to bolt Method 2 barrier to bridge decks.

The first 75 percent of the Contract Unit Price bid will be paid on the first monthly estimate following initial delivery, installation, and acceptance.

The remaining 25 percent will be paid when the Project is complete or when the material is no longer needed and removed from the Project, whichever applies.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 620</th>
<th>Temporary Barrier, Method No. 1</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 620</td>
<td>Temporary Barrier, Method No. 2</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>
620.5.01 Adjustments

General Provisions 101 through 150.
Delete Section 624 and substitute the following:

624.1 General Description

This work includes furnishing and installing a sound barrier according to this Specification and conforming to the locations, dimensions, lines, and grades shown on the Plans.

Unless a specific type is required by the Contract documents, select one of the following barrier types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B</td>
<td>Interlock steel panels</td>
</tr>
<tr>
<td>Type C</td>
<td>Precast concrete panels</td>
</tr>
<tr>
<td></td>
<td>Absorptive sound barriers</td>
</tr>
</tbody>
</table>

624.1.01 Definitions

General Provisions 101 through 150.

624.1.02 Related References

A. Specifications

- Section 106—Control of Materials
- Section 201—Clearing and Grubbing Right-of-Way
- Section 205—Roadway Excavation
- Section 206—Borrow Excavation
- Section 208—Embankments
- Section 210—Grading Complete
- Section 500—Concrete Structures
- Section 520—Piling
- Section 700—Grassing
- Section 702—Vine, Shrub, and Tree Planting
- Section 865—Manufacturing of Prestressed Concrete Bridge Members
- Section 885—Elastomeric Bearing Pads
B. Referenced Documents

GDT 7
GDT 20
GDT 21
GDT 24a
GDT 24b
GDT 59
GDT 67
QPL 42
QPL 53
Federal Specification QQ-S-763-C

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 31/M 31M</td>
<td>A 153/153M</td>
</tr>
<tr>
<td>M 32/M 32M</td>
<td>A 653/653M</td>
</tr>
<tr>
<td>M 111/M 111M</td>
<td>A 792/792M</td>
</tr>
<tr>
<td>M 270/M 270M</td>
<td>B 695</td>
</tr>
<tr>
<td></td>
<td>B 766</td>
</tr>
<tr>
<td></td>
<td>A 709/A709M</td>
</tr>
<tr>
<td></td>
<td>C 423</td>
</tr>
<tr>
<td></td>
<td>C 1386</td>
</tr>
<tr>
<td></td>
<td>D 638</td>
</tr>
<tr>
<td></td>
<td>D 695</td>
</tr>
<tr>
<td></td>
<td>D 790</td>
</tr>
<tr>
<td></td>
<td>D 792</td>
</tr>
<tr>
<td></td>
<td>D 2092</td>
</tr>
<tr>
<td></td>
<td>D 2583</td>
</tr>
<tr>
<td></td>
<td>E 90</td>
</tr>
<tr>
<td></td>
<td>G 154</td>
</tr>
</tbody>
</table>

624.1.03 Submittals

Submit Shop Drawings to the Engineer for review and approval

- Prepare Shop Drawings for each Sound Barrier.
- Show all details necessary for field erection. The minimum requirements are:
 - Complete elevation view showing the top and bottom elevations, the required wall envelope, the roadway grade and ground line at the wall, and the location of access doors.
 - Diameter and depth of caissons at each post using 20 foot maximum post spacing
 - Post size, base plate, and anchor bolt size as provided by the manufacturer of the sound barrier wall system.
 - Complete plan view with dimensions, stations and offsets to the face of the sound barrier.

Provide manufacturer certification to the Department that a specimen of the proposed Type B barrier meets or exceeds a minimum weighted sound transmission loss of 20 dBA. Furnish test results for barrier material types (except Type C). The transmission or loss results must be based on the generalized truck spectrum when tested according to ASTM E 90.

For absorptive walls, use one of the following sound barrier wall systems:
- LSE Noise Barrier Wall (Sound Fighter Systems)
- Silent Protector (Harder, Luckey & Hargrove, Inc.)
Provide manufacturer certification to the Department that a specimen of the proposed absorptive barrier meets or exceeds a minimum noise reduction coefficient (NCR) of 1.0 and a minimum sound transmission class (STC) of 30 when tested according to ASTM C423.

624.2 Materials

Ensure that other materials not listed herein meet the requirements of the appropriate Specification to which they pertain.

A. Type B

1. Interlocking Steel Panels

Use cold formed configured steel panels that meet these requirements:

- Use steel sheet conforming to ASTM A 653/653M or ASTM A 792/792M Structural Steel (SS) Grade 50 Class 2 with a minimum thickness of 0.029 inches (0.74 mm)
- Provides friction interlocking with adjacent panels
- Has a male-female rib that provides a friction interlock connection with adjacent panels or is joined adequately according to the manufacturer’s specifications
- Provides sufficient friction interlock connection strength to support its own weight without using fasteners when connected to another panel and held in a vertical or horizontal position

Use a panel size and shape shown on the Plans or an alternate approved by the Engineer.

Coat (galvanize) the panels with either a G90 (Z275) weight of zinc according to ASTM A 653/653M or an AZ50 (AZM150) weight of 55% aluminum-zinc alloy according to ASTM A 792/792M.

2. Protective Color Coating

Use one of the following coatings:

a. System A—The coating is polyvinylidene fluoride (70 percent resin, minimum enamel, PVF2).
 1) Apply the coating system (including primer) at a total minimum film thickness of 1 mil (0.03 mm) per coated side.
 2) Cure the polyvinylidene fluoride film to at least 0.8 mil (0.02 mm) film thickness.

b. System B—The coating is polyvinyl fluoride plastic film (PVF1) and has a thickness of at least 1.5 mils (0.04 mm) coated on both sides.
 1) Have the coating applied at the factory to thoroughly cleaned and pretreated galvanized steel according to ASTM D 2092, Method F.
 2) Laminate the coating to the galvanized steel using heat and adhesive to form a uniform and durable coating pigmented to obtain optimum color performance.
 3) Use the color from the Federal Standard Color Number matching the color used on Georgia DOT P.I. No. 712870. Ensure that caulking is color pigmented to match the wall color specified.

3. Post

Use a post for steel walls with these features:

- Hot rolled shape conforming to AASHTO M 270/M 270M GR 36/GR 250
- Hot-dip galvanized by an approved galvanizer as listed on QPL-53 and in accordance with AASHTO M 111/M 111M
- Coating that weighs at least 2 ounces/ft² (610 g/m²) on all sides
- Each post requires pre-inspection by the Office of Materials & Research as evidenced by a GDT stamp affixed near one end of each post
4. Steel Flashing and Caps
 Use flashing and caps for steel walls that are the same material and color coating as the panels. Fasten steel flashing and caps with self-tapping screws. Ensure that A-1 screws are Class #410 Stainless Steel and conform to Federal Specification QQ-S-763-C, or are cadmium coated according to ASTM B 766.

5. Fasteners
 Attach panels to posts using a powder-actuated fastening system. Fasteners shall be stainless steel or shall be hot-dip galvanized as per ASTM A 153 Class C or shall have a mechanically deposited zinc coating as per ASTM B 695 Class 50.

B. Type C
 Use precast concrete panels that meet these requirements:

<table>
<thead>
<tr>
<th>Class AA Concrete</th>
<th>Reinforcing</th>
<th>Elastomeric Bearing Pads</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO M 31/M 31M and M 32/M 32M</td>
<td>AASHTO M 111/M 111M</td>
<td>Section 885</td>
</tr>
</tbody>
</table>

Use piling, bolts, and fittings that are hot-dip galvanized when the barrier rests on another concrete structure.

C. Absorptive Sound Barriers

1. Sound Absorptive Panels:
 - Constructed of a durable lightweight, UV resistant, flame retardant material and shall be able to resist a wind load of 28 PSF. Provide manufacturer certified wind load test report.
 - Resistant to degradation from ozone, hydrocarbons, and freeze/thaw cycling.
 - Use the color from the Federal Standard Color Number matching the color used on Georgia DOT P.I. No. 712870 or equivalent.
 - Free draining to prevent moisture buildup and possible corrosion.

2. Post:
 - Fabricated from steel conforming to the requirements of ASTM A572 GR50/A572M GR345.
 - Hot--dip galvanized according to AASHTO M 111/M 111M, with a minimum coating weight of 2.0 oz/ft²(600 g/m²) on all sides.
 - Galvanized after fabrication.

3. Anchor bolts, nuts, washers and base plates:
 - Anchor bolts, nuts and washers shall meet the requirements of Subsection 852.2., or ASTM F1554 Grade 36 (F1554M), A563 (A563M) and F436 (F436M), except that the threads shall be rolled and shall be 8 UN/8 UNR thread profile according to ANSI B1.1 Use bolts with Class 2A threads, and nuts with class 2B threads. Galvanize all components in accordance with ASTM A123/A123M or A153/A153M, whichever is applicable.
 - Use galvanized base plates conforming to ASTM A709 Grade 36.

4. Access Doors:
 - Provide insulated steel doors of the same color as the sound barrier panels.
5. Other Materials
 • Use materials that meet the requirements of the appropriate Section in the Standard Specifications to which they pertain.

624.3 Construction Requirements

624.3.01 Construction
Perform the following work according to the Specifications:

A. Clearing and Grubbing
 When necessary, clear and grub according to Section 201 as applicable.

B. Excavation, Borrow, Embankment
 Perform excavation, borrow, and embankment according to Section 205, Section 206, Section 208, or Section 210. The scope and dimensions of the work are shown on the Plans.

C. Grassing
 Perform grassing according to Section 700, as specified on the Plans.

D. Vine, Shrub, and Tree Planting
 Plant vine, shrub, and trees according to Section 702 as specified on the Plans.

E. Miscellaneous Construction Items
 When items are shown on the Plans but are not covered in this Specification, the Plans and Standard Specifications govern the work.

F. Walls
 Follow these requirements to construct each type of wall:
 1. Type B Wall
 Install steel sound barrier walls according to the manufacturer’s recommendations and Plan details.
 Repair cut, scratched, or marred surfaces according to the manufacturer’s recommendations.
 2. Type C Wall
 When using precast concrete panels:
 a. Cast them in a precast facility approved by the Engineer.
 b. Have the Engineer determine panel acceptability from the compressive strength of cylinders made and cured the same as the panels, and from inspection during manufacture.
 Have the panel manufacturer furnish facilities and assistance to sample and test quickly and satisfactorily.
 c. Cast the panels on a steel surface with steel side forms. When an architectural finish is specified for one side of the barrier, provide a similar finish to the opposite side unless noted otherwise in the plans.
 d. Place concrete in each panel without interruption. Consolidate the concrete using vibrators supplemented by hand tamping and rodding to force the concrete into the corners of the forms to eliminate stone pockets, cleavage planes, and air bubbles.
e. Give the panels a Type III—Rubbed Finish on the upper surface (as cast) according to Subsection 500.3.05.AB, “Finish Concrete.” When an architectural finish is specified for one side of the barrier, provide a similar finish to the opposite side unless noted otherwise in the plans.

f. Cure the panels as specified in Subsection 500.3.05.Z.1, “General Curing—Supplying Additional Moisture,” (wet cure) long enough for the concrete to develop the specified compressive strength.
 1) Ensure that the curing period is at least 72 hours under normal summer temperature conditions. In colder weather extend the curing period, as directed by the Engineer.
 2) Protect the panels from freezing from the time the concrete is placed until curing is complete.
 3) Instead of the wet cure method, steam cure the panels as specified in Subsection 865.2.01.B.2.g.(2) if desired.

g. Mark each panel with the date cast and the Inspector’s approval stamp.

 NOTE: Even with the Inspector’s acceptance at the precast yard, panels can still be rejected at the erection point if they are damaged.

h. Erect the panels according to Plan details and dimensions.
 Place bearing pads as shown in the Plans, and tighten the restraining bolts.

i. After erection is complete and before Final Acceptance of the Project, clean the sound barrier to remove dirt or stains.

3. Absorptive Sound Barriers

Follow these requirements to construct wall:

Install in accordance with manufacturer’s recommendations and Plan details. Do not install walls with burns, discolorations, cracks, or other objectionable marks that would adversely affect the performance of the system. Ensure to install panels with the absorptive portion facing the highway side.

4. All Walls

Before beginning earthwork on the Project, stake the sound barriers in the field and establish the final groundline elevations at the barrier walls.

Furnish these elevations to the supplier who will develop the shop plans, including a complete elevation view of each barrier indicating top and bottom elevations and the roadway grade.

a. Protect the final ground elevations established in the field for the duration of the Project. Do not adjust them without the Engineer’s approval.

b. Install sound barriers according to the Plans and Shop Drawings approved by the Engineer.

c. Secure joints and connections to be structurally sound with no visible openings for sound transmission. Ensure that vibration from metal barriers is not a secondary source of sound transmission.

d. Repair marred, chipped, scratched, or spalled barrier areas according to the manufacturer’s recommendations and as directed by the Engineer at the Contractor’s expense.

e. To substitute welded for fixed-bolt connections or vice versa on metal barriers, meet these conditions:
 • Submit load calculations for the specific connection to be modified.
 • Use a safety factor of at least 3.0.

f. Place trench backfill for sound barrier construction according to Section 207. Use select material to backfill.
 If the Engineer believes the trench is too narrow for compaction, backfill the trench excavation with concrete grout to the Engineer’s satisfaction. No additional compensation will be made for the concrete grout.

g. Dispose of excess excavation to the Engineer’s satisfaction.
h. Keep right-of-way fence in place that is scheduled to be salvaged until the barrier is constructed, or as long as the Engineer deems practical.

i. After erecting the barrier, leave the disturbed area in a finished condition at the Engineer’s direction and plant grass or sod.

j. Payment for establishing grass is described in Subsection 624.4.C, “Grassing.”

k. Ensure that the barrier meets these tolerances:
 1) Vertical alignment for barriers and posts is:
 • 0.5 in (15 mm) for barrier heights to 10 ft (3 m)
 • 1 in (25 mm) for barrier heights to 20 ft (6 m)
 • 1.5 in (40 mm) for barrier heights to 30 ft (9 m)
 2) Horizontal alignment for barriers is close to that shown on roadway Plans.
 3) Post spacings are within 0.5 in (15 mm) of their intended location.

l. For sound barriers built on top of earth berms, construct the berms of earthwork fill material and compact to 95% of the maximum density as determined by GDT 7, GDT 24a, GDT 24b or GDT 67, as applicable. Determine in-place density according to GDT 20, GDT 21, or GDT 59, as applicable.

G. Graffiti-Proof Coating

This work includes providing graffiti-proof coating on both faces of concrete and masonry barriers from the ground line to the top of the wall.

1. Materials. Use materials as noted on QPL 42.

2. Delivery and Storage. Ensure that the materials are delivered in manufacturer’s original containers with labels intact.
 Store the materials out of the weather, in a single location, and as specified by the manufacturer.

3. Job Conditions. Protect the coating from the weather and work conditions as follows:
 a. Apply the graffiti-proof coating in weather recommended by the manufacturer.
 b. Mask, cover, or otherwise protect finished adjacent surfaces from damage that work in this Section could cause.
 c. Protect finished coatings from staining, marring, and damages from other trades.

4. Quality Criteria. Use materials that are products of one manufacturer.
 Use application equipment recommended or approved by the coating manufacturer for use on this Project.
 Use equipment in good operating condition.

5. Application. Ensure that the moisture content of surfaces to receive coating are within the limits recommended by the coating manufacturer.
 a. Apply coating after applying a Type III finish of concrete, or after thoroughly cleaning the concrete block.
 b. Apply coating at rate of 1 gal per 250 to 300 ft² (1 L per 6 to 7 m²). Apply three coats using a low-pressure spray.
 c. Begin the coating application at the uppermost surfaces and work down.
 d. Remove loose particles, dirt, grease, oil, and other foreign materials following application.

624.3.02 Quality Acceptance

The panels are subject to rejection if they fail to meet the requirements specified above. The following defects are also cause for rejection:

- Defects from imperfect mixing and casting
- Honeycombed or open texture
- Exposed reinforcement
• Failure to meet the required 3,500 psi (25 MPa) compressive strength at 28 days.

624.4 Measurement

A. Clearing and Grubbing
 Clearing and grubbing will not be measured separately for payment.

B. Excavation, Borrow, and Embankment
 Excavation, borrow, and embankment will not be measured separately for payment.
 The scope and dimensions of the work are as shown on the Plans.

C. Grassing
 Grassing will not be measured separately for payment.

D. Vine, Shrub, and Tree Planting
 Vine, shrub, and tree planting shown on the Plans is measured according to Section 702.

E. Items Not Covered in This Specification
 Items shown on the Plans but not covered in this Specification are measured for payment according to the applicable portions of the Specifications.

F. Walls
 1. Type B Wall
 Steel wall is measured in square feet (meters) of wall surface installed before backfilling complete in place according to Subsection 109.01, “Measurement and Quantities.” Posts, flashing, caps, concrete post embedment, or other incidental items required for construction are not measured separately.
 2. Type C Wall
 Precast concrete sound barriers are measured in square feet (meters) of wall surface before backfilling, including pile flanges, complete in place and accepted.
 No separate measurement for pile, anchor bolts, plates, connections, neoprene bearing pads, connecting bolts, or other components of the Sound Barrier.
 3. Absorptive sound barrier wall is measured in square feet (meters) of wall surface installed before backfilling complete in place according to Subsection 109.01, “Measurement and Quantities.” Posts, flashing, caps, concrete post embedment, or other incidental items required for construction are not measured separately.
 4. All Walls
 The bottom of the barrier wall pay limit is the line located:
 • 6 in (150 mm) below the existing graded ground line when side barriers are not required
 • 6 in (150 mm) below the top of the side barriers when barriers are required
 • At the top of the retaining wall coping when the roadway is a cut section and the retaining wall is in place
 The top pay limit is the minimum profile elevation shown for each sound barrier profile.

624.4.01 Limits
General Provisions 101 through 150.
624.5 Payment

A. Clearing and Grubbing

The cost of clearing and grubbing is included in the Lump Sum Item for the Project. When clearing and grubbing is not shown as a payment Item, the cost is included in the overall Contract Price for the work covered in this Specification.

B. Unclassified Excavation and Borrow

Unclassified excavation and borrow will be paid for and included in the normal excavation and borrow for the Project unless shown on the Plans as a separate payment Item for sound barriers. In that case, payment will be made under Section 205, Section 206, Section 208, or Section 210, as applicable.

C. Grassing

Grassing will be paid for and is included in the normal grassing for the Project according to Section 700 unless shown on the Plans to be included in the price bid for sound barriers.

D. Vine, Shrub, and Tree Planting

When the Plans state that this Item will be paid for, payment will be made under Section 702.

E. Items Not Covered by This Specification

Items shown on the Plans to be paid for but are not covered by this Specification will be paid for according to the applicable portions of the Specifications.

F. Walls

Unless a specific wall type is specified in the Contract, the contractor shall construct one of the following wall types.

1. Type B Wall
 Steel wall will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing and installing materials, providing post and post embedment, and providing labor, equipment, and incidentals to complete the Work.

2. Type C Wall
 Precast concrete sound barrier will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing materials, including piling and attachments and for erecting the sound barrier, including graffiti-proof coating.

3. Absorptive Sound Barriers

Additional wall payment criteria:
Walls will be paid at plan quantity plus or minus any authorized changes, or adjustments due to the ground line elevation varying from plan.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>624</td>
<td>Sound barrier, Type B</td>
<td>Per square foot (meter).</td>
</tr>
<tr>
<td>624</td>
<td>Sound barrier, Type C</td>
<td>Per square foot (meter).</td>
</tr>
<tr>
<td>624</td>
<td>Absorptive Sound Barrier</td>
<td>Per square foot (meter).</td>
</tr>
</tbody>
</table>
624.5.01 Adjustments
General Provisions 101 through 150.
DELETE SUBSECTION 627.2 AND SUBSTITUTE THE FOLLOWING:

627.2 MATERIALS
Meet the requirements of Section 626.2, “Materials” of the Specifications.

DELETE SUBSECTION 627.3.03.B AND SUBSTITUTE THE FOLLOWING:

B. WALL DESIGN

Use the following design criteria for a Contractor designed wall:

1. Provide one of the following wall systems:
 ARES (Tensar Earth Technologies)
 Reinforced Earth Wall (The Reinforced Earth Company)
 Tricon Retained Soil Wall (Tricon Precast)
 Stabilized Earth Wall (T&B Structural Systems)
2. Design the MSE Wall according to the current AASHTO Standard Specifications for Highway Bridges including interims. (Mechanically Stabilized Earth Wall Design – Section 5.8)
3. Design the MSE wall to account for all live load, dead load and wind load from all traffic barrier, lights, overhead signs, sound barriers and other appurtenances located on top and adjacent to the wall. Design MSE walls to account for all external forces. Also, design abutment walls for all horizontal and vertical loads applied by the bridge.
4. Assume responsibility for all temporary shoring that may be necessary for wall construction. Design the shoring using sound engineering principles.
5. Use permanent concrete wall facing panels that are at least 7 in (175 mm) thick.
6. Provide a minimum length of soil reinforcement of 10 feet (3 m) or seven-tenths (0.7) of the wall height, whichever is greater.
7. Ensure that the special wall backfill extends a minimum of 12 in (300 mm) past the end of the soil reinforcement.
8. Use the Architectural treatment of facing panels as indicated on the Department’s drawings.
9. Provide internal walls to allow for future widening if shown on the wall envelope. Ensure the internal walls have galvanized wire or concrete facing. Ensure as a minimum that the facing of the internal walls extend to the back limit of the MSE Wall Backfill for the permanent wall.
10. Ensure the maximum panel area does not exceed 35 square feet (3.25 square meters).

11. Design the barrier for a 500 lbs. per linear foot (744 kilograms per linear meter) loading applied horizontally along the top of the barrier. The barrier shall be continuous or have a counterweight slab continuous over not less than four panels.

12. A Foundation Investigation Report may be available from the Geotechnical Engineering Bureau of the Department. The information contained in this report may be used by the Contractor to assist in evaluating existing conditions for design as well as construction. However, the accuracy of the information is not guaranteed and no requests for additional monies or time extensions will be considered as a result of the Contractor relying on the information in this report.

13. Ensure the following requirements are met:
 - The gutterline grade on the proposed top of wall submitted matches the gutter elevations required by the plans.
 - The top of coping is at or above the top of coping shown on the envelope.
 - The leveling pad is at or below the elevation shown on the wall envelope.
 - Any changes in wall pay quantities due to changes in the wall envelope are noted in the contractor’s plans
 - All changes in quantities due to the proposed walls being outside the wall envelope (step locations, ending wall at full panel, etc.) are shown as separate quantities.

14. Ensure the minimum embedment of the wall (top of leveling pad) is at least 2 feet (600 mm). If the soil slopes away from the bottom of the wall, lower the bottom of the wall to provide a minimum horizontal distance of 10 ft (3 m) to the slope. [i.e. a 2:1 slope in front of the wall requires 5 ft (1.5 m) of embedment; a 4:1 slope in front of the wall requires 2.5 ft (750 mm) of embedment]

15. If the Department's review of the submitted plans and calculations results in more than two submittals to the Department by the Contractor, the Contractor will be assessed for all reviews in excess of two submittals. The assessment for these additional reviews will be at the rate of $60.00 per hour of engineering time expended.

Delete Subsection 627.3.04 and substitute the following:

627.3.04 Fabrication

Meet the requirements of Section 626.3.04 of the Specifications.

Delete Subsection 627.3.05 and substitute the following:

627.3.05 Construction

Meet the requirements of Section 626.3.05 of the Specifications.

Office of Bridge Design
Delete Subsection 632.3 and substitute the following:

632.3 Construction Requirements

632.3.01 Personnel
General Provisions 101 through 150.

632.3.02 Equipment

Use Portable Changeable Message Sign (PCMS) meeting the requirements of MUTCD, Section 6F.55 Portable Changeable Message Signs and the following:

A. Completed a full evaluation cycle (1-year) by National Transportation Product Evaluation Program (NTPEP).
B. Passed NTPEP durability test.
C. Has a control system with a keyboard to allow programming of user defined messages.
D. Have primary and backup power sources.
E. Capable of adjusting its brightness from daylight to night time conditions.
F. Capable of displaying 3 lines of legend.
G. Has a minimum reliability from its primary power supply for a minimum of 14 days for solar units (5 days for diesel units). Gasoline powered units not allowed.
H. Message displayed on the sign is visible for 3000 feet (915 m) and legible for not less than 650 ft (198 m) during both daytime and nighttime operation.
I. Is a self-contained unit including a control system with keyboard, primary and backup power source, mounting and transporting equipment (trailer mounted with all applicable lights and hardware).
J. Bottom of message sign panel is capable of being raised a minimum of 7 feet above the roadway.
K. Listed on QPL 82 as maintained by the Office of Materials and Research or have a letter of approval from the Office of Materials and Research before the sign is used on any portion of the worksite.
L. PCMS that remain the property of the Contractor may be either new or used provided the PCMS meets the requirements of this Subsection.
M. In addition to the alphanumeric combinations, the signs should include the capability to display directional arrow messages. A PCMS may be used as an arrow board display panel provided the PCMS meets the size and display requirement of a Type C panel as defined by the MUTCD, Section 6F.55 Portable Changeable Message Signs.
N. The PCMS has the following programmed as permanent messages:

1) /KEEP/RIGHT/
2) /KEEP/LEFT/
3) /TWO WAY/ TRAFFIC/AHEAD/
4) /ONE LANE/BRIDGE/AHEAD/
5) /MERGING/TRAFFIC/AHEAD/
6) /HEAVY/TRAFFIC/AHEAD/
7) /BUMP/AHEAD/
8) /PAINT/CREW/AHEAD/
9) /LOOSE/GRAVEL/AHEAD/
10) /SURVEY/PARTY/AHEAD/
11) /ICY/BRIDGE/AHEAD/
12) /ROUGH/ROAD/AHEAD/
13) /DO/NOT/PASS/
14) /LOW/SOFT/SHOULDER/ /
15) /SHOULDER/DROPOFF/ /
16) VEHICLES/CROSSING/ROADWAY/
17) /DETOUR/AHEAD/ /
18) /MERGE/RIGHT/AHEAD/
19) /MERGE/LEFT/AHEAD/
20) /TRAFFIC/ACCIDENT/AHEAD/
21) /TRAFFIC/SLOWS/AHEAD/
22) /ROAD/NARROWS/AHEAD/
23) /LEFT/LANE/NARROWS/
24) /RIGHT/LANE/NARROWS/
25) /LANE/NARROWS/AHEAD/
26) /LEFT/LANE/ /
27) /RIGHT/LANE/ /
28) /LEFT/SHOULDER/ /
29) /RIGHT/SHOULDER/ /
30) /CLOSED/AHEAD/ /

O. The PCMS is entirely mounted on a trailer that meets all of the requirements of the Georgia Vehicle Code. Additional trailer requirements:

1. The trailer and the components of the sign is designed to allow one person to perform all transporting and operating functions without assistance.
2. The trailer is designed for unlimited on-highway travel at 70 mph (110 kph).
3. The trailer has a minimum of four outrigger type leveling jacks, one at each corner of the trailer deck.
4. The jacks are mounted to allow them to swivel into a locked position for secure storage during travel.
5. The trailer and all mounted equipment are structurally adequate for unlimited normal operation in wind velocities up to 80 mph (130 kph).

632.3.03 Preparation
General Provisions 101 through 150.

632.3.04 Fabrication
General Provisions 101 through 150.

632.3.05 Construction
A. Utilization Requirements
1. When set up as a Pay Item in the Contract, utilize PCMS whenever any condition(s) exists that would require extra emphasis in warning motorists of a situation or at any location as directed by the Engineer. Furnish PCMS and have them available on a continuous basis.
2. Use PCMS on Interstate, limited access and multi-lane divided highways when any of these conditions exist:
 a. Workers or equipment operating with in 2 ft. (600 mm) of a travel lane without appropriate traffic control devices for positive barrier protection.
 b. Excavation or other construction creates drop-offs adjacent to the edge of a travel lane and channelization devices are placed within the travel lane that is adjacent to the drop-off.
 c. Material hauling in or out of a travel lane by hauling vehicles requires traffic to slow in the temporary traffic control zone.
Section 632—Portable Changeable Message Signs

d. Traffic is delayed by pacing all lanes for short periods of time for placing bridge beams, overhead sign structures, blasting, etc.
e. Any time that divided highway traffic is required to operate as two-way traffic condition and traffic is not separated by a positive barrier system.
f. One mile in advance of lane closure, place PCMS on outside shoulder denoting appropriate lane closure one mile ahead.

3. Use PCMS on all other types of roadways according to the traffic control plan or as directed by the Engineer.

4. Locate the PCMS near the construction activity and display a message that is both concise and meaningful. Obtain the Engineer’s approval for messages used on the PCMS.

5. Include the location of the PCMS and any message to be displayed on the PCMS in the approved traffic control plan required in Section 150-Traffic Control.

6. For emergency situations, PCMS that are smaller in size and do not have all of the capabilities outlined in this Specification, may be used until a PCMS that meets these requirements can be located and placed in operation at the site.

 The Engineer will determine when conditions and situations are to be considered emergencies and will regulate the length of time that non-specification PCMS may be used.

 Provide the Engineer written notification when non-specification PCMS signs are in use on the work.

B. PCMS Phase Messages

1. Messages are displayed in preferably one phase but no more than two phases.

2. The first phase directs the motorist to take a specific action, such as MERGE/RIGHT, KEEP/RIGHT, OR REDUCE/SPEED.

3. The second phase, if necessary, is used to inform the motorist of road conditions such as LEFT/LANE/CLOSED; LANE/NARROWS/AHEAD; WATER/IN/ROAD; SHOULDER/DROP OFF; TRUCKS/IN AND/OUT.

4. Do not use messages such as USE/CAUTION; HAZARD/AHEAD; or DANGER which are confusing and give no guidance to the motorist. Also, do not use messages such as BUCKLE/UP or DRIVE/SAFELY which diminish the impact of important and relevant messages.

632.3.06 Quality Acceptance

General Provisions 101 through 150.

632.3.07 Contractor Warranty and Maintenance

Keep the units in good repair and neat and clean in appearance. If the unit fails, malfunctions, or is damaged, immediately repair the unit and furnish flaggers or other approved means to safely control the traffic until the units are back in service. Make repairs or replace the unit within 24 hours. Maintenance also includes periodically cleaning the units.

Office of Materials & Research
Supplemental Specification

Section 636—Highway Signs

Delete Section 636 and substitute the following:

636.1 General Description
This work includes fabricating and installing highway signs according to the details on the Plans and the Manual on Uniform Traffic Control Devices.

636.1.01 Definitions
General Provisions 101 through 150.

636.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 830—Portland Cement
 Section 855—Steel Pile
 Section 870—Paint
 Section 910—Sign Fabrication
 Section 911—Sign Posts
 Section 912—Sign Blanks and Panels
 Section 913—Reflectorizing Materials
 Section 914—Sign Paint
 Section 915—Mast Arm Assemblies
 Section 916—Delineators
 Section 917—Reflective and Nonreflective Characters
B. Referenced Documents
 Manual on Uniform Traffic Control Devices

636.1.03 Submittals
Before fabricating overhead panel type signs, submit to the Engineer the Shop Drawings to approve the sign bracing and method of attaching to sign supports.

Before driving piles, furnish a list of proposed pile lengths to the Engineer.

636.2 Materials
Ensure that materials meet the requirements of the following Specifications:
Material Section

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign Fabrication and Accessories</td>
<td>910</td>
</tr>
<tr>
<td>Steel Sign Posts and Bolts (Drive Type)</td>
<td>911.2.01</td>
</tr>
<tr>
<td>Galvanized Steel Structural Shape Posts</td>
<td>911.2.02</td>
</tr>
<tr>
<td>Delineator Posts</td>
<td></td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>911.2.04.A.4</td>
</tr>
<tr>
<td>Aluminum "U" Flange</td>
<td>911.2.04.A.5</td>
</tr>
<tr>
<td>Wood</td>
<td>911.2.04.A.6</td>
</tr>
<tr>
<td>Flexible</td>
<td>911.2.04.A.7</td>
</tr>
<tr>
<td>Aluminum Sign Blanks</td>
<td>912.2.01</td>
</tr>
<tr>
<td>Extruded Aluminum Sign Panels</td>
<td>912.2.02</td>
</tr>
<tr>
<td>Reflective Sheeting</td>
<td>913.2.01</td>
</tr>
<tr>
<td>Silk Screen Lettering Paint</td>
<td>914.2.01</td>
</tr>
<tr>
<td>Steel Posts and Arms for Mast Arm Assembly</td>
<td>915.2.01</td>
</tr>
<tr>
<td>Guy Wires for Mast Arm Assembly</td>
<td>915.2.02</td>
</tr>
<tr>
<td>Center Mount Reflector</td>
<td>916.2.01</td>
</tr>
<tr>
<td>Demountable Characters with Reflective Sheeting</td>
<td>917.2.01</td>
</tr>
<tr>
<td>Fittings, bolts, nuts, washers, clips, molding, etc., for panel signs shall conform to the requirements shown on the Plans.</td>
<td></td>
</tr>
<tr>
<td>Class A Concrete Footings for Signs</td>
<td>500</td>
</tr>
<tr>
<td>Piling</td>
<td>855.2.03</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Sign Paint, Enamel</td>
<td>870.2.03</td>
</tr>
</tbody>
</table>

636.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

636.3 Construction Requirements

636.3.01 Personnel
General Provisions 101 through 150.

636.3.02 Equipment
General Provisions 101 through 150.

636.3.03 Preparation
General Provisions 101 through 150.

636.3.04 Fabrication
General Provisions 101 through 150.
Section 636—Highway Signs

636.3.05 Construction

A. Finished Signs

Ensure that the finished signs are clear cut and that the lines of letters and details are true, regular, and free of waviness, unevenness, furry edges or lines, scaling, cracking, blistering, pitting, dents, or blemishes.

Only one type of demountable characters (letters, numerals, symbols, and borders) is permitted on special roadside signs on each Project.

B. Erecting the Signs

1. Drive Type Posts

 Drive type posts may be driven in place or placed in prepared holes.

 a. Use driven posts only in firm and stable soil. If the soil is sandy or unstable, place each drive type post in a prepared dry hole of at least a 4 in (100 mm) diameter.

 b. When placing posts in prepared holes:

 1) Backfill the holes with a mixture of damp, clean friable soil and 8 percent by volume Portland cement.

 2) Thoroughly tamp the mixture in place around the posts.

 c. Erect posts vertically as deep and at an angle to the roadway as shown on the Plans or as directed.

 d. Do not penetrate posts in the coastal plain region less than 4 ft (1.2 m) or 3 ft (1 m) for posts in the Piedmont and the Valley and Ridge Regions when no guard rail is present.

 When erecting signs behind a guard rail, penetrate at least 3 ft (1 m) for posts 14 ft (4.2 m) or less long, or 4 ft (1.2 m) for posts over 14 ft (4.2 m) long.

2. Single-Plate Signs

 Erect single-plate signs 9 ft² (0.84 m²) or less on one drive-type post unless otherwise specified on the Plans.

 Erect single-plate signs greater than 9 ft² (0.84 m²) on two drive-type posts.

 Leave enough distance between the two posts to fit the mounting holes in the sign plate.

3. Steel Posts for Mast Arm Assemblies

 a. Erect steel posts for mast arm assemblies in a concrete foundation according to the Plans. Erect at the place, height, and angle to the roadway specified.

 b. After curing the concrete foundation for at least 24 hours, securely fasten the specified signs into place on the mast arm.

4. Ground-Mounted Panel-Type Signs

 a. Erect the supporting members of ground-mounted panel-type signs where shown on the Plans or as directed by the Engineer at the specified angle to the roadway.

 b. Securely fasten the panels into place.

5. Milepost Signs

 Erect milepost signs including posts as specified on the Plans.

6. Delineator Posts

 Use delineator posts made of galvanized steel, aluminum, or an alloy that conforms to the requirements of Subsection 911.2.04.A.4 or 911.2.04.A.5.

 a. Erect the posts where shown on the Plans.

 b. Mount reflectors for galvanized steel or aluminum posts on the flange side of the post.

 c. When signs are attached to supports, torque the bolts to at least 20 ft-lbs (27 N•m).

7. Overhead Panel-Type Signs

 Erect overhead panel type signs on sign supports where shown on the Plans or as directed by the Engineer.

 a. Ensure that the bottom of the sign is 18 in (450 mm) above the top of the lighting fixture.

 b. Ensure that the sign has ample bracing for mounting the sign support so that each sign can withstand 1 in (25 mm) of ice accumulated on the entire sign and wind pressures shown on the Plans.
c. Ensure that the top of each sign is three degrees off perpendicular from the bottom of the sign. Use the three-degree slant to lean the sign toward the approaching traffic.

C. Foundations (for Special Roadside Signs)

Do not disturb the natural ground adjacent to a foundation more than necessary to construct the footing.

1. Excavate for the footings to the lines and elevations shown on the Plans or established by the Engineer. Do not disturb or loosen the foundation below these elevations.

2. Use forms of the necessary shape and dimensions to construct the footings to the lines and elevations shown on the Plans.

3. Cure the concrete foundations, constructed in conformance with Section 500 and the Plan details, at least 7 days before erecting the sign.

4. Ensure that the minimum lengths of steel H piling used in the foundations of ground-mounting signs are accepted and meet the Plan penetration requirements.

The Plan quantity of steel H piling is shown for estimating purposes only; determine and provide the necessary lengths of piles.

5. Before driving the piles, furnish a list of proposed pile lengths to the Engineer.

 a. Use full-length piles or built-up piles with a maximum of two splices that are made in the presence of the Engineer.

 b. Furnish satisfactory identification for all piles or portions thereof.

6. When rock prevents the penetration required on the Plans, construct according to the notes and details shown on the Plans.

7. The minimum energy ratings required by Section 520 for pile hammers will be waived for constructing ground-mounted sign supports. Jetting is not permitted.

8. Place required backfilling in layers no greater than 6 in (150 mm) thick and thoroughly compact it to the approximate density of the undisturbed soil in the area.

D. Sign Panels

Use extruded, panel-type aluminum. Ensure that the sign type used meets the requirements of Subsection 912.2.02.

E. Legends and Borders

Place legends and borders according to Subsection 917.2.01, “Demountable Characters”, with Type IX reflective sheeting.

636.3.06 Quality Acceptance

General Provisions 101 through 150.

636.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

636.4 Measurement

A. Type-1 or Type-2 Highway Signs

Type 1 or Type 2 highway signs with reflective sheeting of Type III, IV, or IX as specified on the Plans to be paid for are measured for payment by the actual number of square feet (meters) and fraction thereof of sign type and sheeting specified. The measurement includes providing the message and furnishing and placing signs complete and accepted. The Plan quantity will be the pay quantity.

B. Extruded Aluminum Panels

Extruded aluminum panels to be paid for are the number of square feet (meters) or portion of square feet (meters) furnished, including legend components, border material, fittings, nuts, washers, clamps, molding, etc., furnished, erected, completed, and accepted.
C. Galvanized Steel Posts

Galvanized steel posts, types 1, 2, 3, 4, 5, 6, 7, or 8 to be paid for are the actual number of linear feet (meters) and fraction thereof of the type specified, furnished, erected, completed, and accepted.

Galvanized steel to be paid for is the number of pounds (kilograms) furnished, erected, and accepted. Weights are computed from theoretical weights listed in the Plans for each post size. Base plates, connections, anchors, stub post, etc., are not measured for payment but are considered incidental to the Item.

D. Delineators

Delineators (reflectorized guide markers) to be paid for are the number of the type specified, including posts, rivets, and spacers, that are furnished, placed, and completed and accepted.

E. Mast Arm Assemblies

Mast arm assemblies to be paid for are the actual number furnished and erected, including concrete footing, sign, and post, completed and accepted.

F. Special Roadside Signs

Class A concrete for special roadside signs to be paid for are measured by the cubic yard (meter), neat measurement according to Section 500.5 “Payment.” No deductions are made for the volume of concrete displaced by steel piling, anchor bolts, or posts.

G. Portland Cement

Portland cement stabilized material used for backfilling holes is not measured for payment.

H. Steel H—Piling

Steel H—piling is measured for payment by the linear foot (meter) of accepted piling in place (signs), remaining in the completed work.

636.4.01 Limits

General Provisions 101 through 150.

636.5 Payment

Highway signs, galvanized steel posts, I-beam posts, delineators, mast arm assemblies, Class A concrete, and piling for signs are paid for at the Contract Unit Price for the various items. Payment is full compensation for furnishing and erecting the Item complete in place according to this Specification.

Separate payment will not be made for piling splices, the cost of cutting, or the cutoff portions. Pile cutoffs remain the Contractor’s property.

Piles eliminated due to authorized revisions will be paid for according to Subsection 109.06, “Eliminated Items.” These piles become Departmental property. Except for the above provision, no payment will be made for piles delivered to the Project that are not used in the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>636</td>
<td>Highway signs, type 1 material, reflective sheeting type___</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>636</td>
<td>Highway signs, type 2 material, reflective sheeting type___</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>636</td>
<td>Galvanized steel posts, type ___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>636</td>
<td>Galvanized steel structural shape posts</td>
<td>Per pound (kilogram)</td>
</tr>
<tr>
<td>636</td>
<td>Highway signs, aluminum extruded panels, reflective sheeting type ___</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>636</td>
<td>Plastic Flexible Delineator, type___</td>
<td>Per each</td>
</tr>
<tr>
<td>636</td>
<td>Delineator, Type___</td>
<td>Per each</td>
</tr>
<tr>
<td>636</td>
<td>Piling in place, signs, steel H, HP 12x53 (HP 310x79)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>
Section 636—Highway Signs

636.5.01 Adjustments
General Provisions 101 through 150.

Office of Materials & Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

SECTION 639 – STRAIN POLES FOR OVERHEAD SIGN AND SIGNAL ASSEMBLIES

Retain Sub-Section 639.2 as written and add the following sub-section:

Section 639 - Strain Poles for Overhead Sign and Signal Assemblies

D. Strain Poles for ATMS Applications

Provide poles for supporting CCTV, VDS, and microwave radar detection devices that meet the following design specifications:

- Designed to 80 mph AASHTO wind load requirements
- Limited to a live horizontal deflection at the top equal to or less than 1% of pole height in a 50 mph wind, with a design load of four static cameras and one movable camera.
- Torsional deflection limited to a 1 degree, maximum.

Install mounting brackets, as illustrated on the plans, that are galvanized steel and are compatible with the mounting design of the specified cameras and pan/tilt devices, and are affixed to the pole to prohibit rotation.

Install all wiring internal up to the camera mounting bracket with no external conduit on the pole.

Provide a weatherproof wiring access point or handhole on the pole.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 647—Traffic Signal Installation

Delete Subsection 647.3.07.A and substitute the following:

647.3.07 Contractor Warranty and Maintenance

A. Traffic Signal Equipment Maintenance

Perform an inspection with the Engineer to determine the operational status of existing field equipment and finalize materials and equipment that is to be removed due to the project.

Prepare written report identifying what equipment was operational and non-operational and responsibility for repair.

Functional responsibility for new traffic signal equipment installed will become the responsibility of the Contractor until acceptance of the project. Contractor responsibility for operation, maintenance and response to reports of operational or equipment malfunction for existing or newly installed signal material at the intersection begins from the issuance of the Notice to Proceed (NTP) until Final Acceptance of the project.

Measure and document existing vertical signal head clearance during the inspection. Maintain existing vertical clearances until Final Acceptance.

Failure to measure and document vertical clearances as part of the inspection will require that all signals be maintained with a vertical clearance of 17 feet (5.1 m) until Final Acceptance. Maintain newly installed signals continuously as detailed in following sections, until Final Acceptance.

Provide a telephone number where the Worksite Traffic Control Supervisor (WTCS) or responsible representative of the Contractor can be reached twenty four (24) hours a day seven (7) days a week in the event of an emergency.

If a signal is not functioning properly:

1. Non-Emergency

Commence work on this signal within three (3) days of the delivery of written notice or e-mail from the Engineer. Failure to respond within three (3) days will result in liquidated damages in the amount of $1,000.00 per day, or portion of, until the work is complete.

In addition, the cost of labor and materials will be charged by the Department if the Department takes corrective action after the three (3) days from written notice using its own forces or local municipality forces.

The department or local municipality will not be held responsible or liable for any alleged damage to the signal or as a result of the signal malfunction due to problems that may occur after the Department or local municipality forces make repairs.
2. Emergency

If the Engineer determines that the signal malfunction or failure is an operational hazard, the Contractor is to take corrective action within three (3) hours of the first attempt of verbal notification. Response shall be considered only when qualified personnel and equipment are provided.

Failure to respond within three (3) hours will result in a non-refundable deduction of money of $1,000.00 with an additional charge of $500.00 per hour after the first three (3) hours until qualified personnel and equipment arrives on site and begins corrective action.

In addition, the cost of labor and material will be charged by the Department if the Department takes corrective action after the three (3) hours notification using its own forces or local municipality forces. Total charges will not exceed $10,000.00 (per emergency call) in addition to the material cost and labor incurred to make repairs by the Department or local municipality forces respond to the malfunction.

The Department or local municipality will not be held responsible or liable for any alleged damage to the signal or as a result of the signal malfunction due to problems that may occur after Department or local municipality forces make emergency repairs.

The Contractor shall be responsible for all materials and equipment necessary to correct signal malfunction or repair.

Final Acceptance will not be given until payment for such work is received.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 648-Traffic Impact Attenuator

Delete Section 648 and substitute the following:

648.1 General Description
This work includes furnishing and installing impact attenuator units/arrays to conform with Plan locations and details and/or as directed by the Engineer. All impact attenuator units/arrays shall be tested and approved at the specified NCHRP 350 Test Level.

648.1.01 Definitions
General Provisions 101 through 150.
Gating-A gating end treatment allows a vehicle impacting the nose or the side of the unit at an angle near the nose to pass through the device
Non-Gating-A non-gating end treatment is capable of redirecting a vehicle impacting the nose or the side of the unit along the unit’s entire length.

648.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150
B. Referenced Documents
 ASTM A 123/A 123M
 QPL 64
 Roadside Design Guide

648.1.03 Submittals
A. Installation Drawings
Submit all required certifications, test reports and drawings of details for completing the installation. Obtain Engineer’s approval of these documents before beginning work on attenuator installation. Portable Impact Attenuator arrays shall meet the requirements of Ga. Std. 4960 and manufacturer specifications.

B. Manufacturer’s Information
Submit certification from the manufacturer that the attenuator unit/array and its interconnecting hardware replicates an NCHRP-350 approved attenuator in an accepted letter from the FHWA. Furnish items such as manufacturer’s brochures or specifications that completely outline the manufacturer’s recommendations for materials and installation methods. All workmanship and materials are subject to the Engineer’s approval.
Section 648 – Traffic Impact Attenuator

648.2 Materials

A. Attenuator

1. Ensure that materials are in accordance with the manufacturer’s recommendations, specifications and details.

2. Use attenuators that have been classified as “accepted” by the Department’s Office of Materials and Research and approved by the Federal Highway Administration (FHWA) as meeting NCHRP-350 for the test level specified.

3. Where restoration and/or repair cannot be accomplished without the necessity of removing the unit/array from the original location, ensure replacement unit/array installation upon removal of the damaged unit/array. Furnishing, installing and maintaining the replacement will be at no additional cost.

4. Where required, ensure the approach end of the attenuator is equipped with a reflectorized object marker in accordance with Plan Details. The object marker may be furnished by the manufacturer of the attenuator or by others. Ensure that the front most section of the unit (the "nose") is yellow in color unless specified otherwise.

5. Where required, use an approved back-up system as specified in the Plans.

6. For non-gating attenuators, anchor the attenuator to the pavement according to a system recommended by the manufacturer for the type pavement encountered.

7. Use Class "A" concrete for reinforced concrete pads, concrete back up if used, and concrete transition where required.

8. Use metal components and hardware galvanized according to ASTM A 123/A 123M unless otherwise specified. Ensure all metal components and hardware of permanent attenuators are free of corrosion when shipped.

9. In freezing conditions, water filled attenuators shall be treated according to the manufacturer’s recommendations.

648.2.01 Delivery, Storage, and Handling

A. General

General Provisions 101 through 150.

648.3 Construction Requirements

648.3.01 Personnel

General Provisions 101 through 150.

648.3.02 Equipment

General Provisions 101 through 150.

648.3.03 Preparation

General Provisions 101 through 150.

648.3.04 Fabrication

A. Design Criteria and Type Selection

The Impact Attenuator Unit/array Type will be shown on the plans and designated by four characters.

- **First character**

 Indicates the type of permanent installation.

 The letter "P" designates a permanent (non-gating) installation.

 The letter “S” designates a permanent self restoring (non-gating) installation which is capable of withstanding multiple hits without requiring repair or adjustment.

- **Second character**

 Designates the required NCHRP test level.

- **Third character**

 Indicates the traffic flow direction(s).

 The letter "B" indicates bi-directional traffic typical for median applications or when the unit is installed on the shoulder of a two-lane, two-way traffic facility. Bi-directional means traffic flows in opposite directions at the site of the attenuator installation.
The letter "U" indicates uni-directional traffic flow typical for gore areas. Uni-directional means traffic on both sides traveling the same direction, from the nose to the rear of the unit. The letter "S" indicates traffic flow in one direction on a single side only, typical for a unit located on the outside shoulder of a roadway with one-way traffic and the other side of the attenuator not being exposed to traffic.

- **Fourth character**
 Indicates the numerical value of the width, in inches (millimeters), of the base of the rigid object that the attenuator will be shielding.
 At bridge columns, this character is typically the width of the column plus the barrier base widths on the column sides at the pavement surface.

B. Example

A Type P-3-U-60 attenuator designates
- a permanent installation
- tested and approved at NCHRP test level 3
- Uni-directional traffic flow
- a 60” (1500 mm) wide base for the rigid object being shielded.

Temporary portable units/arrays may be either gating or non-gating based on construction sequencing and/or field conditions, See Specification Section 150. Unless otherwise specified, all permanent attenuators shall be non-gating.

648.3.05 Construction

Field locate the position of the attenuator nose as shown on the plans prior to beginning the installation. Have any variations approved by the Engineer.

If the length of the attenuator unit/array is less than that indicated in the plan details for the specified conditions, the length of the concrete transition section or the length of the longitudinal barrier shall be increased as needed to provide a proper beginning point for the attenuator nose as shown in the plans.

The length of the system will be the combined length of the attenuator unit/array, the back-up system and any required transition. The length of the system shall not be excessive to the extent that it intrudes appreciably within the clear offset distance as shown on the plans.

The increased length of transition or barrier is considered as an incidental part of the system and will not be itemized separately.

Temporary portable units/arrays shall be installed, moved, reinstalled and maintained as required.

648.3.06 Quality Assurance

Obtain certification from the manufacturer that the impact attenuator unit/array installed meets all required approvals and specifications and furnish these to the Engineer.

Furnish any mill test/galvanizing test reports and heat numbers for all metal components of the unit per current requirements of the Department's Office of Materials and Research.

648.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

648.4 Measurement

Each traffic impact attenuator of the type specified, complete, in place and accepted at its location will be measured by the unit/array, including components, hardware, anchors, incidentals, freeze treated water or sand, and labor for each installation shown on the plans or as directed by the Engineer.

Site preparation work, as described under 648.3.03, “Preparation” is measured and paid for separately under the respective items involved unless otherwise specified.

Temporary units/arrays will be measured for payment only once, regardless of how often they are moved. See Specification Section 150.
648.4.01 Limits

General Provisions 101 through 150.

648.5 Payment

Impact Attenuator Units/Arrays will be paid for per each type specified. Payment is full compensation for all materials, labor, and incidentals necessary to complete the Item including installing, moving, reinstalling and maintaining Units/Arrays as required.

Payment will also include the back-up system and transitions where required.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 648</th>
<th>Impact attenuator unit, Type P-</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 648</td>
<td>Impact attenuator unit, Type S-</td>
<td>Per each</td>
</tr>
</tbody>
</table>

648.5.01 Adjustments

General Provisions 101 through 150.
Delete Section 652 and substitute the following:

652.1 General Description
This work includes furnishing and applying reflectorized traffic line paint according to the Plans and these Specifications.

This Item also includes applying words and symbols according to Plan details, Specifications, and the current Manual on Uniform Traffic Control Devices.

652.1.01 Definitions
Painted Stripes: Solid or broken (skip) lines. The location and color are designated on the Plans.

Skip Traffic Stripes: Painted segments between unpainted gaps as specified on the Plans. The location and color are designated on the Plans.

652.1.02 Related References
A. Standard Specifications
 Section 656—Removal of Pavement Markings
 Section 870—Paint
 EPA Method 3052
 EPA Method 6010C

B. Referenced Documents
 QPL 46
 AASHTO M 247

652.1.03 Submittals
General Provisions 101 through 150.

652.2 Materials
Ensure that materials for painting traffic stripe, words, and symbols meet the following requirements:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Line Paint 5A and 5B</td>
<td>870.2.02.A.2 and 870.2.02.A.3</td>
</tr>
<tr>
<td>Glass Beads for Use in Luminous Traffic Lines</td>
<td>AASHTO M 247 Type 1 or 2*</td>
</tr>
</tbody>
</table>

*In addition, meet the following requirements for glass beads:

- Maximum quantity of angular particles is less than 1% by weight
- Maximum quantity of particles with milkiness, scoring, or scratching is less than 2% by weight
- Glass beads do not impart any noticeable hue to the paint film
- Glass beads do not contain greater than 200ppm total arsenic, 200ppm total antimony, or 200ppm total lead when tested according to US EPA Methods 3052 and 6010C, or other approved methods.
652.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

652.3 Construction Requirements

652.3.01 Personnel
General Provisions 101 through 150.

652.3.02 Equipment

A. Traveling Traffic Stripe Painter

Use a traffic stripe painter that can travel at a predetermined speed both uphill and downhill, applying paint uniformly. Ensure that the painter feeds paint under pressure through nozzles spraying directly onto the pavement.

Use a paint machine equipped with the following:
1. Three adjacent spray nozzles capable of simultaneously applying separate stripes, either solid or skip, in any pattern.
2. Nozzles equipped with the following:
 - Cutoff valves for automatically applying broken or skip lines
 - A mechanical bead dispenser that operates simultaneously with the spray nozzle to uniformly distribute beads at the specified rate
 - Line-guides consisting of metallic shrouds or air blasts
3. Tanks with mechanical agitators
4. Small, portable applicators or other special equipment as needed

B. Hand Painting Equipment

Use brushes, templates, and guides when hand painting.

C. Cleaning Equipment

Use brushes, brooms, scrapers, grinders, high-pressure water jets, or air blasters to remove dirt, dust, grease, oil, and other foreign matter from painting surfaces without damaging the underlying pavement.

652.3.03 Preparation

Locate approved paint manufacturers on QPL 46.

Before starting each day’s work, thoroughly clean paint machine tanks, connections, and spray nozzles, using the appropriate solvent.

Thoroughly mix traffic stripe paint in the shipping container before putting it into machine tanks.

Before painting, thoroughly clean pavement surfaces of dust, dirt, grease, oil, and all other foreign matter.

652.3.04 Fabrication

General Provisions 101 through 150.

652.3.05 Construction

A. Alignment

Ensure that the traffic stripe is the specified length, width, and placement. On sections where no previously applied markings are present, ensure accurate stripe location by establishing control points at spaced intervals. The Engineer will approve control points.

B. Application

Apply traffic stripe paint by machine. If areas or markings are not adaptable to machine application, use hand equipment.

1. Application Rate

 All work will be subject to application rate checks for both paint and beads.

 Apply 5 in (125 mm) wide traffic stripe at the following minimum rates:
 a. Solid Traffic Stripe Paint: At least 25 gal/mile (58.8 L/km)
 b. Skip Traffic Stripe Paint: At least 6.3 gal/mile (14.8 L/km)
2. Thickness
 Maintain a 15 mils (0.38 mm) minimum wet film thickness for all painted areas.

3. Do not apply paint to areas of pavement when:
 - The surface is moist or covered with foreign matter.
 - Air temperature in the shade is below 40 °F (5 °C)
 - Wind causes dust to land on prepared areas or blows paint and beads around during application.

4. Apply a layer of glass beads immediately after laying the paint. Apply beads at a minimum rate of 6 lbs to each gallon (700 grams to each liter) of paint.

C. Protective Measures

Protect newly applied paint as follows:

1. Traffic
 Control and protect traffic with warning and directional signs during painting. Set up warning signs before beginning each operation and place signs well ahead of the painting equipment. When necessary, use a pilot car to protect both the traffic and the painting operation.

2. Fresh Paint
 Protect the freshly painted stripe using cones or drums. Repair stripe damage or pavement smudges caused by traffic according to Subsection 652.3.06.

D. Appearance and Tolerance of Variance

Continually deviating from stated dimensions is cause for stopping the work and removing the nonconforming stripe. (See Section 656.) Adhere to the following measurements:

1. Width
 Do not lay stripe less than the specified width. Do not lay stripe more than 1/2 in (13 mm) over the specified width.

2. Length
 Ensure that the 10 ft (3 m) painted skip stripe and the 30 ft (10 m) gap between painted segments vary no more than ± 1 ft (300 mm) each.

3. Alignment
 a. Ensure that the stripe does not deviate from the intended alignment by more than 1 in (25 m) on tangents or curves of 1 degree or less.
 b. Ensure that the stripe does not deviate by more than 2 in (50 mm) on curves exceeding 1 degree.

652.3.06 Quality Acceptance

Ensure that stripes and segments of stripes are clean-cut and uniform. Markings that do not appear uniform or satisfactory, either during the day or night, or do not meet Specifications, will be corrected at the Contractor’s expense. Work will be subject to application rate checks for both paint and beads.

The following will be accepted:

- Sections of painted stripe, words, and symbols that have dried so that paint will not be picked up or marred by vehicle tires
- Sections placed according to the Plans and Specifications

The Contractor will be relieved of responsibility for maintenance on accepted sections.

A. Correction of Alignment

When correcting a deviation that exceeds the permissible tolerance in alignment, do the following:

1. Remove the affected portion of stripe, plus an additional 25 ft (8 m) in each direction.
2. Paint a new stripe according to these Specifications.

 Remove the stripe according to Section 656.
B. Removal of Excess Paint

Remove misted, dripped, or spattered paint to the Engineer’s satisfaction. Do not damage the underlying pavement during removal.

Refer to the applicable portions of Section 656.

652.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

652.4 Measurement
When traffic stripe is paid for by the square yard (meter), the number of square yards (meters) painted is measured and the space between stripes is included in the overall measurement.

Linear measurements are made on the painted surface by an electronic measuring device attached to a vehicle. On curves, chord measurements, not exceeding 100 linear feet (30 linear meters), are used.

Traffic stripe and markings, complete in place, are measured and accepted for payment as follows:

A. Solid Traffic Stripe

Solid traffic stripe is measured by the linear foot (meter), linear mile (kilometer), or square yard (meter). Breaks or omissions in solid lines or stripes at street or road intersections are not measured.

B. Skip Traffic Stripe

Skip traffic stripe is measured by the gross linear foot (meter) or gross linear mile (kilometer). Unpainted spaces between the stripes are included in the overall measurements if the Plan ratio of 1 to 3 remains uninterrupted. Measurement begins and ends on a stripe.

C. Pavement Markings

Markings are words and symbols completed according to Plan dimensions. Markings are measured by the unit.

652.4.01 Limits
General Provisions 101 through 150.

652.5 Payment
Payment will be full compensation for the work under this Section, including the following:

- Cleaning and preparing surfaces
- Furnishing materials, including paints, beads, and thinners
- Applying, curing, and protecting paints
- Protecting traffic, including providing and placing necessary warning signs
- Furnishing tools, machines, and other equipment necessary to complete the Item

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 652</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>652</td>
<td>Solid traffic stripe, _____ in (mm), (color)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>652</td>
<td>Skip traffic stripe, _____ in (mm), (color)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td>652</td>
<td>Solid traffic stripe, _____ in (mm), (color)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>652</td>
<td>Skip traffic stripe, _____ in (mm), (color)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>652</td>
<td>Pavement markings, words, and symbols, (color)</td>
<td>Per each</td>
</tr>
<tr>
<td>652</td>
<td>Traffic stripe, _____ in (mm), (color)</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

652.5.01 Adjustments
General Provisions 101 through 150.

Office of Materials and Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

Special Provision

Section 653—Thermoplastic Traffic Stripe

Delete Section 653 and substitute the following:

653.1 General Description
This work includes furnishing and applying thermoplastic reflectorized pavement marking compound. Ensure that markings conform to Plan details and locations, these Specifications, and the Manual on Uniform Traffic Control Devices.

Thermoplastic traffic stripe consists of solid or broken (skip) lines, words, and symbols according to Plan color, type, and location.

653.1.01 Definitions
Thermoplastic Marking Compound: A heated compound extruded or mechanically sprayed on the pavement that cools to pavement temperature. When combined with glass spheres it produces a reflectorized pavement marking.

Short Lines: Crosswalks, stop bars, arrows, symbols, and crosshatching. Extrude short lines rather than spraying them on. Unless otherwise specified, spray all other lines.

653.1.02 Related References
A. Standard Specifications
 Section 652—Painting Traffic Stripe
B. Referenced Documents
 QPL 46
 QPL 71
 Federal Test Standard Number 595B
 AASHTO M 249
 ASTM D 92
 ASTM D 476
 ASTM D 762
 ASTM D 2240
 ASTM D 4960
 ASTM E 1710
 40 CFR 261.24
 EPA Method 3050
 EPA Method 6010
 EPA Method 7000
 Federal Test Standard Number 595B
653.1.03 Submittals
Ensure that the producers of the thermoplastic compound and glass spheres furnish to the Department copies of certified test reports showing results of all tests specified in this Section. Also ensure that producers certify that the materials meet the other requirements of this Section by submitting copies of certification at the time of sampling.

653.2 Materials
A. Requirements
Ensure the resin of the thermoplastic material is an alkyd binder. Use alkyd binder consisting of a mixture of synthetic resins and a high boiling point plasticizer. Use at least one synthetic resin that is a solid at room temperature. Ensure at least 50% of the binder composition is 100% maleic-modified glycerol ester resin. Ensure at least 15% by weight of the entire material formulation consists of binder. Do not use alkyd binder that contains petroleum based hydrocarbon resins. Ensure the finished thermoplastic material is not adversely affected by contact with pavement materials or by petroleum droppings from traffic. Use thermoplastic material that has been evaluated (2 year field evaluation) by the National Transportation Product Evaluation Panel (NTPEP) test facility or other approved test facility. Use thermoplastic material produced from an approved source listed on QPL 46. Use thermoplastic material that meets the requirements of AASHTO M 249 with the following exceptions:

1. Color
Confirm the color of thermoplastic as follows:

- **White** – Use titanium dioxide that meets the requirements of ASTM D 476, Type II, Rutile, as the pigment for white thermoplastic material. Do not use anatase titanium dioxide pigment. Use thermoplastic material free from dirt or tint. Ensure white thermoplastic material heated for 240 ± 5 minutes at 425 ± 3 °F (218 ± 3 °C) and cooled to 77 ± 3 °F (25 ± 2 °C) matches Federal Test Standard Number 595B-Color 17925. Use material, when compared to the magnesium oxide standard using a standard color spectrophotometer according to ASTM D 4960, meets the following:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Definition</th>
<th>Magnesium Oxide Standard</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd</td>
<td>Reflectance</td>
<td>100</td>
<td>75 min.</td>
</tr>
<tr>
<td>a</td>
<td>Redness-Greenness</td>
<td>0</td>
<td>-5 to + 5</td>
</tr>
<tr>
<td>b</td>
<td>Yellowness-Blueness</td>
<td>0</td>
<td>-10 to + 10</td>
</tr>
</tbody>
</table>

- **Yellow** – Use only non-hazardous pigments as defined by the Resource Conservation and Recovery Act (RCRA) Subarticle C rules, table 1 of 40 CFR 261.24 –“Toxicity Characteristic”. Do not use yellow thermoplastic containing more than 3.0 ppm lead by weight when tested in accordance with the most up to date EPA Methods 3050 and 6010 or 7000. Ensure yellow thermoplastic material heated for 240 ± 5 minutes at 425 ± 3 °F (218 ± 2 °C) and cooled to 77 ± 3 °F (25 ± 2 °C) matches Federal Test Standard Number 595B-Color 13538. Use material, when compared to PR#1 Chart using a standard color spectrophotometer according to ASTM D 4960, plots within the following chromaticity coordinates:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.455</td>
<td>0.510</td>
<td>0.472</td>
<td>0.530</td>
</tr>
<tr>
<td>Y</td>
<td>0.444</td>
<td>0.485</td>
<td>0.400</td>
<td>0.456</td>
</tr>
</tbody>
</table>

Initial Reflectance (CIE Y): 45 minimum

Ensure the in-service daytime chromaticity for yellow material plots within the following coordinates after a period of 30 days:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.435</td>
<td>0.510</td>
<td>0.449</td>
<td>0.530</td>
</tr>
<tr>
<td>Y</td>
<td>0.429</td>
<td>0.485</td>
<td>0.377</td>
<td>0.456</td>
</tr>
</tbody>
</table>

2. Indentation Resistance
Measure the hardness by a Shore Durometer, Type A2, as described in ASTM D 2240. Maintain the temperature of the Durometer, 4.4 lb. (2 kg) load and the specimen for 2 hours at 115 °F (45 °C). Apply the Durometer and 4.4 lb. (2 kg) load to the specimen. The reading must fall between 50 to 75 units, after 15 seconds.

3. Reheating
Ensure that the compound does not break down, deteriorate, scorch, or discolor if held at application temperature of 425 °F (218 °C) for 6 hours and if reheated up to 4 times to the application temperature. Ensure that the color of white and yellow thermoplastic comply with Subsection 653.2.A.1.a and Subsection 653.2.A.1.b after prolonged heating or reheating.

4. Drop-On Glass Spheres
Use spheres that meet the requirements of Subsection 652.2. Also, use spheres produced from an approved source listed on QPL-71.

5. Sealing Primer
Place the particular type of two-part epoxy binder-sealer at the application rate as recommended in writing by the thermoplastic material manufacturer.

6. Flashpoint
Ensure the thermoplastic flashpoint is not less than 500 ºF (260 ºC) as determined by ASTM D 92.

7. Specific Gravity
Ensure the specific gravity of the thermoplastic is between 2.00 to 2.20 as determined by ASTM D 762.

B. Performance Requirements

1. General
For a minimum of 30 days from the time of placement, ensure the thermoplastic pavement marking material shows no signs of failure due to blistering, excessive cracking, chipping, bleeding, staining, discoloration, oil content of the pavement materials, smearing or spreading under heat, deterioration due to contact with grease deposits, oil, diesel fuel, or gasoline drippings, spilling, poor adhesion to the pavement material, vehicular damage, and normal wear. In the event that failures mentioned above occur, ensure corrective work is completed at no additional cost to the Department.

2. Retroreflectivity
At the time of installation, ensure the in-place markings when tested according to ASTM E 1710 meet the following minimum reflectance values:

<table>
<thead>
<tr>
<th>Color</th>
<th>Minimum Reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>375 mcd/lux/m²</td>
</tr>
<tr>
<td>Yellow</td>
<td>250 mcd/lux/m²</td>
</tr>
</tbody>
</table>

Retest the in-place markings 30 days after installation to ensure these minimum retroreflectance values are maintained.

NOTE: The Contractor is responsible for retroreflectivity testing. Furnish all test reports to the Department.

In the event failures occur, ensure corrective work is completed at no additional cost to the Department. Perform testing according to ASTM E 1710 at above described intervals. Any retest due to failures will be performed at no additional cost to the Department. Furnish all test reports to the Department.

653.2.01 Delivery, Storage, and Handling
Use material delivered in 50 lb (22.7 kg) unit cardboard containers or bags strong enough for normal handling during shipment and on-the-job transportation without loss of material.

Ensure that each unit container is clearly marked to indicate the following:

- Color of the material
- Process batch number or similar manufacturer’s identification
- Manufacturer’s name
- Address of the plant
653.3 Construction Requirements

653.3.01 Personnel
General Provisions 101 through 150.

653.3.02 Equipment
Depending on the marking required, use hand equipment or truck-mounted application units on roadway installations.

A. Spray Application Machine
Ensure that each spray application machine is equipped with the following features:

- Parts continuously mix and agitate the material.
- Truck-mounted units for lane, edge, and center lines can operate at a minimum of 5 mph (8 kph) while installing striping.
- Conveying parts between the main material reservoir and the shaping die or gun prevent accumulation and clogging.
- Parts that contact the material are easily accessible and exposable for cleaning and maintenance.
- Mixing and conveying parts, including the shaping die or gun, maintain the material at the plastic temperature with heat transfer oil or electrical element controlled heat. Do not use an external source of direct heat.
- Parts provide continuously uniform stripe dimensions.
- Applicator cleanly and squarely cuts off stripe ends and applies skip lines. Do not use pans, aprons, or similar appliances that the die overruns.
- Parts produce varying widths of traffic markings.
- Applicator is mobile and maneuverable enough to follow straight lines and make normal curves in a true arc.

B. Automatic Bead Dispenser
Apply glass spheres to the surface of the completed stripe using a dispenser attached to the striping machine to automatically dispense the beads instantaneously upon the installed line. Synchronize the glass sphere dispenser cutoff with the automatic cutoff of the thermoplastic material.

C. Special Kettles
Use special kettles for melting and heating the thermoplastic material. Kettles equipped with automatic thermostatic control devices provide positive temperature control and prevent overheating. Ensure that the applicator and kettles are equipped and arranged according to the requirements of the National Fire Underwriters.

D. Hand Equipment
Use hand equipment for projects with small quantities of lane lines, edge lines, and center lines, or for conditions that require the equipment. Use hand equipment approved by the Engineer.

Ensure that hand equipment can hold 150 lbs (68 kg) of molten material and is maneuverable to install crosswalks, arrows, legends, lane, edge, and center lines.

E. Auxiliary Vehicles
Supply the necessary auxiliary vehicles for the operation.

653.3.03 Preparation
General Provisions 101 through 150.

653.3.04 Fabrication
General Provisions 101 through 150.
653.3.05 Construction

A. General Application

Thoroughly clean pavement areas to be striped. Use hand brooms, rotary brooms, air blasts, scrapers, or other approved methods that leave the pavement surface clean and undamaged. Take care to remove all vegetation and road film from the striping area. All new Portland Cement Concrete pavement surfaces shall be mechanically wire brushed or abrasive cleaned to remove all laitance and curing compound before being striped.

Lay stripe with continuous uniform dimensions.

Apply the type of stripe at each location according to the Plans, using one of the following methods:

- Spray techniques
- Extrusion methods wherein one side of the shaping die is the pavement, and the other three sides are contained by or are part of the suitable equipment to heat and control the flow of material.

1. Temperature

Apply thermoplastic traffic stripe only when the pavement temperature in the shade is above 40 °F (4 °C).

To ensure optimum adhesion, install the thermoplastic material in a melted state at the manufacturer’s recommended temperature but not at less than 375 °F (190 °C).

2. Moisture

Do not apply when the surface is moist. When directed by the Engineer, perform a moisture test on the Portland cement concrete pavement surface. Perform the test as follows:

a. Place approximately 1 yd\(^2\) (1 m\(^2\)) of roofing felt on the pavement surface.

b. Pour approximately 1/2 gallon (2 L) of molten thermoplastic onto the roofing felt.

c. After 2 minutes, lift the roofing felt and inspect to see if moisture is present on the pavement surface or underside of the roofing felt.

d. If moisture is present, do not proceed with the striping operation until the surface has dried sufficiently to be moisture free.

3. Binder-Sealer

To ensure optimum adhesion, apply a binder-sealer material before installing the thermoplastic in each of the following cases:

- Extruded thermoplastic
- Where directed by the Engineer for sprayed thermoplastic
- Old asphaltic concrete pavements with exposed aggregates
- Portland cement concrete pavements as directed by the Engineer

Ensure that the binder-sealer material forms a continuous film that mechanically adheres to the pavement and dries rapidly. Use a binder-sealer currently in use and recommended by the thermoplastic material manufacturer according to QPL 46.

To ensure optimum adhesion, apply a two-part epoxy binder-sealer on all Portland cement concrete pavements for either sprayed or extruded thermoplastic material.

Apply the epoxy binder-sealer immediately in advance of, but concurrent with, the application of the thermoplastic material. Apply in a continuous film over the pavement surface.

4. Bonding to Old Stripe

The old stripe may be renewed by overlaying with new material. Ensure the new material bonds to the old line without splitting or cracking.

5. Offset from Construction Joints

Off-set longitudinal lines at least 2 in (50 mm) from construction joints of Portland cement concrete pavements.

6. Crosswalks, Stop Bars, and Symbols

Make crosswalks, stop bars, and symbols at least 3/32 in (2.4 mm) thick at the edges and no more than 3/16 in (4.8 mm) thick at the center.

7. Film Thickness

a. Maintain the following minimum average film thicknesses on all open graded asphalt concrete friction courses:
Section 653—Thermoplastic Traffic Stripe

- 0.120 in (3.0 mm)* for lane lines
- 0.090 in (2.3 mm)* for edge lines
- 0.150 in (3.8 mm)* for gore area lines

b. Maintain the following minimum average film thicknesses on all other pavement types:
- 0.090 in (2.3 mm)* for lane lines
- 0.060 in (1.5 mm)* for edge lines
- 0.120 in (3.0 mm)* for gore area lines

(See below for * reference.)

Compute the minimums by the amount of material used each day, as follows:

<table>
<thead>
<tr>
<th>(For 5 in wide stripe)</th>
<th>* Average Film Thickness (in) = [(lbs \text{ used}) \div (\text{total linear feet})] x 0.236</th>
</tr>
</thead>
<tbody>
<tr>
<td>(For 125 mm wide stripe)</td>
<td>*Average Film Thickness (mm) = [(kg \text{ used}) \div (\text{total linear meters})] x 4.0</td>
</tr>
<tr>
<td>(For 10 in wide stripe)</td>
<td>* Average Film Thickness (in) = [(lbs \text{ used}) \div (\text{total linear feet})] x 0.118</td>
</tr>
<tr>
<td>(For 250 mm wide stripe)</td>
<td>* Average Film Thickness (mm) = [(kg \text{ used}) \div (\text{total linear meters})] x 2.0</td>
</tr>
</tbody>
</table>

8. Glass Spheres
 a. Apply glass spheres to installed stripe surface at a minimum rate of 14 lbs of spheres to each 100 square feet (700 g/m²) of thermoplastic material.
 b. Apply the glass sphere top-coating with a pressure-type gun specifically designed for applying glass spheres that will embed at least one-half of the sphere’s diameter into the thermoplastic immediately after the material has been applied to the pavement.

B. Removing Existing Stripe

Remove existing stripe according to Section 656.

Remove 100 percent of existing traffic stripe from:
- Portland cement concrete pavement where the new stripe will be placed at the same location as the existing marking
- Pavement where the new stripe will be placed at a different location from the existing markings

C. Tolerance and Appearance

No traffic stripe shall be less than the specified width and shall not exceed the specified width by more than 1/2 in (13 mm). The length of the 10 ft (3 m) segment for skip stripe and the 30 ft (9 m) gap between segments may vary plus or minus 1 ft (300 mm). The alignment of the stripe shall not deviate from the intended alignment by more than 1 in (25 mm) on tangents and on curves up to and including 1 degree (radius of 1745 m or greater). On curves exceeding 1 degree (radius less than 1745 m), the alignment of the stripe shall not deviate from the intended alignment by more than 2 in (50 mm).

Stop work when deviation exceeds the above dimensions, and remove the nonconforming stripe.

653.3.06 Quality Acceptance

Segments of the thermoplastic traffic stripe placed according to the Plans and Specifications may be accepted 30 days after the required work is complete in that segment.

If thermoplastic traffic stripe fails to meet Plan details or Specifications or deviates from stated dimensions, correct it at no additional cost to the Department. If removal of pavement markings is necessary, perform it according to Section 656 and place it according to this Specification. No additional payment will be made for removal and replacement of unsatisfactory striping.
Section 653—Thermoplastic Traffic Stripe

653.4 Measurement
When stripe will be paid for by the square yard (meter), the actual number of square yards (meters) painted will be measured. The space between the stripes will be included in the overall measurement.
Linear measurements may be made by electronic measuring devices attached to a vehicle.
Thermoplastic traffic stripe, complete in place and accepted, is measured as follows:

A. Solid Traffic Stripe
Stripe is measured by the linear foot (meter), linear mile (kilometer), or square yard (meter). Breaks or omissions in solid lines or stripes at street or road intersections are not measured for payment.

B. Skip Traffic Stripe
Skip stripe is measured by the gross linear mile (kilometer) as specified. The unpainted space between the painted stripes is included in the overall measurement if the Plan ratio of one to three (10 ft [3 m] segment and 30 ft [9 m] gap or other patterns as designated on the Plans) remains uninterrupted. Measurement begins and ends on a stripe.

C. Words and Symbols
Each word or symbol complete according to Plan dimensions is measured by the Unit.

653.4.01 Limits
General Provisions 101 through 150.

653.5 Payment
Payment is full compensation for the Work under this section, including:
- Cleaning and preparing surfaces
- Furnishing all materials
- Applying, curing, and protecting stripe
- Protecting traffic, including providing necessary warning signs
- Furnishing tools, machines, and other equipment necessary to complete the Item

Measurement and payment for removing pavement markings will be according to Section 656 when shown in the Proposal as a payment Item. Otherwise, removal will not be paid for separately, but will be included in the payment for other Work under this section.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 653</th>
<th>Thermoplastic solid traffic stripe, ___ in (mm), (color)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic solid traffic stripe, ___ in (mm), (color)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic skip traffic stripe, ___ in (mm), (color)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic skip traffic stripe, ___ in (mm), (color)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic pavement markings, words, and symbols (color), type _____</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic traffic stripe</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

653.5.01 Adjustments
General Provisions 101 through 150.

Office of Materials and Research
DO NOT UNSTAPLE THIS BOOKLET....ENTER ALL REQUIRED INFORMATION
---------------------------------- EITHER BY HAND OR BY STAMP.

DATE OF OPENING : January 21, 2011 CALL ORDER : 001

CONTRACT ID : B13922-11-000-0

PCN

0009542.01000

PROJECTS AND CONTRACT NO.

0009542

COUNTY : DEKALB

CODE__________ ISSUED TO:

1. __
2. __
3. __

PART 2 OF 2
THE CONTRACTOR SHALL RETURN ALL PARTS OF THE PROPOSAL
WITH HIS BID UNLESS BIDDING ELECTRONICALLY
Delete Section 657 and substitute the following:

657.1 General Description
This work includes placing plastic pavement markings or legends according to the Plans and Specifications or as otherwise directed.

657.1.01 Definitions
General Provisions 101 through 150.

657.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ASTM D 638
 ASTM D 4061
 ASTM D 4505
 ASTM D 4592
 ASTM E 303
 ASTM E 1710
 ASTM E 2177
 Manual on Uniform Traffic Control Devices for Streets and Highways
 Federal Test Standard 141, Method 6192
 QPL 74

657.1.03 Submittals
Transfer to the Department manufacturer warranties or guarantees for heat-applied and wet reflective preformed plastic marking materials. Ensure that warranties or guarantees state that they are subject to transfer.

657.2 Materials
Select one of the following types of preformed marking material according to the Plans and Proposal:

- Type TR – Temporary Removable Plastic Marking
• Type TN – Temporary Non-Removable Plastic Marking
• Type PA – Permanent Plastic Marking
• Type PB – Permanent Patterned Plastic Marking
• Type PB-WR – Permanent Patterned Wet Reflective Plastic Markings

For a list of sources, see QPL-74.

A. General Requirements for Preformed Pavement Markings

1. Shapes and Sizes
 Use markings that conform to the shapes and sizes outlined in the Manual on Uniform Traffic Control Devices for Streets and Highways.

2. Pigmentation
 Use white or yellow pigmented plastic according to each marking type.

3. Adhesion
 Use markings that can be affixed to bituminous or Portland cement concrete pavements by pressure-sensitive precoated adhesive or a liquid contact cement.
 Ensure that marking adhesive adheres to the roadway under normal climactic and traffic conditions.

4. Conformability
 Use markings that will mold to pavement contours, breaks, faults, and the like, by normal action of traffic at normal pavement temperatures.

5. NTPEP Evaluation
 Use markings evaluated by the National Transportation Product Evaluation Program (NTPEP).

6. Glass or Ceramic Beads
 Use markings with a layer of glass or ceramic beads bonded to the surface according to the marking type. Type PB and PB-WR contain both ceramic beads and glass beads. Types TR, TN, and PA contain only glass beads.
 Use glass beads with less than 2% by weight showing any milkiness, scoring or scratching. Use clear, transparent beads that are free from air inclusions and conform to the following:

<table>
<thead>
<tr>
<th>Glass Beads</th>
<th>Ceramic Beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive Index, (tested by oil immersion)</td>
<td>1.50 minimum</td>
</tr>
<tr>
<td>Uniform Distribution of Spheres</td>
<td>0.75 minimum</td>
</tr>
</tbody>
</table>

7. Reflective Intensity
 Determine reflective intensity in accordance with ASTM D4061 or E1710.
 Ensure that marking types TR, TN, and PA use white or yellow film with the initial reflective intensity indicated in the table below, when measured at the angles shown.

<table>
<thead>
<tr>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Angle</td>
<td>1.05°</td>
</tr>
<tr>
<td>Entrance Angle</td>
<td>88.8°</td>
</tr>
<tr>
<td>Reflective Intensity – Millicandela per square meter per lux</td>
<td>500</td>
</tr>
</tbody>
</table>

8. Composition
 Use markings made of high-quality polymeric materials and pigments. Ensure types TR and PA contain the following composition of materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Min% By Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resins and Plasticizers</td>
<td>20</td>
</tr>
</tbody>
</table>
B. Requirements for Temporary Markings (Types TR and TN)

1. Temporary Removable Markings (Type TR)
 Use temporary, removable markings that meet the following requirements:
 a. Removability
 Ensure the marking material can be removed from asphaltic and Portland cement as follows:
 - Lifted intact or in large pieces.
 - Lifted either manually or with a roll-up device.
 - Lifted at temperatures above 40 °F (5 °C) without using heat, solvents, sand blasting, or grinding.
 Ensure the pavement shows no objectionable staining or damage after removing the marking.
 b. Elongation and Tensile Strength
 Provide temporary markings with the following elongation and tensile strength when tested according to ASTM D 638:
 | Elongation | 50% maximum |
 |--------------|-------------|
 | Tensile Strength | 40 lbs/in² (275 kPa) minimum |

 Test as follows:
 1) Cut a 1 in by 6 in (25 mm by 150 mm) specimen.
 2) Test at a temperature between 70 °F and 80 °F (21 °C and 27 °C).
 3) Test at a jaw speed of 12 in/min (300 m/min).
 c. Adhesion
 Ensure that temporary marking material meets the adhesion requirements of ASTM D4592.
 d. Glass Bead Retention
 Confirm the glass bead retention quality of marking material in both of the following ways:
 1) Laboratory Test
 - Take a 2 in by 6 in (50 mm by 150 mm) sample.
 - Bend the sample over a ½ in (13 mm) diameter mandrel, leaving the 2 in (50 m) side perpendicular to the mandrel axis.
 - Ensure that the area on the mandrel shows no more than 10 percent of the beads entrapped by the binder less than 40 percent.
 2) Field test
 Ensure the beads cannot be easily removed by scratching the material firmly with the thumbnail.
 e. Skid Resistance
 Ensure that the material surface provides a 35 BPN minimum skid resistance value when tested according to ASTM E 303.
 f. Thickness
 Ensure that the removable marking material is at least 20 mils (0.50 mm) thick not including the backing adhesive.

2. Temporary Non-Removable markings (Type TN)
 This type of pavement marking may use a conformable metallic foil backing with a precoated pressure-sensitive adhesive. Skid Resistance
 a. Ensure the retroreflective pliant polymer surface provides a skid resistance value of at least 35 BPN. Test according to ASTM E 303.
 b. Elongation and Tensile Strength
No test for elongation and tensile strength is required for type TN marking.

c. Glass Bead Retention
 Refer to Subsection 657.2.B.1.d, “Glass Bead Retention”.

d. Thickness
 Ensure the nonremovable marking material is at least 20 mils (0.50 mm) not including the adhesive backing.

C. Requirements for Permanent Markings (Types PA, PB and PB-WR)

1. Permanent Plastic Marking (Type PA)

 Provide permanent plastic markings with these features:

 a. Adhesive and Backing
 Use markings supplied with the following:
 • A precoated adhesive
 • An easily removable backing to protect the adhesive
 • An adhesive backing that allows repositioning of the marking on the surface before permanently sticking with greater pressure

 In addition, supply rolls of lane lines with a precoated adhesive but without the protective backing material.

 b. Pigments
 1) White
 Use white marking material meeting the initial color requirements of ASTM D4505.
 2) Yellow
 Use yellow marking material meeting the initial color requirements of ASTM D4505.

 3) Appearance
 Ensure that each marking meets the following appearance standards:
 • Markings are extruded to a uniform thickness.
 • Edges are smoothly cut and true.
 • Glass spheres are retained on all sides by the plastic base material.
 • The wearing surface is free of indentations, displaced spheres, or other irregularities that retain dirt, dust, or other foreign materials.

 c. Thickness
 Ensure the permanent material is at least 60 mils (1.52 mm) thick, without the pre-coated adhesive.

 d. Glass Bead Retention
 Confirm that the surface glass beads are strongly bonded and are not easily removed by traffic. Test them as follows:
 1) Use a Taber Abraser with an H-18 wheel and 125 gram load.
 2) Inspect the sample at 200 cycles under the microscope to observe the extent and type of bead failure.
 3) Ensure that no more than 15 percent of the beads have popped-out.
 4) Verify that the predominant mode of failure is “wear-down” of the beads.

 e. Tensile Strength and Elongation
 Ensure that the permanent markings have the following elongation and tensile strength when tested according to ASTM D 638:

Property	Requirement
Elongation	50% maximum
Tensile Strength	150 psi (1035 kPa) minimum

 Test as follows:

 NOTE: Run this test 3 times and base the result on an average of the 3 tests.
1) Cut 3 specimens, 1 in by 6 in (25 mm by 150 mm) each.
2) Place 1 in² (625 mm²) of carborundum extra-coarse emery cloth or its equivalent at each end of the test specimens to prevent the adhesive from sticking to test equipment.
3) Test at a temperature between 70 ° and 80 °F (21° and 27 °C).
4) Test at a jaw speed of 10 to 12 in/min (250 mm to 300 mm/min).
f. Skid Resistance
 Test the plastic surface to verify that it provides a skid resistance value of at least 45 BPN. Test according to ASTM E 303.
g. Adhesive
 Ensure permanent markings meet the adhesion requirements of ASTM D4505.

2. Permanent Patterned Plastic Marking (Type PB)
Use patterned plastic markings with these features:
 a. Patterned Surface
 Ensure that the patterned surface has the following characteristics:
 • A reflective layer of ceramic beads bonded to a durable polyurethane topcoat.
 • The raised area comprises approximately 40% ± 15% of the total marking face.
 • The surface presents a near vertical face (β angle of 0° to 60°) to traffic from any direction.
 • The Office of Materials and Research approves the pattern configuration.
 • The channels between raised areas are free of exposed beads or particles.
 b. Adhesive and Backing
 Refer to Subsection 657.2.C.1.a, “Adhesive and Backing”.
 c. Pigments
 Refer to Subsection 657.2.C.1.b, “Pigments”.
 d. Ceramic Beads
 Ensure that the top layer of ceramic beads is bonded to a durable polyurethane surface.
 e. Ceramic Bead Retention
 Refer to Subsection 657.2.C.1.d, “Glass Bead Retention”.
 f. Thickness
 Ensure the permanent material is at least 60 mils (1.52 mm) thick at the thickest portion of the patterned cross-section, and at least 20 mils (0.508 mm) at the thinnest portion of the cross-section.
 g. Tensile Strength and Elongation
 Refer to Subsection 657.2.C.1.e, “Tensile Strength and Elongation”.
 h. Skid Resistance
 Refer to Subsection 657.2.C.1.f, “Skid Resistance”.
 i. Dry Reflective Intensity
 Determine reflective intensity in accordance with ASTM D 4061 or E1710. Initial minimum dry reflective values are as follows:

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Angle</td>
<td>1.05°</td>
<td>1.05°</td>
</tr>
<tr>
<td>Entrance Angle</td>
<td>88.8°</td>
<td>88.8°</td>
</tr>
<tr>
<td>Reflective Intensity – Millicandelsas per square meter per lux</td>
<td>500</td>
<td>300</td>
</tr>
</tbody>
</table>

3. Permanent Patterned Wet Reflective Plastic Marking (Type PB-WR)
Use patterned plastic markings with these features:
 a. Patterned Surface
Ensure that the patterned surface has the following characteristics:

- A reflective layer of ceramic beads bonded to a durable polyurethane topcoat.
- The raised area comprises approximately 40% ± 15% of the total marking face.
- The surface presents a near vertical face (β angle of 0° to 60°) to traffic from any direction.
- The Office of Materials and Research approves the pattern configuration.
- The channels between raised areas are free of exposed beads or particles.

b. Adhesive and Backing
 Refer to Subsection 657.2.C.1.a, “Adhesive and Backing”.

c. Pigments
 Refer to Subsection 657.2.C.1.b, “Pigments”.

d. Ceramic Beads
 Ensure that the top layer of ceramic beads is bonded to a durable polyurethane surface.

e. Ceramic Bead Retention
 Refer to Subsection 657.2.C.1.d, “Glass Bead Retention”.

f. Thickness
 Ensure the permanent material is at least 60 mils (1.52 mm) thick at the thickest portion of the patterned cross-section, and at least 20 mils (0.508 mm) at the thinnest portion of the cross-section.

g. Tensile Strength and Elongation
 Refer to Subsection 657.2.C.1.e, “Tensile Strength and Elongation”.

h. Skid Resistance
 Refer to Subsection 657.2.C.1.f, “Skid Resistance”.

i. Dry Reflective Intensity
 Determine reflective intensity in accordance with ASTM D 4061 or E1710. Initial minimum dry reflective values are as follows:

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Angle</td>
<td>1.05°</td>
<td>1.05°</td>
</tr>
<tr>
<td>Entrance Angle</td>
<td>88.8°</td>
<td>88.8°</td>
</tr>
<tr>
<td>Reflective Intensity – Millicandelas per square meter per lux</td>
<td>500</td>
<td>300</td>
</tr>
</tbody>
</table>

j. Wet Reflective Intensity
 Determine wet reflective intensity in accordance with ASTM E2177.
 Ensure that markings meet the following initial minimum wet retroreflective intensity.

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divergence Angle</td>
<td>1.05°</td>
<td>1.05°</td>
</tr>
<tr>
<td>Incidence Angle</td>
<td>88.8°</td>
<td>88.8°</td>
</tr>
<tr>
<td>Reflective Intensity – Millicandelas per square meter per lux</td>
<td>250</td>
<td>200</td>
</tr>
</tbody>
</table>

657.3 Construction Requirements

General Provisions 101 through 150.

657.3.01 Personnel

Send a factory-trained representative from the material manufacturer to the jobsite at the start of each project.
Section 657—Preformed Plastic Pavement Markings

657.3.02 Equipment
General Provisions 101 through 150.

657.3.03 Preparation
General Provisions 101 through 150.

657.3.04 Fabrication
General Provisions 101 through 150.

657.3.05 Construction
Remove existing pavement markings according to Subsection 653.3.05.B, “Removing Existing Stripe.”

A. Pre-Conditions for Applying Markings
1. Meet the following conditions before applying markings onto new asphaltic pavements:
 • The ambient temperature is 60 °F (15 °C) and rising.
 • New asphaltic pavement temperature is at least 120 °F (49 °C).
 • The plastic can be applied to new asphaltic pavement immediately before the new surface is rolled for the final time.
 • Conventional steel rollers and water used with them do not impede the plastic’s application.
2. Meet the following conditions before applying markings onto all pavements:
 • The ambient temperature is 60 °F (15 °C) and rising.
 • The pavement temperature is at least 70 °F (21 °C) and rising.
 • The previous night temperature did not fall below 40 °F (4 °C).
 • No significant rainfall occurred 24 hours prior to the plastic’s application.

B. Remove Existing Stripe
Remove at least 90% of existing traffic stripe under either of the following conditions:
 • On Portland cement concrete pavement where the new stripe is to be placed at the same location as the existing marking
 • On all pavements where the new stripe is to be placed at a location different from the existing marking

C. Applying Markings
Apply markings as follows:
3. Thoroughly clean the pavement. Clean with compressed air, hand brooms, rotary brooms, scrapers, or other approved methods which leave the pavement thoroughly clean and undamaged. Remove all vegetation and road film from the area to be striped. Mechanically wire brush or abrasive blast clean all new Portland cement concrete pavement surfaces to remove all laitance and curing compound from the area to be striped.
4. Apply an adhesive activator according to the manufacturer’s recommendations, when required.
5. Position markings according to the Plans.
6. Press positioned markings firmly onto the pavement.
7. Offset longitudinal lines at least 2 in (50 mm) from construction joints of Portland cement concrete pavements.

D. Tolerances and Appearance
1. Cut off all stripe ends squarely and cleanly.
2. The length of the 10 ft (3 m) segment for skip stripe and the 30 ft (9 m) gap between segments may vary plus or minus 1 in (25 mm). Do not allow the alignment of skip stripe to deviate from the intended alignment by more than 0.5 in (13 mm). Do not allow the alignment of edge stripe to deviate from the intended alignment by more than 0.5 in (13 mm).
in (13 mm) on tangents and on curves with a radius up to and including one degree. Do not allow the alignment of edge stripe to deviate from the intended alignment by more than 1 in (25 mm) on curves exceeding one degree.

3. Stop work when deviation exceeds the above dimensions, and remove the nonconforming stripe.

657.3.06 Quality Acceptance
Segments of preformed plastic traffic stripe that have been placed according to the Plans and Specifications may be accepted 30 days after the required work is complete in that segment. If Preformed Plastic Traffic Stripe fails to meet Plan details or Specifications or deviates from stated dimensions, correct it at no additional cost to the Department. If removal of pavement markings is necessary, perform it according to Section 656 and replace it according to this Specification. No additional payment will be made for removal and replacement of unsatisfactory striping.

657.3.07 Contractor Warranty and Maintenance
A. Warranties
Transfer all warranties or guarantees normally furnished by the manufacturer to the Department. Include a provision that warranties are subject to transfer. Warrant Type PB Plastic Markings to adhere to the pavement and to provide a minimum coefficient of retroreflection of 0.10 candles per ft-candle per square foot (0.10 candela per lux per square meter) when measured at 1.0 ° observation angle and 86.5 ° entrance angle for a period of at least 6 years for longitudinal markings and at least 2 years for intersection markings and symbols under normal traffic conditions.

B. Maintenance
Use the following according to manufacturer’s instructions to ensure effective marking performance:
- Solvents or adhesives
- Appropriate equipment
- Recommendations for application

657.4 Measurement
Preformed plastic pavement markings complete in place and accepted are measured as follows:

A. Solid Traffic Stripe
Solid stripe is measured by the linear foot (meter) or linear mile (kilometer) as specified. Breaks or omissions in solid lines and stripes at street or road intersections are not measured for payment.

B. Skip Traffic Stripe
Skip stripe is measured by the gross linear foot (meter) or gross linear mile (kilometer) as specified. The unpainted spaces between the stripes are included in the overall measurement, if the Plan ratio is not interrupted. Measurement begins and ends on a stripe.

C. Payment by Square Yard (Meter)
When preformed pavement markings are paid for by the square yard (meter), the number of square yards (meters) covered is measured. The space between the markings is included in the overall measurement. The color, width, and type are according to the Plans.

D. Preformed Plastic Word or Symbol
Each preformed plastic word or symbol, complete according to Plan dimensions, is measured by the unit. The code for each word or symbol is stated in the Plans.

E. Removing Existing Pavement Markings
Measurement and payment for removing pavement markings will be according to Section 656 when shown in the Proposal as a payment Item. Otherwise, removal will not be paid for separately, but will be included in the payment for other Work under this Section.

657.4.01 Limits
General Provisions 101 through 150.
Section 657—Preformed Plastic Pavement Markings

657.5 Payment
Payment in each case is full compensation for applying markings, including adhesives, cleaning, application, and traffic control necessary to complete the Item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 657</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preformed plastic solid pavement markings</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Preformed plastic solid pavement markings</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Preformed plastic skip pavement markings</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Preformed plastic skip pavement markings</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Preformed plastic pavement markings</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td></td>
<td>Preformed plastic pavement markings, words or symbols</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Wet reflective preformed solid pavement markings</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Wet reflective preformed solid pavement markings</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Wet reflective preformed skip pavement markings</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Wet reflective preformed skip pavement markings</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Wet reflective preformed pavement markings</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td></td>
<td>Wet preformed pavement markings, words or symbols</td>
<td>Per each</td>
</tr>
</tbody>
</table>

657.5.01 Adjustments
General Provisions 101 through 150.
Add the following:

Section 658—Polyurea Traffic Stripe

658.1 General Description
This work includes furnishing and applying reflectorized traffic line paint according to the Plans and these Specifications.

This Item also includes applying words and symbols according to Plan details, Specifications, and the current Manual on Uniform Traffic Control Devices.

658.1.01 Definitions
Painted Stripes: Solid or broken (skip) lines. The location and color are designated on the Plans.

Skip Traffic Stripes: Painted segments between unpainted gaps on a designated sequence with a ratio of 1:3 [10 ft (3 m) segment and 30 ft (9 m) gap] as specified on the Plans. The location and color are designated on the Plans.

658.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
 Section 656—Removal of Pavement Markings
 Section 870—Paint

B. Referenced Documents
 QPL 46
 AASHTO M 247
 ACI Method 503
 ASTM C 4060
 ASTM D 711
 ASTM D 1155
 ASTM D 1213
 ASTM D 4061
 ASTM D 6359
 ASTM E 303
 ASTM E 1710
 ASTM G 154
Federal Standard No. 595A-17778

658.2 Materials

A. General Requirements

- Use polyurea material that has been evaluated (2 year field evaluation) by the National Transportation Product Evaluation Panel (NTPEP) test facility or other approved test facility.
- Use polyurea material produced from an approved source listed on QPL 46.
- Use a polyurea composition that is specifically formulated for use as a durable pavement marking material and for application at elevated temperatures not exceeding 170 °F (77 °C).
- Ensure the liquid markings consist of a two-component (Part A and Part B), 100% solids polyurea film formulated and designed to provide a simple volumetric mixing ratio as recommended by the manufacturer.
- Use white or yellow films for the markings. Ensure that these films are manufactured without the use of lead chromate pigments or other similar, lead-containing chemicals.
- Ensure that the white polyurea contains not less than 13% by weight rutile titanium dioxide pigment to insure adequate opacity, hiding power, and reflective properties.

B. Glass Beads and Ceramic Reflective Elements

Use glass beads and/or ceramic reflective elements for the reflective media system that ensures the polyurea pavement markings meet the reflectance performance requirements in Subsection 658.2.C.2.

C. Finished Product Requirements:

1. Composition

 Ensure that the retroreflective pavement markings consist of a mixture of high-quality resins, curing agent and pigments, with a reflective layer bonded to the top surface consisting of glass beads.

2. Reflectance

 When applied according to the manufacturer's recommendations, ensure that the white and yellow markings have the average initial and 12 months retroreflectance values shown in the tables below, as measured in accordance with the testing procedures of ASTM D4061 or ASTM E 1710.

 An observation angle of 1.05° and an entrance angle of 88.8° corresponds to 30 meter geometry. The photometric quantity to be measured is the coefficient of retroreflected luminance (RL) and is expressed as millicandelas per square foot per foot-candle [(mcd•ft⁻²)•fc⁻¹]. The metric equivalent is expressed as millicandelas per square meter per lux [(mcd•m⁻²)•lx⁻¹].

 Determine the initial and 12 months retroreflectance of a single installation according to the measurement and sampling procedures outlined in ASTM D 6359, using a 30-meter retroreflectometer.

<table>
<thead>
<tr>
<th>Average Minimum Initial Reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
</tr>
<tr>
<td>Entrance Angle</td>
</tr>
<tr>
<td>Observation Angle</td>
</tr>
<tr>
<td>Retroreflected Luminance R_L [(mcd • ft⁻²) • fc⁻¹]</td>
</tr>
</tbody>
</table>

 Measure initial performance of pavement markings within 7 days after application.

<table>
<thead>
<tr>
<th>Average Minimum Reflectance at 12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
</tr>
<tr>
<td>Entrance Angle</td>
</tr>
<tr>
<td>Observation Angle</td>
</tr>
<tr>
<td>Retroreflected Luminance R_L [(mcd • ft⁻²) • fc⁻¹]</td>
</tr>
</tbody>
</table>
3. Color
Meet these color requirements:
- White markings are pure white and free from dirt or tint.
- Yellow markings are “Federal Yellow” in color.
- The material does not change its color and brightness characteristics after prolonged exposure to sunlight.

4. Skid Resistance
Ensure the surface of the retroreflective marking provides an initial average skid resistance value of 45 BPN when tested according to ASTM E303.

5. Color and Weathering Resistance
Ensure that the mixed polyurea compound, both white and yellow, when applied to 3 in (75 mm) x 6 in (150 mm) aluminum panels at 15 ± 1 mils (0.381 mm ± 0.025 mm) wet thickness without glass beads and exposed in a Q.U.V. Environmental Testing Chamber, as described in ASTM G-53-77, conforms to the following minimum requirements:
- The color of the white polyurea compound is not darker than Federal Standard No. 595A-17778.
- The color of the yellow polyurea compound meets the requirements of the “Federal Yellow” color chart.

6. Drying Time (Laboratory)
When tested in accordance with ASTM D-711 the polyurea marking material shall reach a no-pick-up condition in 10 minutes or less. Perform this test with ASHTO M247 Type 1 beads applied at a rate of 0.099 pounds per square foot (0.483 kg/m²). Ensure that the drying time does not increase substantially with decreasing temperature.

7. Drying Time (Field)
When installed at 77 °F (25 °C), at a wet film thickness of 20 ± 2 mils (0.508 mm ± 0.051 mm) and reflectorized with glass beads and/or ceramic reflective elements, ensure that the polyurea markings reaches a no-track condition in less than 10 minutes. Dry to “no-tracking” will be considered as the condition where no visual deposition of the polyurea marking to the pavement surface is observed when viewed from a distance of 50 feet (15 m), after a traveling vehicle’s tires have passed over the marking.

8. Abrasion Resistance
Ensure that the wear index of the polyurea compound does not exceed 0.00026 lbs (120 mg) when tested in accordance with ASTM C4060 using a CS-17 wheel and under a load of 2.2 lbs (1000 g) for 1000 cycles.

9. Adhesion to Concrete
Ensure that the polyurea pavement marking materials, when tested according to ACI Method 503, have such a high degree of adhesion to the specified concrete surface that there is a 100% concrete failure in the performance of this test. Condition the prepared specimens at room temperature 75 °C ± 2 °F (24 °C) for a minimum of 24 hours and maximum of 72 hours prior to the performance of this test.

10. Adhesion to Asphalt
Ensure that the polyurea pavement marking materials, when tested according to ACI Method 503, have such a high degree of adhesion to the specified asphalt surface that there is a 100% asphalt failure in the performance of this test. Condition the prepared specimens at room temperature 75 °C ± 2 °F (24 °C) for a minimum of 24 hours and maximum of 72 hours prior to the performance of this test.

658.3 Construction Requirements
658.3.01 Equipment
A. Traveling Traffic Stripe Painter
To apply the traffic marking material, use a mobile, truck mounted and self contained pavement marking machine, specifically designed to apply two-component liquid materials, and glass beads, in a continuous and skip-line pattern.

Apply the two-component liquid materials through airless impingement mixing guns. The guns must accommodate a plural component material system at the manufacturer’s recommended volumetric mixing ratio.
The guns must have the capacity to deliver materials from approximately 1.5 (5.7 L) to 3 gal (11.4 L) per minute to compensate for a typical range of application speeds of 3 mph (5 km/h) to 6 mph (10 km/h). Ensure that the machine travels at a uniform rate of speed both uphill and downhill.

Select the necessary accessories such as spray tip, mix chamber or static tube, and rod diameter to ensure proper mixing.

Ensure that the machine meets the following:

- The machine is capable of applying three separate stripes, either solid or skip, in any specified pattern by utilizing three adjacent spray nozzles at the same time.
- Each nozzle is equipped with satisfactory cutoff valves that will apply skip lines automatically.
- The application equipment is maneuverable to the extent that straight lines can be followed and normal curves can be made in a true arc.
- The truck-mounted unit is provided with accessories to allow for the marking of symbols and legends.

Ensure that the mobile applicator also includes the following features:

- The mobile applicator provides individual material reservoirs for the storage of Part A and Part B of the resin composition.
- The applicator is equipped with heating equipment of sufficient capacity to maintain the individual resin components at the manufacturer’s recommended temperature for spray application.
- The applicator is equipped with separate temperature controls for each component.
- The applicator is equipped with glass bead dispensing equipment and capable of applying the glass beads at a uniform rate.
- The application equipment is equipped with metering devices or pressure gauges on the proportioning pumps as well as stroke counters to monitor volumetric usage. Ensure that the metering devices or pressure gauges and stroke counters are visible.
- The applicator is equipped with all the necessary spray equipment, mixers, compressors, and other appurtenances to allow for the placement of reflectorized pavement markings in a simultaneous sequence of operations.

B. Cleaning Equipment

Use brushes, brooms, scrapers, grinders, high-pressure water jets, or air blasters to remove dirt, dust, grease, oil, and other foreign matter from painting surfaces without damaging the underlying pavement.

658.3.02 Preparation

Before painting, thoroughly clean pavement surfaces of dust, dirt, grease, oil, and all other foreign matter from painting surfaces without damaging the underlying pavement.

Remove concrete curing compounds on new Portland cement concrete surfaces and existing pavement markings on both concrete and asphalt surfaces.

658.3.03 Construction

A. Atmospheric Conditions

Apply pavement markings only during conditions of dry weather and subsequently dry pavement surfaces. Ensure that the pavement surface temperature and the ambient temperature at the time of installation are both greater than 40 °F (4 °C) and that the relative humidity is not greater than 85%.

B. Alignment

Ensure that the traffic stripe is the specified length, width, and placement. On sections where no previously applied markings are present, ensure accurate stripe location by establishing control points at spaced intervals. The Engineer will approve control points.

C. Application

Apply the pavement markings as follows:

1. Apply the liquid marking material by spray method and according to the manufacturer’s installation instructions.
2. Ensure marking configurations are in accordance with the “Manual on Uniform Traffic Control Devices.”
3. Place the reflectorized pavement markings only on properly prepared surfaces and at the widths and patterns designated on the Plans. Do not begin marking operations until applicable surface preparation work is completed and approved by the Engineer.

4. Air-blast the surface first, to remove any dirt and residues from the pavement. Then apply the pavement markings as a continuous operation.

5. Heat Component A and Component B to the manufacturer’s recommended temperatures.

6. Ensure that mixing of the two components occurs in a static tube or impingement chamber prior to reaching the application spray nozzle.

7. Spray the mixed resin onto the pavement surface at a minimum uniform wet thickness of 20 mils (0.51 mm).

8. Immediately following application, drop the glass beads and/or ceramic reflective elements onto the liquid marking at the application rates recommended by the binder manufacture.

9. The work will be subject to application rate checks for both paint and beads.

Following an application of glass beads, and upon curing, ensure that the resulting marking is an adherent reflectorized stripe of the specified thickness and width that is capable of resisting deformation by traffic.

D. Protective Measures

Protect newly applied paint as follows:

1. Traffic
 Control and protect traffic with warning and directional signs during painting. Set up warning signs before beginning each operation and place signs well ahead of the painting equipment. When necessary, use a pilot car to protect both the traffic and the painting operation.

2. Fresh Paint
 Protect the freshly painted stripe using cones or other satisfactory devices. Repair stripe damage or pavement smudges caused by traffic according to Subsection 658.3.04.

E. Appearance and Tolerance of Variance

Continually deviating from stated dimensions is cause for stopping the work and removing the nonconforming stripe. (See Section 656.) Adhere to the following measurements:

1. Width
 Do not lay stripe less than the specified width. Do not lay stripe more than 1/2 in (13 mm) over the specified width.

2. Length
 Ensure that the 10 ft (3 m) painted skip stripe and the 30 ft (10 m) gap between painted segments vary no more than ± 1 ft (300 mm) each.

3. Alignment
 a. Ensure that the stripe does not deviate from the intended alignment by more than 1 in (25 m) on tangents or curves of 1 degree or less.
 b. Ensure that the stripe does not deviate by more than 2 in (50 mm) on curves exceeding 1 degree.

658.3.04 Quality Acceptance

Ensure that stripes and segments of stripes are clean-cut and uniform. Markings that do not appear uniform or satisfactory, either during the day or night, or do not meet Specifications or become marred or damaged by traffic or from other causes, will be corrected at the Contractor’s expense.

Sections of painted stripe, words, and symbols placed according to the Plans and Specifications and have dried so that paint will not be picked up or marred by vehicle tires will be accepted. The Contractor will be relieved of responsibility for maintenance on accepted sections.

A. Correction of Alignment

When correcting a deviation that exceeds the permissible tolerance in alignment, do the following:
1. Remove the affected portion of stripe, plus an additional 25 ft (8 m) in each direction.
2. Paint a new stripe according to these Specifications.
 Remove the stripe according to Section 656.

B. Removal of Excess Paint
 Remove misted, dripped, or spattered paint to the Engineer’s satisfaction. Do not damage the underlying pavement during removal.
 Refer to the applicable portions of Section 656.

658.4 Measurement
When traffic stripe is paid for by the square yard (meter), the number of square yards (meters) painted is measured and the space between stripes is included in the overall measurement.

Linear measurements are made on the painted surface by an electronic measuring device attached to a vehicle. On curves, chord measurements, not exceeding 100 linear feet (30 linear meters), are used.

Traffic stripe and markings, complete in place, are measured and accepted for payment as follows:

A. Solid Traffic Stripe
 Solid traffic stripe is measured by the linear foot (meter), linear mile (kilometer), or square yard (meter). Breaks or omissions in solid lines or stripes at street or road intersections are not measured.

B. Skip Traffic Stripe
 Skip traffic stripe is measured by the gross linear foot (meter) or gross linear mile (kilometer). Unpainted spaces between the stripes are included in the overall measurements if the Plan ratio of 1 to 3 remains uninterrupted. Measurement begins and ends on a stripe.

C. Pavement Markings
 Pavement markings, words and symbols completed according to Plan dimensions are measured by the unit.

658.5 Payment
Payment will be full compensation for the work under this Section, including the following:

- Cleaning and preparing surfaces
- Furnishing materials, including paints, beads, and thinners
- Applying, curing, and protecting paints
- Protecting traffic, including providing and placing necessary warning signs
- Furnishing tools, machines, and other equipment necessary to complete the Item

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 658</th>
<th>Solid polyurea traffic stripe, ______ in (mm), (color)</th>
<th>Per linear mile (kilometer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 658</td>
<td>Skip polyurea traffic stripe, ______ in (mm), (color)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 658</td>
<td>Solid polyurea traffic stripe, ______ in (mm), (color)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 658</td>
<td>Skip polyurea traffic stripe, ______ in (mm), (color)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 658</td>
<td>Polyurea pavement markings, words, and symbols, (color)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 658</td>
<td>Polyurea Traffic stripe, ______ in (mm), (color)</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

Office of Materials & Research
Delete Section 700 and substitute the following:

700.1 General Description
This work includes preparing the ground, furnishing, planting, seeding, fertilizing, sodding, and mulching disturbed areas within the Right-of-Way limits and easement areas adjacent to the right-of-way as shown on the Plans except as designated by the Engineer to remain natural.

700.1.01 Definitions
General Provisions 101 through 150.

700.1.02 Related References
A. Standard Specifications
 Section 160—Reclamation of Material Pits and Waste Areas
 Section 163—Miscellaneous Erosion Control Items
 Section 718—Wood Fiber
 Section 822—Emulsified Asphalt
 Section 882—Lime
 Section 890—Seed and Sod
 Section 891—Fertilizers
 Section 893—Miscellaneous Planting Materials
 Section 895—Polyacrylamide

B. Referenced Documents
 QPL 33
 QPL 84

700.1.03 Submittals
Submit manufacturer’s product expiration date along with written instructions to ensure proper application, safety, storage, and handling of Polyacrylamide products used in The Work.
700.2 Materials
Use materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Fiber Mulch</td>
<td>718.2</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>822</td>
</tr>
<tr>
<td>Agricultural Lime</td>
<td>882.2.01</td>
</tr>
<tr>
<td>Liquid Lime</td>
<td>882.2.01</td>
</tr>
<tr>
<td>Seed</td>
<td>890.2.01</td>
</tr>
<tr>
<td>Sod</td>
<td>890.2.02</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>891.2.01</td>
</tr>
<tr>
<td>Plant Topsoil</td>
<td>893.2.01</td>
</tr>
<tr>
<td>Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Inoculants</td>
<td>893.2.04</td>
</tr>
<tr>
<td>Tackifiers</td>
<td>QPL 33</td>
</tr>
<tr>
<td>Anionic Polyacrylamide</td>
<td>QPL 84 & Section 895</td>
</tr>
</tbody>
</table>

A. Seeds
Whenever seeds are specified by their common names, use the strains indicated by their botanical names.

B. Water
Obtain the water for grassing from an approved source. Use water free of harmful chemicals, acids, alkalies, and other substances that may harm plant growth or emit odors. Do not use salt or brackish water.

C. Asphalt
Secure the mulch with asphalt made of a homogenous emulsification of a refined petroleum. Ensure that the asphalt can be sprayed on with or without diluting with water.

Use suitable asphalt free of petroleum solvents or other diluting agents that may harm plant growth. Use asphalt according to Section 822 or Section 824, “slow setting”. Do not use asphalt that separates after freezing or from any other cause.

D. Fertilizer Mixed Grade
Select fertilizer mixed grade such as 10-10-10, 6-12-12, 5-10-15, or other analysis within the following limits:

- Nitrogen 5 to 10 percent
- Phosphorus 10 to 15 percent
- Potassium 10 to 15 percent

If using mixed grade fertilizer for hydroseeding, ensure that it has the following analysis:

- Nitrogen 5 to 19 percent
- Phosphorus 10 to 19 percent
- Potassium 10 to 19 percent

E. Mulch
Use straw or hay mulch according to Subsection 700.3.05.G.

Use wood fiber mulch in hydroseeding according to Subsection 700.3.05.F.1.
Section 700—Grassing

700.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

700.3 Construction Requirements

700.3.01 Personnel
General Provisions 101 through 150.

700.3.02 Equipment
Use grassing equipment able to produce the required results.
Never allow the grading (height of cut) to exceed the grassing equipment’s operating range.

A. Blower Equipment
When using blower equipment to apply bituminous treated mulch in a single operation, place two or more jets or spray nozzles at or near the end of the discharge spout to eject a uniform coat of mulch.

B. Mulch Material Equipment
Use mulching equipment that uniformly cuts the specified materials into the soil to the required control depth.

C. Rollers
Use at least 12 in (300 mm) diameter rollers with corrugated or notched surfaces. Do not use smooth surface rollers.

D. Hydroseding Equipment
For hydroseding equipment, see Subsection 700.3.05.F.

700.3.03 Preparation
General Provisions 101 through 150.

700.3.04 Fabrication
General Provisions 101 through 150.

700.3.05 Construction
Follow the planting zones, planting dates, types of seed, seed mixtures, and application rates described throughout this Section. The Engineer has the authority to alter the planting dates as set forth by a period of 2 weeks. This 2-week period may be applied to either the beginning of the specified planting and/or to the end of the end of the specified planting season. In general:

- Obtain the Engineer’s approval before changing the ground cover type.
- Do not use annual rye grass seeds with permanent grassing.
- Follow the planting zones indicated on the Georgia State Planting Zone Map, below.
- Sod may be installed throughout the year, weather permitting.
- For permanent grassing, apply the combined amounts of all seeds for each time period within each planting zone and roadway location listed in the Seeding Table, below. Do not exceed the amounts of specified seed.
A. Ground Preparation

Prepare the ground by plowing under any temporary grass areas and preparing the soil as follows:

1. Slopes 3:1 or Flatter
 On slopes 3:1 or flatter, plow shoulders and embankment slopes to between 4 in and 6 in (100 mm and 150 mm) deep.
 Plow front and back slopes in cuts to no less than 6 in (150 mm) deep. After plowing, thoroughly disk the area until pulverized to the plowed depth.

2. Slopes Steeper Than 3:1
 Serrate slopes steeper than 3:1 according to Plan details when required.
 On embankment slopes and cut slopes not requiring serration (sufficient as determined by the Engineer), prepare the ground to develop an adequate seed bed using any of the following methods as directed by the Engineer:
 - Plow to a depth whatever depth is practicable.
 - Use a spiked chain.

SEEDING TABLE

<table>
<thead>
<tr>
<th>PLANTING ZONES</th>
<th>PLANTING DATES</th>
<th>Rye Grass, Millet Cereal Grass (Oats)</th>
<th>Common Bermuda Grass (Hulled)</th>
<th>Common Bermuda Grass (Unhulled)</th>
<th>Tall Fescue</th>
<th>Pensacola Bahia Grass</th>
<th>Weeping Love Grass</th>
<th>Scarified Interstate Lespedeza</th>
<th>Unscarified Interstate Lespedeza</th>
<th>REQUIRED PERMANENT GRASSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MARCH 1 – MAY 15</td>
<td>10 (11)</td>
<td>10 (11)</td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COMMON BERMUDA GRASS</td>
</tr>
<tr>
<td>1</td>
<td>MAY 16 – AUGUST 31</td>
<td>10 (11)</td>
<td>10 (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SEPT 1 – FEBRUARY 28</td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4</td>
<td>APRIL 1 – OCTOBER 31</td>
<td>10 (11)</td>
<td>10 (11)</td>
<td>20 (23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BERMUDA/BAHIA</td>
<td></td>
</tr>
<tr>
<td>2,3,4</td>
<td>NOV 1 – MARCH 31</td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>MARCH 1 – AUGUST 31</td>
<td></td>
<td>10 (11)</td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTERSTATE LESPEDEZA</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>SEPT 1 – FEBRUARY 28</td>
<td></td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>APRIL 1 – OCTOBER 31</td>
<td></td>
<td>10 (11)</td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTERSTATE LESPEDEZA</td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>NOV 1 – MARCH 31</td>
<td></td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 700—Grassing

- Walk with a cleated track dozer.
- Scarify.
 Disking cut slopes and fill slopes is not required.

3. All Slopes
 a. Obstructions
 Remove boulders, stumps, large roots, large clods, and other objects that interfere with grassing or may slide into the ditch.
 b. Topsoil
 Spread topsoil stockpiled during grading evenly over cut and fill slopes after preparing the ground.
 Push topsoil from the top over serrated slopes. Do not operate equipment on the face of completed serrated cuts.

B. Grassing Adjacent to Existing Lawns

When grassing areas adjacent to residential or commercial lawns, the Engineer shall change the plant material to match the type of grass growing on the adjacent lawn. The Contract Unit Price will not be modified for this substitution.

If the Engineer believes bituminous treated mulch would harm other portions of the work, bituminous treated mulch may be substituted with 1,500 lbs/acre (1680 kg/ha) of wood fiber mulch with tackifier.

C. Temporary Grassing

Apply temporary grassing according to Subsection 163.3.05.F. Determine lime requirements by a laboratory soil test.

In March or April of the year following planting and as soon as the weather is suitable, replace all areas of temporary grass with permanent grass by plowing or overseeding using the no-till method. If the no-till method is used, ensure that temporary grass is less than 3 inches in height (this may be achieved by mowing). Additional mulch will be required only if the temporary grass does not provide adequate mulch to meet the requirements of Subsection 700.3.05.G, “Mulching.”

Temporary grass, when required, will be paid for according to Section 163.

Projects that consist of asphalt resurfacing with shoulder reconstruction and/or shoulder widening: Type II Wood Fiber Blanket is used to stabilize disturbed areas, no till seeding will be used when permanent grassing is applied and the areas will not be re-disturbed.

D. Applying Agricultural Lime and Fertilizer Mixed Grade

Apply and mix lime and fertilizer as follows:

1. Agricultural Lime
 Uniformly spread agricultural lime on the ground at the approximate rate determined by the laboratory soil test.
 A. Liquid Lime (Flowable Dolomitic Lime) may be applied during the hydroseeding operation at the rate of 2.5 gallons (of Liquid Lime concentrate) per acre (23.75 liters per hectare). This provides the equivalent of 1 ton per acre (2.25 mg per hectare) of agricultural lime. The remainder of lime specified by the soil test is applied as agricultural lime and uniformly spread over the surface of the ground.
 B. Agricultural Lime may be used as filler material in mixed grade fertilizer in lieu of inert material. The use of agricultural lime as filler material is to be shown on the fertilizer bag or invoice from the supplier. Do not deduct any amount of fertilizer when lime is used as filler.

2. Fertilizer Mixed Grade
 Uniformly spread the fertilizer selected according to Subsection 700.2.D over the ground at approximately 1,200 lbs/acre (1350 kg/ha).
 If using a higher analysis fertilizer with hydroseeding, apply it at the same rate per acre (hectare) as the standard fertilizer.
3. Mixing
Before proceeding, uniformly work the lime and fertilizer into the top 4 in (100 mm) of soil using harrows, rotary tillers, or other equipment acceptable to the Engineer.
On cut slopes steeper than 3:1, other than serrated slopes, reduce the mixing depth to the maximum practical depth as determined by the Engineer.
Omit mixing on serrated slopes.

E. Seeding
Following is a list of both common names and botanical names for approved seed types. Whenever seeds are specified by the common names, the strains indicated by their botanical name apply.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Ryegrass</td>
<td>Lolium multiflorum</td>
</tr>
<tr>
<td>*Bermuda Grass, Common Hulled and Unhulled</td>
<td>Cynodon dactylon</td>
</tr>
<tr>
<td>**Lespedeza Virgata</td>
<td>Lespedeza Ambro Virgata</td>
</tr>
<tr>
<td>**Lespedeza Sericea</td>
<td>Lespedeza cuneta, Var. Sericea</td>
</tr>
<tr>
<td>**Lespedeza Seralia</td>
<td>Lespedeza cuneta, Var. Seralia</td>
</tr>
<tr>
<td>**Lespedeza Interstate</td>
<td>Lespedeza cuneta, Var. Interstate</td>
</tr>
<tr>
<td>**Lespedeza Korean</td>
<td>Lespedeza stipulacea Maxim</td>
</tr>
<tr>
<td>Pensacola Bahiagrass</td>
<td>Paspalum notatum, var. Pensacola</td>
</tr>
<tr>
<td>Tall Fescue</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td>Weeping Love Grass</td>
<td>Eragrostis curvula</td>
</tr>
</tbody>
</table>

*Do not use Giant Bermuda Seed (Cynodon species) including NK-37.
**Requires inoculation.

Prepare seed and sow as follows:

1. Inoculation of Seed
 Inoculate each kind of leguminous seed separately with the appropriate commercial culture according to the manufacturer’s instructions for the culture.
 When hydroseeding, double the inoculation rate.
 Protect inoculated seed from the sun and plant it the same day it is inoculated.

2. Sowing
 Weather permitting, sow seed within 24 hours after preparing the seed bed and applying the fertilizer and lime.
 Sow seed uniformly at the rates specified in the Seeding Table. Use approved mechanical seed drills, rotary hand seeders, hydraulic equipment, or other equipment to uniformly apply the seed. Do not distribute by hand.
 To distribute the seeds evenly sow seed types separately, except for similarly sized and weighted seeds. They may be mixed and sown together.

3. Rolling
 Roll seeded areas before applying mulch, except on steep slopes where rollers cannot operate satisfactorily. On slopes inaccessible to compaction equipment, cover the seeds by dragging spiked chains over them or by using other methods.
 Do not sow during windy weather, when the prepared surface is crusted, or when the ground is frozen, wet, or otherwise non-tillable.
Section 700—Grassing

4. Overseeding
 Temporary grass areas that were prepared in accordance with Subsection 700.3.05.A, may be overseeded using the no-till method. The no-till method is defined by planting permanent grass seeds using a drill-type seeder over existing temporary grass without plowing or tilling soil and in accordance with Subsection 700.3.05.C.

F. Hydroseeding
 Hydroseeding may be used on any grassing area. Under this method, spread the seed, fertilizer, and wood fiber mulch in the form of a slurry. Seeds of all sizes may be mixed together. Apply hydroseeding as follows:
 1. Use wood fiber mulch as a metering agent and seed bed regardless of which mulching method is chosen. Apply wood fiber mulch at approximately 500 lbs/acre (560 kg/ha).
 2. Prepare the ground for hydroseeding as for conventional seeding in Subsection 700.3.05.A.
 3. Use specially designed equipment to mix and apply the slurry uniformly over the entire seeding area.
 4. Agitate the slurry mixture during application.
 5. Discharge slurry within one hour after being combined in the hydroseeder. Do not hydroseed when winds prevent an even application.
 6. Closely follow the equipment manufacturer’s directions unless the Engineer modifies the application methods.
 7. Mulch the entire hydroseeded area according to Subsection 700.3.05.F.1, above, and Subsection 700.3.05.G, below.

G. Mulching
 Except as noted in Subsection 700.3.05.B and Subsection 700.3.05.C, apply mulch immediately after seeding areas as follows:
 Areas with permanent grass seed and covered with slope mats or blankets will not require mulch.
 Evenly apply straw or hay mulch between 3/4 in and 1-1/2 in (20 mm and 40 mm) deep, according to the texture and moisture content of the mulch material.
 Mulch shall allow sunlight to penetrate and air to circulate as well as shade the ground, reduce erosion, and conserve soil moisture. If the type of mulch is not specified on the Plans or in the Proposal, use any of the following as specified.
 1. Mulch with Binder
 Apply mulch with binder regardless of whether using ground or hydroseeding equipment for seeding.
 a. Mulch uniformly applied manually or with special blower equipment designed for the purpose. When using a blower, thoroughly loosen baled material before feeding it into the machine so that it is uniformly coated with binder and broken up.
 b. After distributing the mulch initially, redistribute it to bare or inadequately covered areas in clumps dense enough to prevent new grass from emerging.
 Do not apply mulch on windy days.
 c. Apply enough binder to the mulch to hold it in place. Immediately replace mulch that blows away.
 When using a power blower to distribute the mulch, spray the binder onto the mulch as the mulch is ejected from the machine. If distributing the mulch by hand, immediately apply the binder uniformly over the mulched areas.
 Use one of the following binders:
 - Emulsified asphalt, SS-1h or SS-1 (Section 822) : The public, adjacent property, bridges, pavements, curbs, sidewalks, and other existing structures shall be protected from discoloration by the asphalt. Correct discoloration damage at no expense to the Department.
 - Tackifier: Use a tackifier listed in the Laboratory Qualified Products Manual may be used at the manufacturer’s recommended rates.
 2. Walked-in-Mulch
 Apply walked-in-mulch on slopes ranging in steepness from 5:1 to 2:1 and treat as follows:
 a. Immediately walk it into the soil with a cleated track dozer. Make dozer passes vertically up and down the slope.
 b. Where walked-in-mulch is used, do not roll or cover the seeds as specified in Subsection 700.3.05.E.3.
Section 700—Grassing

H. Sod

Furnish and install sod in all areas shown on the Plans or designated by the Engineer.

1. Kinds of Sod

Use only Common Bermudagrass (Cynodon dactylon) or one of the following Bermudagrass varieties:

- Tifway 419
- Tifway II
- Tift 94
- Tifton 10
- Midlawn
- Midiron
- GN-1
- Vamont

No dwarf Bermuda types shall be used. Sod shall be nursery-grown and be accompanied with a Georgia Department of Agriculture Live Plant License Certificate or Stamp. Sod shall consist of live, dense, well-rooted material free of weeds and insects as described by the Georgia Live Plant Act.

2. Type And Size Of Sod:

Furnish either big roll or block sod. Ensure that big roll sod is a minimum of 21 inches wide by 52 feet long. Minimum dimensions for block sod are 12 inches wide by 22 inches long. Ensure all sod consists of a uniform soil thickness of not less than 1 inch.

3. Ground Preparation

Excavate the ground deep enough and prepare it according to Subsection 700.3.05.A to allow placing of sod. Spread soil, meeting the requirements of Subsection 893.2.01, on prepared area to a depth of 4 inches.

4. Application Of Lime And Fertilizer

Apply lime and fertilizer according to Subsection 700.3.05.D within 24 hours prior to installing sod.

5. Weather Limitation

Do not place sod on frozen ground or where snow may hinder establishment.

6. Install Sod

Install Sod as follows:

- Place sod by hand or by mechanical means so that joints are tightly abutted with no overlaps or gaps. Use soil to fill cracks between sod pieces, but do not smother the grass.
- Stake sod placed in ditches or slopes steeper than 2:1 or any other areas where sod slipping can occur.
- Use wood stakes that are at least 8 in (200 mm) in length and not more than 1 in (25 mm) wide.
- Drive the stakes flush with the top of the sod. Use a minimum of 8 stakes per square yard (meter) to hold sod in place.
- Once sod is placed and staked as necessary, tamp or roll it using adequate equipment to provide good contact with soil.
- Use caution to prevent tearing or displacement of sod during this process. Leave the finished surface of sodded areas smooth and uniform.

7. Watering Sod

After the sod has been placed and rolled or tamped, water it to promote satisfactory growth. Additional watering will be needed in the absence of rainfall and during the hot dry summer months. Water may be applied by Hydro Seeder, Water Truck or by other means approved by the Engineer.

8. Dormant Sod

Dormant Bermuda grass sod can be installed. However, assume responsibility for all sod through establishment and until final acceptance.
9. Establishment
 Sod will be inspected by the Engineer at the end of the first spring after installation and at the time of Final Inspection. Replace any sod that is not live and growing. Any cost for replacing any unacceptable sod will be at the Contractor’s expense.

I. Application of Nitrogen
 Apply nitrogen at approximately 50 lbs/acre (56 kg/ha) when specified by the Engineer after plants have grown to 2 in (50 mm) high.

 One application is mandatory and must be applied before Final Acceptance.

 Apply nitrogen with mechanical hand spreaders or other approved spreaders capable of uniformly covering the grassed areas. Do not apply nitrogen on windy days or when the foliage is damp.

 Do not apply nitrogen between October 15 and March 15 except in Zone 4. In planting zones 3 and 4 apply an additional application of nitrogen.

J. Application of Polyacrylamide (PAM)
 1. Prepare soil according to project Plans and Specifications prior to applying PAM.
 2. Apply PAM according to manufacturer’s recommendations and the requirements listed herein.
 3. Apply Polyacrylamide (PAM) to all areas that receive permanent grassing.
 4. Apply PAM (powder) before grassing or PAM (emulsion) to the hydroseeding operation.
 5. Use only anionic PAM.
 6. Ensure that the application method provides uniform coverage to the target and avoids drift to non-target areas including waters of the state.
 7. Achieve > 80% reduction in soil loss as measured by a rainfall simulator test performed by a certified laboratory (1 hour storm duration, 3 inches (75 mm) rainfall per hour).
 8. Ensure uniform coverage to the target area and minimize drift to non-target areas. Apply anionic PAM to all cut and fill slopes, permanently grassed or temporarily grassed, either prior to grassing or in conjunction with hydroseeding operations. Mulch will not be eliminated.
 9. Use application rates in accordance with manufacturer’s instructions.
 10. Do not exceed 200 lbs/acre/year (224 kg/ha/year).

700.3.06 Quality Acceptance
 The Engineer may require replanting of an area that shows unsatisfactory growth for any reason at any time.

 Except as otherwise specified or permitted by the Engineer, prepare replanting areas according to the Specifications as if they were the initial planting areas. Use a soil test or the Engineer’s guidance to determine the fertilizer type and application rate, then furnish and apply the fertilizer.

700.3.07 Contractor Warranty and Maintenance
 A. Plant Establishment

 Before Final Acceptance, provide plant establishment of the specified vegetation as follows:

 1. Plant Establishment
 Preserve, protect, water, reseed or replant, and perform other work as necessary to keep the grassed areas in satisfactory condition.

 2. Watering
 Water the areas during this period as necessary to promote maximum growth.

 3. Mowing
 Mow seeded areas of medians, shoulders, and front slopes at least every 6 months. Avoid damaging desirable vegetation.

 In addition, mow as necessary to prevent tall grass from obstructing signs, delineation, traffic movements, sight distance, or otherwise becoming a hazard to motorists.
Section 700—Grassing

Do not mow lespedezas or tall fescue until after the plants have gone to seed.

B. Additional Fertilizer Mixed Grade
Apply fertilizer at approximately 600 lbs/acre (675 kg/ha) each spring after initial plant establishment. Continue annual applications until Final Acceptance. This additional fertilizer will be measured and paid for at the Contract Unit Price for fertilizer mixed grade.

C. Growth and Coverage
Provide satisfactory growth and coverage, ensuring that vegetation growth is satisfactory with no bare spots larger than 1 ft² (0.1 m²). Bare spots shall comprise no more than 1 percent of any given area. An exception is given for seed not expected to have germinated and shown growth at that time.

D. Permissible Modifications
When all Items of the work are ready for Final Acceptance except for newly planted repaired areas or other areas with insufficient grass, the Contractor may fill the eroded areas or treat bare areas with sod obtained, placed, and handled according to Subsection 700.3.05.H.

Carefully maintain the line and grade established for shoulders, front slopes, medians, and other critical areas.

Sod as described above will not be paid for separately, but will be an acceptable substitute for the satisfactory growth and coverage required under this Specification. These areas treated with sod are measured for payment under the Item for which the sod is substituted.

700.4 Measurement
A. Permanent Grassing
Permanent Grassing will be measured for payment by the acre (hectare).

B. Mulches
Straw or hay mulch applied to permanent grassing areas will be measured by the ton (megagram). Wood fiber mulch furnished by the Contractor for permanent grassing is not measured for separate payment.

C. Quantity of Sod
Sod is measured for payment by the number of square yards (meters) , surface measure, completed and accepted.

D. Water
Water furnished and applied to promote a satisfactory growth is not measured for payment.

E. Quantity of Lime and Fertilizer Mixed Grade
Lime and fertilizer are measured by the ton (megagram). Lime used as a filler in fertilizer is measured by the ton (megagram). Liquid lime is measured by the gallon (liter).

F. Quantity of Nitrogen Used for Permanent Grassing
Nitrogen is measured in pounds (kilograms) based on the weight of fertilizer used and its nitrogen content.

G. Replanting and Plant Establishments
No measurement for payment is made for any materials or work required under Subsection 700.3.06 and Subsection 700.3.07.

H. Temporary Grass
Temporary grass is measured for payment by the acre (hectare) of seed according to Section 163.

700.4.01 Limits
General Provisions 101 through 150.

700.5 Payment
As grassing and planting progress, the Contractor will receive full measurement and payment on regular monthly estimates provided the work complies with the Specifications.
Section 700—Grassing

A. Permanent Grassing

Permanent grassing will be paid for at the Contract Price per acre (hectare), complete and in place. Payment is full compensation for preparing the ground, seeding, wood fiber mulch, polyacrylamide, and providing plant establishment and other incidentals.

B. Straw or Hay Mulch

Straw or hay mulch required for Permanent Grassing will be paid for according to Section 163.

C. Fertilizer Mixed Grade

Fertilizer mixed grade will be paid for at the Contract Price per ton (megagram). Payment is full compensation for furnishing and applying the material.

D. Lime

Lime will be paid for at the Contract Price per ton (megagram). Lime used as a filler in fertilizer will be paid for per ton (megagram). Liquid lime will be paid for per gallon (liter). Payment is full compensation for furnishing and applying the material.

E. Nitrogen

Nitrogen will be paid for at the Contract Price per pound (kilogram) of nitrogen content. Payment is full compensation for furnishing and applying the material.

F. Sod

Sod will be paid by the square yard (meter) in accordance with the following schedule of payments. Payment is full compensation for ground preparation, including addition of topsoil, furnishing and installing live sod, and for Plant Establishment.

1. 70% of the Contract Price per square yard will be paid at the satisfactory completion of the installation.
2. 20% of the Contract Price will be paid upon satisfactory review of sod which is healthy, weed free and viable at the inspection made at the end of the first spring after installation.
3. 10% of the contract price will be paid upon satisfactory review of sod that is healthy, weed free and viable at the Final Acceptance.

G. Temporary Grass

Temporary Grass will be paid for under Section 163.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 700</th>
<th>Description</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 700</td>
<td>Permanent grassing</td>
<td>Per acre (hectare)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Agricultural lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Liquid Lime</td>
<td>Per gallon (liter)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Fertilizer mixed grade</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Fertilizer nitrogen content</td>
<td>Per pound (kilogram)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Sod</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

700.5.01 Adjustments

General Provisions 101 through 150.
Delete Section 702 and substitute the following:

702.1 General Description
This Work includes furnishing and planting vines, shrubs, trees and plants, as well as treating regenerated areas according to the Specifications, Plans, and the Engineer.

702.1.01 Definitions
General Provisions 101 through 150.

702.1.02 Related References
A. Standard Specifications
 Section 108—Prosecution and Progress
 Section 700—Grassing
 Section 882—Lime
 Section 891—Fertilizers
 Section 893—Miscellaneous Planting Materials

B. Referenced Documents
 Standardized Plant Names

702.1.03 Submittals
A. Certificates of Inspection
 Submit certificates of inspection with the invoice for each shipment of plants as required by law for transportation.
 File certificates with the Engineer before the material is accepted. Plants may be rejected at the site regardless of Federal or State government inspections at the place of growth.

B. Substitutions
 When both primary and alternate plants are specified, use the alternate only after providing written proof that the primary plants specified are not available. In this case a Supplemental Agreement is not required to use the alternate plants.
 When a primary or an alternate plant cannot be furnished, provide the Engineer written proof that neither is available. A Supplemental Agreement is required for substitute plants in this case.

702.2 Materials
Ensure that materials meet the requirements of the following Specifications:
Section 702—Vine, Shrub, and Tree Planting

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>700.2.B</td>
</tr>
<tr>
<td>Agricultural Lime</td>
<td>882.2.01</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>891.2.01</td>
</tr>
<tr>
<td>Plant Topsoil</td>
<td>893.2.01</td>
</tr>
<tr>
<td>Landscape Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Vines, Shrubs, Trees, and Miscellaneous Plants</td>
<td>893.2.03</td>
</tr>
<tr>
<td>Tree Paint</td>
<td>893.2.06</td>
</tr>
<tr>
<td>Prepared Plant Topsoil</td>
<td>893.2.07</td>
</tr>
<tr>
<td>Stakes</td>
<td>893.2.08</td>
</tr>
<tr>
<td>Organic Soil Additives</td>
<td>893.2.09</td>
</tr>
</tbody>
</table>

A. Plant Specifications

Furnish plants according to the plant name and Specifications included on the Plans titled, “Plant Specifications.”

1. Plant Names
 Ensure that the botanical and common names of plants specified conform with the most current edition of Standardized Plant Names, as adopted by the American Joint Committee on Horticultural Nomenclature.

2. Grades
 Ensure that plants meet the grade requirements of the most current American Standard for Nursery Stock of the American Association of Nurserymen and any other requirements.
 Caliper used for establishing plant grades or trunk sizes is measured according to the American Standard for Nursery Stock. Plant trees with straight stems and symmetrical branches according to their natural growth. Trees with broken or damaged terminal or main stems will be rejected.

3. Substitutions
 Use approved substitute plants, as designated by the Engineer, equal in value to specified plants. Request substitutions at least 30 days before the end of the planting season in the area.

B. Nursery Plants

Unless otherwise specified, use plants stock-grown in a licensed nursery under intensive care and cultivation for at least one year. The branch system shall be normally developed and free of disease, injurious insects, disfiguring knots, sunscald, injuries, bark abrasions, dead or dry wood, broken terminal growth, or other disfigurements. Ensure that proper certificates of inspection and a complete list of the nursery growers accompany nursery grown plants. See Subsection 893.2.03.

C. Collected Plants

Collected plants grow in the wild and are uncultivated and untransplanted. Do not take collected plants from areas infested with insects under quarantine. See Subsection 893.2.03.

D. Approval and Selection of Materials and Work

Select materials and execute operations required under the Specifications and drawings with the approval of the Engineer. Remove rejected materials from the site promptly.

702.2.01 Delivery, Storage, and Handling

A. Bare-Rooted Plants

Tie bare-rooted plants in bundles and place moist sphagnum moss, shingletoe, or other moisture-retaining material around the roots to keep the plants moist for up to 10 days. Over-wrap the bundle with a heavy weight, waterproof, flexible material, covering the roots and one-half of the tops. Keep the plants wrapped until they are planted or heeled-in.
Wrapped plants may be held in the package for up to 10 days from shipment if protected from the sun and wind. If unable to plant plants within 10 days from shipment, unwrap, spread the roots, heel-in using moist soil, and water well.

Protect roots of plants that have been heeled-in from drying out. Cover soil and roots with wet canvas, burlap, or straw while transporting and distributing them for planting. The type of protection depends on weather conditions and the length of time the plants remain unplanted. Use protection methods satisfactory to the Engineer.

B. Balled and Burlapped Plants (B&B)

Ensure that the soil in the ball is the original and undisturbed soil in which the plant has grown.

1. Dig, burlap, transport, and handle the plant carefully to avoid loosening the soil (stripping or exposing the roots). Burlap shall be a natural biodegradable material. Do not use synthetic burlap.
2. Replace plants rejected because of broken or loose balls, or balls of less diameter than that specified.
3. Adequately protect the roots of balled and burlapped plants, unless they are planted immediately after they are delivered. Completely cover them with damp soil, sawdust, or other moist material until removing them for planting.
4. Keep plants moist while awaiting planting.
 a. Do not saturate the ball, causing it to pull off in handling.
 b. Handle B&B plants by the ball and not by the top growth.
 c. Never leave the balls of plants unprotected overnight.

C. Container-Grown Plants

Keep container-grown plants moist until planted. Handle them by the container or soil ball and not by the top growth.

D. Collected Plants

Do not collect plants more than 24 hours before planting.

1. Select plants with good shape and form. Do not select poorly shaped, weak plants taken from dense shade and crowded conditions.
2. Dig collected plants with a wide root system equal to at least the spread of the top of the plant.
3. Protect the roots with a moist packing material.
4. Load them onto a covered truck, protected from the sun and wind and transfer them directly to the final planting site.
5. Prune collected plants by removing from one-third to one-half of the side branches as directed by the Engineer.

E. Heeled-in Plants

Properly maintain heeled-in plants until they are planted. Do not allow plants to remain heeled-in over the summer or for over 30 days without the Engineer’s consent.

F. Injury Prevention

In digging, loading, unloading, planting, or otherwise handling plants, avoid injuring the trunk, branches, and roots of the plants. Injured plants will be rejected. Protect tops of shrubs and trees while in transit to prevent windburn.

702.3 Construction Requirements

702.3.01 Personnel
General Provisions 101 through 150.

702.3.02 Equipment
General Provisions 101 through 150.
702.3.03 Preparation

A. Inspect Plants Before Digging

The Engineer will inspect trees or plants from the bidder’s source for acceptability. When rejecting the trees or plants, the Engineer reserves the right to pursue and examine other sources of plants to find acceptable specimens. This change will not constitute an increase in cost to the State.

B. Clear and Grub

Clear and grub before planting or beginning to prepare the plant bed. See Section 201.

C. Prepare Plant Bed

Prepare for planting as follows:

1. Planting Limits
 Stake planting limits according to Plan details and the Engineer. Have the Engineer approve the method of plant identification before planting.

2. Applications of Soil Additives
 a. Apply fertilizer approximately 3 lbs/100 ft² (1.5 kg/10 m²) of bed surface. Fertilizer for plant bed may be 6-12-12 if 4-12-12 is not available.
 b. Apply agricultural lime for plant bed approximately 5 lbs/100 ft² (2.5 kg/10 m²) of bed surface.
 c. Spread an organic soil additive, (See Subsection 893.2.09), evenly throughout the designated area to at least 2 in (50 mm) deep. Thoroughly dig it into the soil to at least 6 in (150 mm) deep using a rotary hoe type tiller or other equipment that evenly mixes the soil, lime, fertilizer, and organic soil additive.
 d. Till the area until the surface is smooth and free of weeds, roots, rocks, and other debris, to the satisfaction of the Engineer.

702.3.04 Fabrication

General Provisions 101 through 150.

702.3.05 Construction

A. Seasonal Limitations for Planting

For geographic seasonal limitations, refer to the Planting Zones Map found in Subsection 700.3.05. Plant in Zones 1 and 2 between October 15 and March 15. Plant in Zones 3 and 4 between November 1 and March 1.

B. Planting Operations

Plant using either the pit method or the dibble method as called for on the Plant Specification sheet. Before beginning planting of each area, have available the necessary materials including prepared plant topsoil (see Subsection 893.2.07), water, stakes, and mulch.

When seasonal limitations and weather conditions permit, continuously water, mulch, guy, and stake, until completing the last operation.

After completing planting, provide a method for retaining water adjacent to the plant according to the details shown on the Plans or as directed by the Engineer.

1. Planting By the Pit Method
 a. Placing Bare-Rooted Plants
 Plant bare-rooted plants delivered to the pit area. Protect roots from drying out until placing them in the pit.
 • Center plants in pits and spread roots as they originally grew.
 • Cover and prepare the topsoil according to details shown on the Plans.
 b. Placing Balled and Burlapped Plants
 Immediately plant these plants after they are delivered to the pit site. Never allow the balls to remain unprotected overnight.
Section 702—Vine, Shrub, and Tree Planting

- The pit diameter shall be a minimum of 3 times the diameter of the rootball. Center the ball in the prepared pit, leaving the top of the ball 1 in (25 mm) above the top of the ground for settlement.
- Cut away and remove the top 1/3 of burlap from the rootball. Cut all ropes and twine, pull the nails, and drop the remaining burlap to the bottom of the hole. Cut away and remove any wire from the top 1/3 of the rootball.
- Partially fill the pit with prepared plant topsoil and compact the soil enough to hold the ball firmly.

c. Placing Container-Grown Plants
When the container is delivered to the pit site, split the container from top to bottom and carefully remove the plant.
- The pit diameter shall be a minimum of 3 times the diameter of the rootball. Spread into the hole any major roots growing around the container or prune them to remove any circular growth.
- Place the ball in the center of the prepared pit, leaving the top of the ball 1 in (25 mm) above the top of the ground for settlement.
- Partially fill the pit with prepared plant topsoil and compact the soil enough to hold the ball firmly.

d. Completing Pit Plantings
After placing pit plantings, water plants thoroughly the same day regardless of weather or soil moisture conditions.
- After the water has soaked in, add prepared plant topsoil and compact firmly up to 2 in (50 mm) below the adjacent ground.
- Stop compacting when the compacted prepared topsoil is 2 in (50 mm) below the adjacent ground.
- Fill the remainder of each pit with loose, prepared plant topsoil according to the details shown on the Plans.
- Prepare the loose topsoil to retain water adjacent to the plant according to the Plans or as directed by the Engineer.

2. Planting By the Dibble Method
If the Plans require the dibble method, perform the Work as outlined. Standard dibble blades are made in 10 in (250 mm) and 12 in (300 mm) heights. Use the 12 in (300 mm) blade on all plants except those with a root system of 8 in (200 mm) or less.

Locate plants as shown on the Plans or as approved by the Engineer. Only plant when there is adequate moisture in the ground and when the ground is not frozen.

Follow these steps when grass or other vegetation is present:

a. Mow an area at least 2 ft (600 mm) on all sides of the proposed location of the individual dibbled plants to a height of 1 in (25 mm).

b. Apply landscape mulch of the specified type and amount to the mowed area before planting.

c. Dibble the seedling into the soil.

d. Dibble the plant within 48 hours after mowing.

e. Complete each planting according to the Plan details to retain water adjacent to the plant.

C. Landscape Mulching

1. For Pit Plantings
Follow these requirements when mulching for pit plantings:

a. Where the distance between plants is 8 ft (2.4 m) or less, spread mulch throughout and 3 ft (900 mm) beyond the outermost plants. Where plants are more than 8 ft (2.4 m) apart, apply mulch in a circular fashion around each plant, forming a ring 5 ft (1.5 m) in the outside diameter.

If plant pits are greater than 5 ft (1.5 m) in diameter, ensure that the mulch extends out to cover the berm as shown in the planting details on the Plans.

b. Apply mulch within 3 days of planting at least 4 in (100 mm) in depth to obtain a compacted depth of at least 3 in (75 mm).
Section 702—Vine, Shrub, and Tree Planting

Compaction occurs naturally. Check compaction at least two months after spreading and exposing the mulch to the elements.

If the compacted depth is less than 3 in (75 mm), apply additional mulch to deficient areas within 1 month following notification.

c. Apply mulch to a uniform depth and remove lumps for a neat appearance. Tuck mulch neatly against all paving edges, drainage structures, and where planting beds meet grassed areas.

d. Leave a 1 in (25 mm) to 2 in (50 mm) ring of non-mulched area directly around all tree trunks.

e. Do not mulch with Cypress Mulch.

2. For Plantings by the Dibble Method

Apply landscape mulch according to Subsection 702.3.05.C.1 with the following exceptions:

a. Apply mulch before planting.

b. Ensure that the minimum compacted height after 2 months exposure is 2 in (50 mm).

D. Wrapping

Do not wrap the trucks of tree unless specified in the plans. When wrapping is specified, tightly wrap the trunks of deciduous trees over 1.25 in (32 mm) in caliper. Wrap in strip burlap or waterproof crepe tree wrapping paper or other approved materials.

1. Begin wrapping at the ground and extend spirally up and beyond the first rosette of branches with an overlap of one half the width of the wrapping material.

2. Tie the wrapping material securely with binder twine spaced every 12 in (300 mm) for the full length of the wrapping. Wrap immediately after planting.

E. Staking and Guying

1. Perimeter Staking

Place perimeter stakes 2 in x 2 in x 36 in (50 mm x 50 mm x 900 mm). Stake the perimeter of indicated regenerated areas within specified planting dates according to the Plans or as directed by the Engineer.

2. Vine, Shrub, and Miscellaneous Plant Staking

Use stakes to identify isolated vines, shrubs, and miscellaneous plants outside of solid mulched beds according to Plan details.

3. Tree Staking and Guying

Stake trees with an identification stake and guy according to the details and dimensions shown on the Plans. Each guy wire shall consist of 18-gauge (1.2 mm) malleable galvanized iron wires twisted into a single strand and enclosed loosely into a rubber hose (or other approved covering or guying materials) extending around the trunk. Replace at no additional expense to the Department, any staking and guying materials that break or loosen.

Nylon guying straps of accepted size and quality may be substituted for the hose and wire specified above.

a. After fastening the wire to the stake by tying or twisting it into a figure-8, nail or staple the wire to the stake to prevent slippage using a 4d nail or a 0.5 in (13 mm) staple.

b. Tighten the wire so that twisting the wire causes a slight strain between the tree and the stake.

c. Place guy wires above the first rosette of lower branches and fasten wire to the stake approximately 6 in (150 mm) above the ground.

F. Pruning

1. Prune plants on the site before planting and after initial inspection by the Engineer. Never prune severely to get plants to meet Specifications.

a. Follow modern horticultural practices and use approved tools designed for pruning.

Lopping, topping, or shearing trees or shrubs will result in rejection.

b. Prune back damaged, scarred, frayed, split, and skinned branches, limbs, and roots to live wood nearest to the next sound, outside lateral bud, branch, limb, or root.

c. Leave the terminal leaders or buds in trees intact.
Section 702—Vine, Shrub, and Tree Planting

d. Remove approximately one-third of the smaller branches on nursery grown vines, shrubs, and trees for root-top balance.
e. Prune roots, when necessary, as directed by the Engineer.
f. Prune Crape Myrtles to maintain natural form only. Severely cutting back crape myrtles is not permitted. Remove sucker growth from Crape Myrtles.

G. Watering

1. Apply water in a manner to prevent erosion. Water plants at the time of planting. Water after applying fertilizer called for in Subsection 702.3.05.H and as necessary to maintain enough moisture to promote plant growth.
 a. Apply enough water to wet the soil to a depth slightly below the roots. Direct the water to the ground around the plant, not the tops.
 b. Do not allow plant foliage to dry out or plants to defoliate from lack of water. Remove plants in such condition from the site immediately.
 c. Apply water once per week throughout the planting season in which the plants are installed. Follow Subsection 702.3.07.B and 702.3.07.C for shrub and tree watering requirements throughout the life of the project.

H. Spring Application of Fertilizer

1. Method and Rate of Application
 Follow these requirements when applying fertilizer in the spring:
 a. Trees
 Deep-root feed trees each spring by using a 8-12-12 slow release fertilizer. Bore a 1.5 in (38 mm) diameter hole between 18 in to 24 in (450 mm to 600 mm) deep at the rate of 8 to 10 holes per tree.
 Use 1 cup (0.25 L) of fertilizer per 1 in (25 mm) in caliper of tree measured 6 in (150 mm) off the ground. Fill the holes with soil upon completing each hole.
 b. Shrubs
 Fertilize shrubs with a 6-12-12 slow release 60 percent organic fertilizer by spreading fertilizer around the base of the plant and working it into the soil by hand. Use 0.5 cup (0.12 L) of fertilizer per foot (300 mm) of shrub height.
 c. Bed Areas
 Spread fertilizer on bed areas (defined by method of planting in Subsection 702.3.05.B), over the mulch at the rate of 3 lbs/100 ft² (1.5 kg/10 m²) using 6-12-12 or 8-12-12. Thoroughly water in the plants.
 d. Vines
 Fertilize vines when not planted in a bed at the rate of 1/4 cup (60 ml) per vine using 6-12-12 or 8-12-12. Thoroughly water in the plants.
 e. Regenerated Areas
 Spread fertilizer on regenerated areas evenly at a rate of 3 lbs/100 ft² (1.5 kg/10 m²) and thoroughly water in using 6-12-12.

 NOTE: 2 cups (1 L) of 6-12-12 or 8-12-12 equals 1 lb (1 kg).

2. Time of Application
 Apply fertilizer in the spring in Zones 1 and 2 (with reference to the Planting Zones specified in Subsection 702.3.05.A) between April 1 and April 15. Apply between March 15 and April 1 for Zones 3 and 4. For late plantings, do not apply fertilizer less than 30 days after the plantings.

3. Additional Fertilizer Grades 8-12-12 or 6-12-12
 Approximately one month after the spring fertilizer is applied, the Engineer will inspect planted areas and determine if an additional application of fertilizer is needed for any plant or group of plants.
 If the Engineer determines additional fertilizer is required, apply fertilizer at the rate specified in Subsection 702.3.05.H. Make the additional application between June 15 and July 15th.
I. Treatment of Regenerated Areas

Treating regenerated areas includes staking the perimeter and applying fertilizer in the spring.

Pruning, mulching, staking (except perimeter staking), guying, mowing, weeding, and watering (except watering following fertilization) are not required.

Perform perimeter staking as specified in Subsection 702.3.03.C.i. Apply fertilizer in the spring as specified in Subsection 702.3.03.C.ii.

J. Restoration and Cleanup

Restore areas where existing grass has been damaged or scarred during planting operations at no expense to the Department. Restore the disturbed areas to their original conditions as directed by the Engineer. Clean up debris, spoil piles, and containers and leave the Project area clean.

702.3.06 Quality Acceptance

Preserve the plants in a healthy growing condition. The acceptability of the plant material planted and maintained as specified will be determined at the end of an establishment period.

The plant establishment period is the period from the last planting specified in Subsection 702.3.05.B until the following October 1. Plant all plants in one planting season unless otherwise approved by Engineer.

A. First Establishment Period

At the end of the first planting season, the first establishment period begins. The Department will make the first semi-final inspection 30 days before the end of the first establishment period. Replace dead, dying, diseased, unsatisfactory, and missing plants by January 20 of the next (second) planting season.

B. Second Establishment Period

At the end of the second planting season, the second plant establishment period begins. The Department will make the second semi-final inspection 30 days before the end of the second establishment period. Again, replace dead, dying, diseased, unsatisfactory, and missing plants, by January 20 of the next (third) planting season.

C. Final Inspection

The Department will make the final inspection of the plants during May, following any needed replacements during the previous planting season. Assume responsibility for the plants until the Final Acceptance of the Project or a portion of the Project.

702.3.07 Contractor Warranty and Maintenance

Project maintenance includes, but is not limited to, watering, cultivating, weeding, pruning, repairing, adjusting guys and stakes, and performing other work as ordered by the Engineer until final acceptance.

Promptly remove from the Project area dead plants or those that no longer conform to the requirements of Subsection 702.2.A.2.

Mow the entire right-of-way within the limits of the Project up to a maximum of four times per calendar year.

A. Leaning Trees

Straighten leaning trees as directed by the Engineer. Follow Staking and Guying requirements for replacements or repairs as per Subsection 702.3.05.E.

B. Shrub Maintenance

1. Pruning

 Prune or thin shrubs, as directed by the Engineer, at least two times per year, once before spring and once during mid-summer. Maintain an attractive shape and fullness with respect to the intended character of the planting. See Subsection 702.3.05.F.

2. Landscape Mulching

 Continuously maintain shrub and tree beds with a clean, freshly mulched appearance using the mulch originally specified. See Subsection 702.3.05.C.
Section 702—Vine, Shrub, and Tree Planting

a. Apply a 2 in (50 mm) loose layer of specified mulch (top-dressing) on top of all areas, including tree pits, initially mulched, at the following times:
 - In August, during the first plant establishment period.
 - In April, during the second plant establishment period.
 - In August, during the second plant establishment period.
 - In April, prior to the final inspection.

3. Applying Fertilizer
 See Subsection 702.3.05.H.

4. Applying Pesticides
 a. Inspect all planted or seeded vegetation for insects, grubs, mites, diseases, etc., once every two weeks. Apply insecticides, fungicides, and herbicides according to the manufacturer’s recommendations to effectively control or eradicate the problem.
 b. Perform all pesticide applications under the direct supervision of a trained licensed pesticide operator. Carry the pesticide license/certification on the work site during applications. Carry all labeling associated with the chemical being applied at the work site.
 c. Submit all product information data sheets and EPA approval numbers on all pesticides proposed to be used prior to application for approval.
 d. Notify the Engineer a minimum of 48 hours prior to any and all pesticide applications.
 e. Add a blue dye to all spray applications unless approved otherwise by the Engineer.
 f. Monitor the weather and spray under proper weather conditions. Spraying shall not occur when the weather is greater than 10 miles per hour.
 g. Wear the proper safety attire. Wear long sleeve shirts, long pants, gloves, and safety glasses. Wear or use any additional protective safety attire or gear as recommended by the product’s manufacturer.
 h. Repair any damage that is a result of mishandling or misuse of materials, at no expense to the Department, to the satisfaction of the Engineer.

5. Edging
 a. Edge all shrub pits, shrub beds, and tree pits twice a month throughout the life of the project such that the vee-cut edging detail specified on the plans is maintained. Prevent grass and weeds from growing over or into the shrub beds and tree pits.
 b. Use equipment specifically designed for edging. Line trimming equipment shall not be used.

6. Watering
 a. Check all planted material once a week throughout the contract for dryness by removing the mulch from their base and “sampling the soil” approximately 4 in (100mm) deep. Water if the soil is not moist.
 b. Water all planted material if a drought (no rain for two weeks) occurs. Provide the water required to meet the watering requirements.
 c. Water each plant thoroughly until the ground is saturated to a depth slightly below the root ball. Apply water in a manner to prevent erosion.

7. Weed Control
 Perform weed control throughout the project, a minimum of once every two weeks, in all areas within the project limits to maintain tree pits, shrub beds, sidewalks, curb and gutter, walkways, ditch paving, concrete medians, and other pavement weed free. Meet the following conditions:
 a. Perform weed control to prevent weeds from becoming established, setting seed, or from becoming visible in the planting beds.
 b. Completely remove all undesirable plants (weeds) by hand pulling. Removal of weeds may be accomplished using herbicides if approved by the Engineer.
 c. Apply an approved pre-emergent herbicide twice each year, once in the spring and once in the fall, throughout the contract. Apply pre-emergent to all shrub beds and tree pits. Notify the Engineer 48 hours prior to spraying. Use a blue dye in all applications unless approved otherwise by the Engineer.
d. If noted on plans, eradicate all invasive exotic pest plants found within the project limits throughout the life of the project.

e. Dispose off site on a daily basis all weed, exotic plants, clippings, litter, and debris generated.

8. Policing

Remove debris such as paper, broken limbs, bottles, cans, etc., a minimum of the first and third week of each month from all areas within the project limits while maintaining the site.

C. Tree Maintenance

1. Watering

See Subsection 702.3.07.B.6

2. Landscape Mulch

See Subsection 702.3.07.B.2

3. Fertilizer

See Subsection 702.3.05.H.

4. Abnormal Conditions

Periodically (once every two weeks) observe trees and shrubs for abnormal conditions such as insects, borers, web worms, red spiders, etc., and immediately treat.

5. Sucker Growth

Remove sucker growth once a month. Sucker growth is the shoots that sprout out around the base of the tree trunk.

6. Pruning and Deadwood

Remove deadwood at least two times a year. Prune dead branches. Paint cuts, and wounds or scars with tree paint only when specified in the plans. Do not top Crape Mrytles. See Subsection 702.3.05.F.

7. Pesticide Control

Apply pesticides as necessary to control bores, aphids, mealy bugs, mites, and tent worms, and diseases. Follow the manufacturer’s instructions. See Subsection 702.3.07.B.4. NOTE: Use chemicals according to Federal, State and county directives on environmental control that carry an EPA approval number.

8. Weed Control

See Subsection 702.3.07.B

9. Staking and Guying

Remove all guy wires/nylon strapping and stakes from plants which have gone through one complete growing season.

702.4 Measurement

A. Plants

Plants of the name and size specified are measured for payment according to the number planted that are still living and in an acceptable condition at the time of Final Acceptance.

B. Fertilizer

Spring application fertilizer applied to planted and regenerated areas will be the actual number of pounds (kilograms) placed and accepted. Fertilizer, lime, and plant topsoil used in prepared plant topsoil or plant bed preparation are not measured for separate payment.

C. Perimeter Stakes

Perimeter stakes is not measured for payment unless such item is shown as a separate Pay Item in the Proposal.

D. Clearing and Grubbing

Clearing and grubbing is not measured for payment unless the Item is shown as a separate Pay Item in the Proposal.
Section 702—Vine, Shrub, and Tree Planting

E. Landscape Mulch

The quantity of landscape mulch and top-dressing measured for payment will be the actual number of square yards (meters) completed as specified and accepted. The presence of weeds or other growth, or foreign material, will be cause for rejection. The addition of landscape mulch in deficient areas will not be measured for payment.

702.4.01 Limits

General Provisions 101 through 150.

702.5 Payment

A. Plants

Plants measured for payment will be paid for as follows:

1. After planting satisfactorily, the Department will pay 50 percent of the Contract Unit Price bid per each on the next estimate.
2. Until Final Acceptance, perform all required maintenance according to Subsection 702.3.07 when necessary or as ordered by the Engineer.

 If the Contractor fails to properly maintain the landscaping, the Department will assess liquidated damages according to the schedule of deductions shown in Subsection 108.08, but not less than $150 per calendar day, and will continue until project maintenance is approved by the Engineer.

 The liquidated damages are in addition to those specified for delay or failure in completing the Work within the specified time.
3. After the first semi-final inspection, the Department will pay 15 percent of the Contract Unit Price bid per each of the live, viable plants.
4. After the second semi-final inspection, the Department will pay 15 percent of the Contract Unit Price bid per each of the live, viable plants.
5. At Final Acceptance, the Department will pay the remaining 20 percent less the Full Contract Unit Price bid per each plant not accepted.

 Payments are full compensation for furnishing, planting, replanting as required, pruning, staking, guying, soil conditioning, and preparing plant beds, including applying additives, digging plant pits, preparing plant topsoil and mulch, disposing of waste material, and maintaining the plants during the plant-establishment period.

B. Fertilizer

All grades of fertilizer applied in the spring, measured as specified above, are paid for at the Contract Price per pound (kilogram) or per ton (megagram), whichever is indicated in the Proposal. Payment is full compensation for furnishing and applying and for watering regenerated areas.

C. Perimeter Stakes

Perimeter stakes will not be measured for payment. The cost will be included in the overall contract price.

D. Landscape Mulch

Landscape mulch measured for payment will be paid for as follows:

1. After mulching satisfactorily, the Department will pay 40% of the Contract Unit Price bid per square yard (meter).
2. After satisfactorily completing mulch (topdressing) in August of the first plant establishment period, the Department will pay 15% of the Contract Unit Price bid per square yard (meter).
3. After satisfactorily completing mulch (topdressing) in April of the second plant establishment period, the Department will pay 15% of the Contract Unit Price bid per square yard (meter).
4. After satisfactorily completing mulch (topdressing) in August of the second plant establishment period, the Department will pay 15% of the Contract Unit Price bid per square yard (meter).
5. After satisfactorily completing mulch (topdressing) in April of the final planting season, (a month before the Final Inspection), the Department will pay 15% of the Contract Unit Price bid per square yard (meter). Such payment shall be full compensation for furnishing, installing, topdressing, and maintaining mulch as required.
Section 702—Vine, Shrub, and Tree Planting

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 702</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>702.5.01 Adjustments</td>
<td>General Provisions 101 through 150.</td>
<td></td>
</tr>
</tbody>
</table>

OFFICE OF MAINTENANCE
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SPECIAL PROVISION

Section 814—Soil Base Materials

Delete 814.2.02 and substitute the following:

814.2.02 Soil-Cement Material

A. Requirements

1. Ensure that the material for soil-cement base will:
 a. Meet the requirements of Subsection 810.2.01 for Classes IA1, IA2, IA3, or IIB1 with the following modifications:

<table>
<thead>
<tr>
<th>Clay content</th>
<th>5 to 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume change</td>
<td>18% maximum</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>25% maximum</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>10% maximum</td>
</tr>
<tr>
<td>Maximum dry density</td>
<td>95 lb/ft³ (1520 kg/m³) minimum</td>
</tr>
<tr>
<td>Sulfates</td>
<td>4000 ppm maximum</td>
</tr>
<tr>
<td>pH</td>
<td>4.0 minimum</td>
</tr>
</tbody>
</table>

 b. Be friable and not contain large amounts of heavy or plastic clay lumps, organic material, roots, or other substances that would interfere with how the Portland cement sets, plant production, or the finished surface of the base and meet the requirements of Subsection 301.3.05.A.2, “Pulverization” or Subsection 301.3.05.B.1, “Soil”.
 c. Produce a laboratory unconfined compressive strength of at least 450 psi (3.1 MPa). To make the sample, mix in a minimum of 5 percent to a maximum of 9 percent Type I Portland cement, moist-cure for 7 days, and test with GDT 65.

2. Analyze the soil-cement design and create a Job Mix Formula for each Project where soil-cement base or subbase is specified. Have the Job Mix Formula approved by the Engineer before starting base or subbase construction.

3. You may use fly ash or slag that meets the requirements of Subsection 831.2.03 as admixtures for poorly reacting soils when the blend of soil and fly ash, or slag, meets the design requirements in this Subsection.

4. Ensure that subgrade material used underneath the soil-cement base meets the sulfate and pH requirements of this subsection (See Subsection 209.3.05.A.7).

B. Fabrication

 General Provisions 101 through 150.

C. Acceptance

 Test as follows:
### Test	Method
Soil gradation | GDT 4
Volume Change | GDT 6
Maximum density | GDT 7 or GDT 67
Soil-Cement Design | GDT 65
pH | GDT 98
Sulfates | ASTM D 516
Liquid Limit | AASHTO T 89
Plastic Limit and Plasticity Index | AASHTO T 90

D. Materials Warranty

General Provisions 101 through 150.

Office of Materials and Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

Special Provision

Section 815—Graded Aggregate

DELETE Subsection 815.2.03 and substitute the following:

815.2.03 Recycled Concrete Base

A. Requirements

1. Sources
 Use recycled concrete materials from sources approved by the Office of Materials and Research and listed on Qualified Products List 2. The criteria for approval will be as outlined in Standard Operating Procedure No. 1, “Monitoring the Quality of Coarse and Fine Aggregates” except that the raw material will be recyclable concrete as specified herein rather than a geological deposit of aggregate.

2. Type
 a. Recycled Concrete Base From Known Sources
 Use recycled concrete derived exclusively from Portland cement concrete pavement or structural concrete as a base, subbase, or shoulder course.
 Contaminants -
 Ensure that the recycled concrete is free of foreign material such as wood, steel reinforcement, clay balls, soils, epoxy expansion material, delivery unit washout material, miscellaneous paving materials, and non-construction materials.
 b. Recycled Concrete Base From Unknown Sources
 Use recycled concrete derived from sources of demolition materials that comply with the following requirements as a base, subbase or shoulder course. Due to the condition and type of raw material used to produce this base and the resulting difficulty in producing a consistent product, refer to SOP-1 for environmental requirements and preferred production procedures.
 Ensure that the finished product does not exceed the regulatory limit for asbestos of 1% (based on microscopy) and the regulatory limit for lead of 5 ppm. These determinations must be made prior to shipping.
 Ensure that the California Bearing Ratio (CBR) of the finished product is not less than 140.
 Contaminants –
 Ensure that the recycled concrete is substantially free of foreign materials such as steel reinforcement, wood, clay balls, soils, epoxy expansion material and non-construction materials.

 Note - Substantially free, in the context of this specification, shall mean concentrations of the above mentioned foreign materials individually shall not exceed 0.1 percent by weight, nor shall the total concentration of these materials exceed 0.5 percent by weight.
 Keep the following ancillary materials within these limits:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick</td>
<td>3</td>
</tr>
<tr>
<td>Asphaltic Concrete</td>
<td>7</td>
</tr>
<tr>
<td>Weathered Rock</td>
<td>2</td>
</tr>
</tbody>
</table>
3. Gradation
 Ensure that the finished product meets the quality and gradation requirements of Subsection 815.2.01 for Group II aggregates, except that the material finer than a #200 (75 µm) sieve shall be 2 – 11%.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Material that passes a #200 (75µm) sieve</td>
<td>AASHTO T 11</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>GDT 63</td>
</tr>
<tr>
<td>California Bearing Ratio (CBR)</td>
<td>AASHTO T 193</td>
</tr>
<tr>
<td>Petrographic Analysis</td>
<td>ASTM C 295</td>
</tr>
<tr>
<td>Total Lead</td>
<td>EPA Method 3010/6010</td>
</tr>
<tr>
<td>Toxicity Characteristic Leaching Procedure</td>
<td>EPA Method 1311</td>
</tr>
<tr>
<td>Asbestos</td>
<td>EPA Polarized Light Microscopy Method</td>
</tr>
<tr>
<td></td>
<td>Or EPA Transmission Electron Microscopy Method</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Office of Materials and Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SPECIAL PROVISION

Section 820—Asphalt Cement

Delete Section 820 and substitute the following:

820.1 General Description
This section includes the requirements for asphalt cements prepared from crude petroleum.

820.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 Standard Operating Procedure (SOP 4)
 AASHTO R 28
 AASHTO T 48
 AASHTO T 179
 AASHTO T 240
 AASHTO T 313
 AASHTO T 314
 AASHTO T 315
 AASHTO T 316
 AASHTO TP70 (proposed) / ASTM D7405

820.2 Materials
820.2.01 Asphalt Cement
A. Requirements
 1. Type
 Use a material homogenous and water-free and will not foam when heated to 347 °F (175 °C).
 Ensure that a blend used to produce a specified performance grade meets the following requirements:
 • Is uniform and homogeneous without separation
 • Uses PG 64-22 or PG 67-22 described below for the base asphalt
 • Consists of production materials not being “air-blown or acid modified” to achieve the performance grade
 2. Grade
 Use the various grades of asphalt cement meeting the requirements shown in the test requirements for Petroleum Asphalt Cements
 Add only Styrene-Butadiene-Styrene (SBS) or Styrene-Butadiene (SB) to neat asphalt to produce a binder meeting requirements for PG 76-22.
For non Stone Matrix Asphalt Mixtures (SMA) and porous (PEM or OGFC) mixes, SBR or Crumb rubber modified PG 76-22 is an acceptable alternative to SBS or SB modified asphalt cement at contractor’s discretion, provided the SBR or crumb rubber modified asphalt cement meets the tests’ requirements of PG 76-22. For SBR modified PG 67-22 to meet PG 76-22, use only SBR currently approved on QPL-65 “Georgia’s List of Approved Latex Suppliers”. For crumb rubber modified PG 67-22 to meet PG 76-22, use 30 mesh size ambient or cryogenic ground tire rubber at minimum 10% of weight of total asphalt cement content. Percentage of ambient or cryogenic ground tire rubber is neat asphalt source dependent to meet specification requirements for PG76-22. Ensure Trans-Polyoctenamer be added at 4.5% of the weight of the crumb rubber to achieve better particle distribution. The maximum Phase Angle requirement is not applicable to the crumb rubber modified PG 76-22 (see notes f and g).

Test Requirements for Petroleum Asphalt Cements

<table>
<thead>
<tr>
<th>Test And Method</th>
<th>Test Temperature</th>
<th>Original Binder</th>
<th>Residue Of Binder After:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Point, Min., AASHTO T 48</td>
<td></td>
<td></td>
<td>Rolling Thin Film Oven, AASHTO: T 240</td>
</tr>
<tr>
<td>Viscosity, Max., AASHTO T 316, (Note a)</td>
<td>275 °F (135 °C)</td>
<td></td>
<td>Pressure Aging AASHTO: R 28</td>
</tr>
<tr>
<td>Mass Loss (%), Max., AASHTO T 240, (Note b)</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Dynamic Shear, G*sin δ, AASHTO T 315, 10 Rad/Sec</td>
<td>136 °F (58 °C), 147 °F (64 °C), 153 °F (67 °C), 169 °F (76 °C)</td>
<td>≥ 1.0 kPa</td>
<td>≥ 2.2 kPa</td>
</tr>
<tr>
<td>Dissipated Energy, Dynamic Shear, G*sin δ, AASHTO T 315, 10 Rad/Sec</td>
<td>72 °F (22 °C), 77 °F (25 °C), 80 °F (26.5 °C), 88 °F (31 °C)</td>
<td></td>
<td>≤ 5000 kPa</td>
</tr>
<tr>
<td>Creep Stiffness, 60 sec., AASHTO T 313, (Note c)</td>
<td>10 °F (- 12 °C)</td>
<td></td>
<td>S ≤ 300 000 kPa m > 0.300 Report</td>
</tr>
<tr>
<td>Direct Tension, 1.0 mm/min., AASHTO T314, Failure Strain</td>
<td>10 °F (- 12 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Stress Creep & Recovery (MSCR) test, ASTM D7405, AASHTO TP70 (proposed), Jør 3.2 kPa, (Note f)(Note g)</td>
<td>64 °C</td>
<td></td>
<td>≤ 1.0</td>
</tr>
</tbody>
</table>

Notes:

a. The Department may waive this requirement if the supplier warrants the asphalt binder can be adequately pumped and mixed at temperatures meeting all applicable safety standards.

b. Heat loss by AASHTO: T 179 may be accepted in lieu of mass loss by AASHTO: T 240.

c. If the creep stiffness is below 300 000 kPa, the direct tension test is not required. If the creep stiffness is ≥300 000 kPa, report the Direct Tension Failure Strain value. Satisfy the m-value requirement in either case.

d. The maximum Phase Angle measured by DSR shall be ≤ 75 degrees.

e. The maximum Mass Loss shall be ≤ 1%, when used in conjunction with Bituminous Surface Treatment (Section 424).

f. MSCR requirement is applicable to the SBR, Crumb Rubber & TOR combination modified PG PG76-22 asphalt cement. Additionally, they shall meet all PG 76-22 requirements except for phase angle.

g. Percent recovery at 3.2 kPa shall be ≥ 35%.

Thoroughly blend the composite materials at the supply facility prior to being loaded into the transport.
vehicle if modification is required. Ensure all blending procedures, formulation, and operations are approved by the Office of Materials and Research.

3. Certification:

Provide certified test results from an approved, certified laboratory of blends for proposed PG asphalt for each specification characteristic of the asphalt cement proposed for shipment. Provide the certified results to the State Materials and Research Engineer as required in Standard Operating Procedure (SOP 4). The State Materials and Research Engineer may interrupt production until test results are known in the event there is reason to suspect a sample will be outside specification limits.

B. Materials Warranty

General Provisions 101 through 150.
Delete Subsection 824.1.01.B and substitute the following:

B. Referenced Documents

- AASHTO T 49
- AASHTO T 51
- AASHTO T 53
- AASHTO T 59
- AASHTO T 72
- AASHTO T 301
- AASHTO T 302
- ASTM D 5546 - 01
- QPL 65
- GDT 44
- GDT 91
- GDT 135

Add the following:

824.2.02 Latex-Modified Cationic Asphalt Emulsion

A. Requirements

1. Latex Rubber Additive (LRA)
 a. Ensure the LRA is a natural latex or an unvulcanized styrene-butadine rubber in an emulsified latex form.
 b. Ensure that the LRA comes from an approved source listed in the Department’s current QPL 65 for use in cationic asphalt emulsion.

2. Latex-Modified Cationic Asphalt Emulsion
 a. Use PG58-22 as the base asphalt.
 b. Add the LRA in the necessary proportions to result in a minimum of 3% polymer by weight of the asphalt residue.
 c. Co-mill the LRA and asphalt cement while manufacturing the emulsified asphalt to produce a homogeneous mixture.
 d. Ensure the latex-modified cationic asphalt emulsion, when undisturbed for 24 hours, shows no separation of emulsion and LRA and no color striations, but has a uniform color throughout.
 e. Use a latex-modified cationic asphalt emulsion that meets the requirements in Table 2.
Table 2 – Requirements for Latex-Modified Cationic Asphalt Emulsion

<table>
<thead>
<tr>
<th>Tests on Emulsion</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests on Emulsion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity, Saybolt Furol @ 122 °F (50 °C), sec.</td>
<td></td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Storage stability, 24 hours, percent</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Settlement, 5 days, percent</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Demulsibility, 35 ml, 0.8% dioctyl sodium sulfosuccinate, percent</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Particle charge test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve test, percent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue by distillation, percent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tests on Emulsion Residue</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests on Emulsion Residue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration @ 77 °F (25 °C), 100g, 5 sec., (dmm)</td>
<td></td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Ductility, @ 77 °F (25 °C), 5 cm/min., (cm)</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Elastic recovery @ 50°F (10 °C), percent</td>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Ring & ball softening point, °F</td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Solubility in toluene by centrifuge, percent</td>
<td></td>
<td>97.5</td>
<td></td>
</tr>
<tr>
<td>Polymer solids content, percent</td>
<td></td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

1. AASHTO T-59 modified to include a maximum temperature of 400°F ± 10°F (204°C ± 5°C) to be held for a period of 15 minutes.
2. GDT-135, Residue by evaporation.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration of bituminous materials</td>
<td>AASHTO T 49</td>
</tr>
<tr>
<td>Ductility</td>
<td>AASHTO T 51</td>
</tr>
<tr>
<td>Softening point of bitumen</td>
<td>AASHTO T 53</td>
</tr>
<tr>
<td>Testing emulsified asphalts</td>
<td>AASHTO T 59</td>
</tr>
<tr>
<td>Viscosity</td>
<td>AASHTO T 72</td>
</tr>
<tr>
<td>Elastic recovery</td>
<td>AASHTO T 301</td>
</tr>
<tr>
<td>Polymer content of polymer-modified emulsions</td>
<td>AASHTO T 302</td>
</tr>
<tr>
<td>Solubility of asphalt binders in toluene by centrifuge</td>
<td>ASTM D 5546 – 01</td>
</tr>
<tr>
<td>Residue by evaporation of latex-modified asphalt emulsions</td>
<td>GDT-135</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

Office of Materials and Research
Delete Subsection 831.2.01.A and substitute the following:

831.2.01 Air-Entraining Admixtures
A. Requirements
1. Use air-entraining admixtures listed in QPL 13.
2. Use air-entraining admixture materials meeting AASHTO M 154, Performance and Uniformity requirements.
3. Test compression and flexure strengths at 7 and 28 days.
4. Use air-entraining admixtures evaluated by the National Transportation Product Evaluation Program (NTPEP) test facility or other approved test facility.

Delete Subsection 831.2.02.A and substitute the following:

831.2.02 Chemical Admixtures for Concrete
A. Requirements
1. Use chemical admixtures listed in QPL 14.
2. Use chemical admixture materials meeting AASHTO M 194 Physical requirements and Uniformity and Equivalence requirements for Types A, B, C, D, E, F, or G, unless otherwise specified.
 a. Waive the length change requirements.
 b. Ensure that the admixtures contain no more than 0.8 percent chloride, calculated as calcium chloride.
 c. Ensure that the air content does not exceed 4 percent when prepared in a standard batch without an added air-entraining agent.
3. Use chemical admixtures evaluated by the National Transportation Product Evaluation Program (NTPEP) test facility or other approved test facility.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SUPPLEMENTAL SPECIFICATION

Section 832—Curing Agents

Delete Subsection 832.2.01.A and substitute the following:

832.2.01 Burlap or Cotton Fabric

A. Requirements

1. Use burlap or cotton fabric meeting these requirements:
 - Burlap that is 10 to 18 oz./yd² (340 to 610 g/m²) or two layers of 6 or 7 oz/yd² (200 or 235 g/m²)
 - Cotton fabric that is white, loosely woven, and not less than 7 oz/yd² (235 g/m²)
 - Strips of burlap or cotton fabric that are between 3 and 6 ft (0.9 and 1.8 m) wide and 3 ft (1 m) longer than the width of the slab to be covered

2. Use burlap and cotton fabrics that do not contain starch or other material that could stain the concrete. If the fabric is new, soak and dry it before use.

Delete Subsection 832.2.03.A and substitute the following:

832.2.03 Membrane Curing Compound

A. Requirements

1. Use membrane curing compounds listed in QPL 16

2. Use liquid membrane-forming compounds meeting AASHTO M 148 requirements.

3. Use membrane curing compounds evaluated by the National Transportation Product Evaluation Program (NTPEP) test facility or other approved test facility.

Office of Materials and Research
Delete Subsection 833.2.06 and substitute the following:

A. Requirements

1. Silicone

Furnish silicone sealant in a one-part or two part silicone formulation. Use sealant that is compatible with the surface to which it is applied. Do not use acid-cure sealants on Portland cement concrete.

a. Use silicone that meets the physical requirements in Table 1. For a list of silicone joint sealant sources, please see QPL 66. Identify silicones as the following types:

1) Type A—A one part, low modulus, non-sag silicone. Used to seal horizontal and vertical joints in Portland cement concrete pavements and bridges. Tooling is required.

2) Type B—A one part, very low modulus, self-leveling silicone. Used to seal horizontal joints in Portland cement concrete pavements and bridges. Tooling is not normally required.

3) Type C—A one part, ultra-low modulus, self-leveling silicone. Used to seal horizontal joints in Portland cement concrete pavements and bridges and joints between Portland cement concrete pavement and asphaltic concrete shoulders. Tooling is not normally required.

4) Type D—A two part, ultra low modulus, self-leveling, rapid cure silicone. Used to seal horizontal joints in Portland cement concrete pavements and bridges and joints between Portland cement concrete pavement and asphaltic concrete shoulders. Tooling is not required.

b. Use silicone sealant evaluated by the National Transportation Product Evaluation Program (NTPEP).

c. Use sealant that is compatible with the surface to which it is applied. Do not use acid-cure sealants on Portland cement concrete.

d. Use silicone that meets the following physical requirements:

<table>
<thead>
<tr>
<th>Table 1—Physical Requirements for Silicone Sealants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Silicone</td>
</tr>
<tr>
<td>Tensile Stress at 150% Strain, Max. psi (kPa) (Note 1)</td>
</tr>
<tr>
<td>Durometer Hardness, Score [0 °F and 77 °F ± 3 °F (-18 °C and 25 °C ± 2 °C)] (Note 1)</td>
</tr>
<tr>
<td>Bond to Concrete Mortar, Min. psi (kPa) (Note 1) (Note 3)</td>
</tr>
<tr>
<td>Tack Free Time (Skin-over) (Max. Minutes) (Note 2)</td>
</tr>
<tr>
<td>Extrusion Rate (Min. Grams/Minute) (Note 4)</td>
</tr>
<tr>
<td>Non-volatile (Min. %)</td>
</tr>
<tr>
<td>Specific Gravity</td>
</tr>
<tr>
<td>Shelf Life (from date of shipment)</td>
</tr>
<tr>
<td>Movement Capability & Adhesion (Note 1)</td>
</tr>
</tbody>
</table>
Section 833-Joint Fillers and Sealers

<table>
<thead>
<tr>
<th>Type Silicone</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone and U.V. Resistance (Note 1)</td>
<td>No chalking, cracking or bond loss after 5,000 hours.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The cure time for these specimens shall be 21 days for Type A and 28 days for Type B, C and D. Specimens shall be cured at 77 °F ± 3 °F (25 °C ± 2 °C) and 50±5% relative humidity.

Note 2: At conditions of 77 °F ± 3 °F (25 °C ± 2 °C) and 50±5% relative humidity.

Note 3: Type C and D silicone shall also meet its bond strength requirement to asphalt concrete.

Note 4: Type D extrusion rate shall be within the range specified.

2. Bond Breakers

Bond breakers shall be chemically inert and resistant to oils, gasoline, solvents, and primer, if one is required. Install silicone sealants over a bond breaker to prevent the sealant from bonding to the bottom of the joint.

a. Use bond breakers that are chemically inert and resistant to oils, gasoline, solvents, and primer, if one is required.

b. Do not use bond breaker that will stain or adhere to the sealant.

c. Use either a backer rod or tape bond breaker.

1) Backer Rods

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Closed-cell, expanded polyethylene foam</td>
</tr>
<tr>
<td>M</td>
<td>Closed-cell, polyolefin foam with a closed-cell skin over an open-cell core</td>
</tr>
</tbody>
</table>

Use backer rods that meet the following physical requirements:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>2 lb/ft³ (30 kg/m³) min.</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>25 psi (170 kPa) min.</td>
</tr>
<tr>
<td>Water absorption</td>
<td>0.02 g/cm³ max.</td>
</tr>
</tbody>
</table>

2) Bond Breaking Tapes

Type N bond breaking tapes are made from extruded polyethylene with a pressure-sensitive adhesive on one side.

Bond breaking tapes may be used with all three types of silicone, but is suitable for bridge joints only.

Bond breaking tapes shall have a minimum thickness of .005 in (0.13 mm.).

3. Joint Sealant Certification

Submit, at no cost to the Department, a minimum of 30 gal (100 L) of material and certified test results on each lot of joint sealant furnished to a Project.

Submit a certification that verifies the sealant meets all the test requirements of this Specification, except the Bond to Concrete Mortar and Shore Durometer Hardness at 0 °F (-18 °C).

B. Fabrication

Prepare and install silicone and bond breakers according to Section 461.

C. Acceptance

1. Silicone

Test the silicone as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile stress</td>
<td>ASTM D 412 (die C)</td>
</tr>
<tr>
<td>Durometer hardness</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Bond to concrete mortar</td>
<td>GDT 106</td>
</tr>
</tbody>
</table>

Office of Materials and Research
Section 833-Joint Fillers and Sealers

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tack free time (skin-over)</td>
<td>GDT 106*</td>
</tr>
<tr>
<td>Extrusion rate</td>
<td>GDT 106</td>
</tr>
<tr>
<td>Non-volatile</td>
<td>GDT 106</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>ASTM D 792 (Method A)</td>
</tr>
<tr>
<td>Movement capability and adhesion</td>
<td>GDT 106</td>
</tr>
<tr>
<td>Ozone and UV resistance</td>
<td>ASTM C 793</td>
</tr>
</tbody>
</table>

*In cases of dispute, use ASTM C 679 as a referee test.

2. Bond Breakers
 Test the bond breaker backer rods as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ASTM D 1622</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>ASTM D 1623</td>
</tr>
<tr>
<td>Water absorption</td>
<td>ASTM C 1016</td>
</tr>
</tbody>
</table>

3. Department Responsibility
 The Department will:
 a. Evaluate the sealant in the field before accepting any silicone sealants that meet the requirements of this Specification.
 b. Install the material submitted by the Contractor in roadway and/or bridge joints. The material shall be in place for two winters without failure before being accepted.
 c. Reject any sealant or bond breaker that is evaluated and approved, yet fails in actual use.

D. Materials Warranty
 General Provisions 101 through 150.
Delete Section 845 and substitute the following:

845.1 General Description
This section includes the requirements for smooth-lined, corrugated polyethylene culvert pipe.

845.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO M 294
 AASHTO Standard Specifications for Highway Bridges, Division II
 QPL 51

845.2 Materials
845.2.01 Smooth-lined, Corrugated Polyethylene (PE) Culvert Pipe
 A. Requirements
 1. Use pipe meeting the requirements of AASHTO M 294, Type S.
 2. Use pipe evaluated by the National Transportation Product Evaluation Program (NTPEP) test facility or other approved test facility.
 3. Ensure pipe is produced from an approved source listed on QPL 51.
 4. Use fittings and couplings as recommended by the manufacturer and approved by the Office of Materials and Research. The fittings and couplings shall comply with the joint performance criteria of AASHTO Standard Specifications for Highway Bridges, Division II. Ensure that the joints are “soiltight” per the AASHTO bridge specifications.

 B. Fabrication
 General Provisions 101 through 150.

 C. Acceptance
 General Provisions 101 through 150.

 D. Materials Warranty
 General Provisions 101 through 150.
Delete Section 863 and Substitute the following:

863.1 General Description
This section includes the requirements for applying preservatives, conditioning, treating, inspecting, marking, testing, and documenting the necessary information for treated timber used in Department Work.

863.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 American Wood Preservers Association (AWPA), C14, “Wood for Highway Construction—Preservative Treatment by Pressure Method”
 AWPA C2
 AWPA M2
 AWPA M3
 AWPA P9
 AASHTO M 133
 QPL 50

863.2 Materials

863.2.01 Conditioning and Preservative Treatment
A. Requirements
 1. Condition and preservative treat all timber products to meet the requirements of American Wood Preservers Association (AWPA) Standard C14, “Wood for Highway Construction—Preservative Treatment by Pressure Method,” except as described in this Section.
 2. Treatment Plants
 Ensure treatment plants comply with quality control procedures in AWPA M3.
 a. To expedite the work, a commercial inspection agency approved by the Department will inspect and test all treated timber products, including any preservative treatment at the treatment plant before it is delivered to the project. The treatment plant shall bear all the cost associated with the inspection and test.
 b. Before requesting an inspection, the authorities of the treatment plant shall acquaint themselves with the timber specification requirements and shall segregate the material to be inspected for Department work from other stock.
 3. Preservatives
 Use preservatives that meet the requirements in the AWPA Standard, unless otherwise specified in the Plans or the Specifications.
 a. You may select one of three preservatives (creosote, pentachlorophenol, Chromated Copper Arsenate (CCA)) from the Materials and Usage Table in AWPA C14.
b. Ensure pentachlorophenol solutions have at least 5 percent pentachlorophenol, by weight, dissolved in the petroleum solvents specified or pentachlorophenol in AWPA P9, Type “A.”

B. Fabrication

1. As practicable, cut, frame, and bore timber before treatment.
2. Condition the timber first. For Southern Pine species, use the following treatment:

<table>
<thead>
<tr>
<th>Preservative</th>
<th>Treatment Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penta-petroleum</td>
<td>Dry in kiln to 30% average moisture content or less or condition in steam</td>
</tr>
<tr>
<td>Chromated Copper Arsenate (CCA)</td>
<td>Dry in kiln to 25% average moisture content or less</td>
</tr>
</tbody>
</table>

NOTE: Do not heat the wood in the preservative, and do not use Boulton drying.

3. Preservative Penetration
 Ensure the preservative penetrates at least 3 in (75 mm) or 90 percent of the sapwood for all lumber, timber, wood fence posts, and ties in contact with the ground.
 a. Ensure lumber, timber, and ties that do not contact the ground meet AWPA C2 requirements.
 b. Ensure preservative penetrates all other materials, piles, and poles according to applicable AWPA requirements.

4. Preservative Retention
 Treat guard rail posts and offset blocks with pentachlorophenol or CCA with a minimum 0.6 lb/ft³ (9.6 kg/m³) retained in the outer 0.6 in (15 mm), as required in AWPA C14 and C2.

5. Retreatment:
 You may retreat a charge of material, or a portion of it, if the initial treatment does not meet requirements for retention, penetration, or appearance. The Department will allow only one retreatment.

NOTE: The Department will reject any damage due to retreatment.

6. Conditioning after Treatment
 a. Condition material that is dust-free.
 b. For lumber or timber that is treated with water-borne preservative and is to be painted, dry by air, kiln, or some method of artificial conditioning, to a moisture content of not more than 19 percent of the weight of the oven-dry wood.
 c. Protect the treated lumber from the elements with a prime coat of paint or other approved means.
 d. Ensure the moisture content does not rise above 19 percent before applying the first coat of paint.
 e. Dry material treated with water-borne preservative that will not be painted to surface dryness in air or otherwise before installing it.

C. Acceptance

1. Inspection
 The Department will sample and test preservatives according to the requirements of AASHTO M 133.

NOTE: Check QPL 50 for pre-approved manufacturers that supply material compliant with this specification.

 a. The Department will determine the level of preservative retention by testing the 0.6 to 1.5 in (15 to 38 mm) assay zone.
 b. Unless otherwise provided, an approved commercial inspection agency will inspect treated timber products according to AWPA M2.
 c. The Inspector will test before, during, and after treating.

2. Marking
 The Inspector will mark each acceptable piece with a hammer stamp before and after treatment.
 a. Stamp only 25 percent of the offset blocks after treatment.
 b. Ensure that both inspection stamps identify the Inspector. Ensure that the before-treatment stamp is clearly distinguished from the after-treatment stamp.
3. Reporting
 The Inspector from an approved commercial inspection agency shall:
 a. Prepare reports of the treating process and results of the inspection that confirm treatment was completed according to these Specifications.
 b. Furnish these reports to the Office of Materials and Research.
 c. Report according to AWPA M2.
 d. Get a shipping report from the treatment plant showing the project number, purchaser, sizes and amounts of materials, and preservative type for each shipment for Department Work.
 e. Furnish the shipment report and the treatment report to the Office of Materials and Research.

D. Materials Warranty
 1. Retest treated material that has been in stock for two years before using.
 2. The Department will reject any materials that fail to meet specifications unless they are retreated to meet all applicable requirements.

Office of Materials and Research
Delete Section 881 and substitute the following:

881.1 General Description
This section includes the requirements for the following fabrics:

- Plain cotton duck
- Rubber-impregnated cotton duck
- Burlap and cotton bags
- Plastic filter fabric
- Pavement reinforcement fabric
- Silt fence filter fabric

881.1.01 Related References
A. Standard Specifications
 Section 106—Materials Certification
B. Referenced Documents
 Federal Specification CCC-C 419 Type III
 ASTM D 36
 ASTM D 146
 ASTM D 412
 ASTM D 1777
 ASTM D 3786
 ASTM D 4355
 ASTM D 4632, GRAB
 ASTM D 4751
 ASTM D 4833
 GDT 87
 GDT 88
 GDT 95
 QPL 28
881.2 Materials

881.2.01 Plain Cotton Duck
A. Requirements
 1. Use plain cotton duck meeting the requirements of Federal Specification CCC-C 419 Type III.
 2. Ensure the duck weighs at least 8 oz./yd² (270 g/m²).
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

881.2.02 Rubber-Impregnated Cotton Duck
A. Requirements
 1. Use preformed rubber-impregnated fabric pads made of multiple layers of 8 oz (270 g) cotton duck, impregnated and bound with high quality natural rubber, or made of equivalent materials compressed into resilient pads of uniform thickness.
 2. Use enough plies to reach the specified thickness after compression and vulcanizing.
 3. Ensure the finished pad withstands compression loads of not less than 10,000 psi (70 MPa) when applied perpendicular to the plane of the laminations. Ensure the pad does not extrude or harmfully reduce in thickness.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

881.2.03 Burlap Bags
A. Requirements
 Use burlap bags made of at least 95 percent jute and manila fibers.
 Use burlap weighing 8 to 18 oz/10 ft² (250 to 550 g/m²).
 Use bags with a capacity of 1 to 2 ft³ (0.03 to 0.06 m³).
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
General Provisions 101 through 150.

881.2.04 Cotton Bags
A. Requirements
1. Use cotton bags with Osnaburg 40 x 26 thread count and a nominal fabric weight of 6.8 oz/yd² (230 g/m²).
2. Use bags having 1/2 in (13 mm) sewn seams with at least 1 stitch per 1/5 in (5 mm).
3. Use 4 or 5 ply, 12 cotton yarn or equivalent for the stitches.
4. Ensure seam efficiency is at least 80 percent. Ensure the inside measurements tolerance is ± 1/2 in (13 mm).

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
General Provisions 101 through 150.

D. Materials Warranty
General Provisions 101 through 150.

881.2.05 Plastic Filter Fabric
A. Requirements
1. Use pervious sheets of plastic yarn made from a long-chain synthetic polymer. Use polymer composes of at least 85 percent by weight of propylene, ethylene, amide, ester, or vinylidene chloride.
Use a sheet of plastic yarn containing stabilizers and/or inhibitors added to the base plastic to make the filaments resistant to deterioration due to ultra-violet and/or heat exposure.
2. Ensure the fabric is finished so that the filaments will retain their relative position with respect to each other.
3. Use fabric without defects, rips, holes, or flaws.
4. Use fabric meeting the following physical requirements for woven and non-woven fabric:

<table>
<thead>
<tr>
<th>Woven Fabrics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (any direction)</td>
<td>200 lbs (890 N) minimum</td>
</tr>
<tr>
<td>Bursting strength</td>
<td>500 psi (3.5 MPa) minimum</td>
</tr>
<tr>
<td>Elongation before breaking</td>
<td>10% to 35%</td>
</tr>
<tr>
<td>Percent open area</td>
<td>4.0% to 6.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-woven Fabrics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Puncture resistance</td>
<td>30 lbs (135 N) minimum</td>
</tr>
<tr>
<td>Grab tensile strength</td>
<td>65 lbs (290 N) minimum</td>
</tr>
<tr>
<td>Grab elongation</td>
<td>40% minimum</td>
</tr>
<tr>
<td>Flow rate [H from 3 to 1 in (75 to 25 mm)]</td>
<td>50 gal/min/ ft² (34 liters/second/m²) (minimum) to 350 gal/ min/ft² (240 liters/second/m²) (maximum)</td>
</tr>
</tbody>
</table>

5. Use fabric evaluated by the National Transportation Product Evaluation Program (NTPEP).
6. **Seams**
 a. Get approval on the seams from the Engineer before use on a Project.
 b. Use fabric sewn with thread of the same chemical requirements as the fabric, or use fabric bound with cement or heat. Either have the fabric bound or sewn at the point of manufacture or at a location approved by the Engineer.
 c. Seam Uses: You may use one seam in edge drain and underdrain applications. You may bond or sew fabric together to form sections at least 6 ft (1.8 m) wide for use under rip rap or behind retaining walls.

7. **Fabric Use**
 a. Use woven fabrics beneath rip rap when dropping stone from 3 ft (1 m) or less.
 b. You may use woven fabrics that meet the flow rate for edge drains.
 c. Use non-woven fabrics to line edge drains, underdrains, or behind retaining walls, where specified.
 d. Do not use non-woven fabrics for filter beneath rip rap.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puncture resistance</td>
<td>ASTM D 4833</td>
</tr>
<tr>
<td>Tensile strength, elongation, grab strength</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Bursting strength</td>
<td>ASTM D 3786</td>
</tr>
<tr>
<td>Percent open area</td>
<td>GDT 88</td>
</tr>
<tr>
<td>Flow rate</td>
<td>GDT 87</td>
</tr>
</tbody>
</table>

1. See QPL 28 for acceptable woven and non-woven fabrics meeting the requirements of this Specification. See QPL 47 for acceptable Geocomposite wall drains.
2. The Department will reject any fabrics that meet this Specification but fail to perform in actual use.

D. Materials Care and Warranty
Wrap fabric in burlap or similar heavy duty protection during shipment and storage to protect it from mud, dirt, dust, and debris.

881.2.06 Pavement Reinforcement Fabric

A. Requirements
Type I and Type II Pavement Reinforcement Fabric
1. Use pavement reinforcement fabric that has the following properties:
 - Is non-woven, heat-resistant material composed of polypropylene or polyester fibers
 - Can be saturated with asphalt cement
 - Can be placed smooth with mechanical devices and be without wrinkles
 - Can withstand the heat of asphaltic concrete mixes during paving operations
 - Can withstand normal field handling and construction operations without damage
For a list of sources, see QPL 40.
 - Meets the following physical requirements. The bid item or Plans will indicate which type of fabric is required for a Project.

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
</table>

Tensile strength, minimum

<table>
<thead>
<tr>
<th></th>
<th>90 lbs (400 N)</th>
<th>125 lbs (555 N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation at break</td>
<td>40% min., 100% max.</td>
<td>40% min., 100% max.</td>
</tr>
<tr>
<td>Asphalt retention, minimum</td>
<td>0.18 gal/yd² (0.8 L/m²)</td>
<td>0.28 gal/yd² (1.3 L/m²)</td>
</tr>
</tbody>
</table>

2. Submit a certificate from the manufacturer showing the physical properties of the material used and how it meets this Specification. Submit the certificate according to Subsection 106.05, “Materials Certification.”

3. Demonstrate to the Department that fabric meeting the physical properties requirements of this Specification has been used successfully in installations with similar environmental and Project conditions.

High Strength Pavement Reinforcement Fabric

1. Use pavement reinforcement fabric with the following properties:
 - Is a flexible, water-resistant, high-density asphaltic membrane laminated between two layers of high strength, heat resistant polypropylene or polyester fabric.
 - Can be placed smooth with mechanical devices and be without wrinkles.
 - Can withstand the heat of asphaltic concrete mixes during paving operations.
 - Can withstand normal field handling and construction operations without damage.
 - Has a self-adhesive backing adhered to a film release liner.

For a list of sources, see QPL 40.

- Meets the following physical requirements. The bid item or Plans will indicate which type of fabric is required for a Project.

<table>
<thead>
<tr>
<th>Width, minimum</th>
<th>18 in (450 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength, minimum</td>
<td>1,800 lbs/in² (12 MPa)</td>
</tr>
<tr>
<td>Elongation</td>
<td>20% to 50%</td>
</tr>
<tr>
<td>Softening Point (Asphaltic membrane), minimum</td>
<td>190 °F (87 °C)</td>
</tr>
<tr>
<td>Caliper</td>
<td>0.135 inch (3.43 mm) 95% retained after loading</td>
</tr>
<tr>
<td>Pliability (Cold Flex) 2" (50 mm) X 5" (125 mm) specimen, condition specimen at 0 °F (-18 °C) for 1 hour, 180° bend on 2" (50 mm) mandrel</td>
<td>No Separation</td>
</tr>
</tbody>
</table>

2. Submit a certificate from the manufacturer showing the physical properties of the material used and how it meets this Specification. Submit the certificate according to Subsection 106.05, “Materials Certification.”

3. Demonstrate to the Department that fabric meeting the physical properties requirements of this Specification has been used successfully in installations with similar environmental and Project conditions.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Type I and Type II Pavement Reinforcement Fabric

Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 4632 Grab</td>
</tr>
</tbody>
</table>
Elongation

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt retention</td>
<td>GDT 95</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D 4632 Grab</td>
</tr>
</tbody>
</table>

High Strength Pavement Reinforcement Fabric

Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Softening Point</td>
<td>ASTM D 36</td>
</tr>
<tr>
<td>Caliper</td>
<td>ASTM D 1777</td>
</tr>
<tr>
<td>Pliability (Cold Flex)</td>
<td>ASTM D 146</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

881.2.07 Silt Fence Filter Fabric

A. Requirements

1. Use approved silt fence from QPL 36.
 a. Type “A” and “B” Fences: Use either woven or nonwoven filter fabric for Type “A” and “B” fences. If using woven fabric, the fabric may have slit tape yarns in one direction (warp or fill) only.
 b. Type “C” Fences: Use non-calendered woven fabric constructed with monofilament yarns only.

 NOTE: Approved fabrics must consistently exceed the minimum requirements of this Specification as verified by the Office of Materials and Research. If a fabric is removed from the Qualified Products List, do not use it in the work until the Department has reestablished the product’s acceptability.

2. Ensure silt fence filter fabrics have the following characteristics:
 - Has strong rot-proof synthetic fibers formed into either a woven or non-woven fabric
 - Has no treatment or coating that might significantly alter its physical properties after installation
 - Contains stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from exposure to sunlight or heat
 - Makes a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative position with respect to each other under normal handling, installation, and service conditions
 - Has finished fabric edges to prevent the outer yarn from pulling away from the fabric
 - Has no defects or flaws that would significantly affect its physical and/or filtering properties
 - Meets the following physical or dimensional requirements:

<table>
<thead>
<tr>
<th>Type Fence</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation (% Max.)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Apparent opening size (max. sieve size)</td>
<td>No. 30 (600 um)</td>
<td>No. 30 (600 um)</td>
<td>No. 30 (600 um)</td>
</tr>
<tr>
<td>Flow rate, gal/min./ft² (L/min./m²)</td>
<td>25 (1015)</td>
<td>25 (1015)</td>
<td>70 (2850)</td>
</tr>
</tbody>
</table>
Ultraviolet stability (2)

<table>
<thead>
<tr>
<th></th>
<th>80</th>
<th>80</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursting strength, psi (kPa)</td>
<td>175 (1200)</td>
<td>175 (1200)</td>
<td>175 (1200)</td>
</tr>
<tr>
<td>Minimum fabric width</td>
<td>36 in (914 mm)</td>
<td>22 in (559 mm)</td>
<td>36 in (914 mm)</td>
</tr>
</tbody>
</table>

1. Minimum roll average of five specimens.
2. Percent of required initial minimum tensile strength.

3. Use silt fence filter fabrics evaluated by the National Transportation Product Evaluation Program (NTPEP).

B. Fabrication

The fabric may be manufactured with pockets for posts, hems with cord, or with posts pre-attached using staples or button head nails.

Ensure the fabric has the manufacturer’s name and product trade name labeled on the fabric at a minimum of 25 ft (7.6 m) intervals. Ensure the fabric has a color yarn mark in the fabric 14 inches (355 mm) ± 0.5 inch (12 mm) from both top and bottom ends for Type A and C and 8 inches (203 mm) ± 0.5 inch (12 mm) from both top and bottom ends for Type B fabric.

C. Acceptance

Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Apparent opening size</td>
<td>ASTM D 4751</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>GDT 87</td>
</tr>
<tr>
<td>Ultraviolet stability</td>
<td>ASTM D 4632 (after 300 hours weathering according to ASTM D 4355)</td>
</tr>
<tr>
<td>Bursting strength</td>
<td>ASTM D 3786, Diaphragm Bursting Strength Tester</td>
</tr>
</tbody>
</table>

D. Materials Care and Warranty

Wrap fabric in a heavy-duty protective covering during shipment and storage to protect it from mud, dirt, dust and debris.

Do not expose fabric to temperatures greater than 140 °F (60 °C).

881.2.08 Filter Fabric for Embankment Stabilization

See Special Provision.

Office of Materials and Research
Delete Section 883 and substitute the following:

883.1 General Description
This section covers mineral filler used as an ingredient in bituminous paving mixtures. Use mineral filler listed in the approved Asphalt Mix Design and Job Mix Formula and in Qualified Products List (QPL) 81. Use an approved mineral filler that meets the requirements below and consist of finely divided rock dust, slag dust, hydrated lime, hydraulic cement, or fly ash. Other fine, inert, non-toxic materials produced as by-products of industrial processes and meeting the requirements below may be approved as mineral filler based on satisfactory performance in the asphalt mix design procedure. Ensure mineral filler is sufficiently dry, flows freely, and is free from lumps.

883.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 QPL81
 AASHTO R 28
 AASHTO T 240
 AASHTO T 313
 AASHTO T 315
 GDT-22
 GDT 123

883.2 Materials
883.2.01 Mineral Filler
A. Requirements
 Use mineral filler meeting the following gradation limits:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 30 (600 μm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 50 (300 μm)</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>55-100</td>
</tr>
</tbody>
</table>

 Ensure that the mineral filler is free from impurities.

 Subject mineral filler for use in Stone Matrix Asphalt (SMA) to mortar property testing according to AASHTO T-240, AASHTO R-28, AASHTO T-313, and AASHTO T-315. Mineral filler may be rejected and removed from QPL-81 for unsatisfactory performance as an ingredient in an asphalt mixture, as determined in these procedures or in the SMA Mix design procedure, GDT-123. Ensure the total fine mortar meets the following requirements:
<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaged DSR, G*/sin((kPa))</td>
<td>5 minimum</td>
</tr>
<tr>
<td>RTFO Aged DSR, G*/sin((kPa))</td>
<td>11 minimum</td>
</tr>
<tr>
<td>PAV Aged BBR, Stiffness (MPa)</td>
<td>1500 maximum</td>
</tr>
</tbody>
</table>

B. **Fabrication**
 General Provisions 101 through 150.

C. **Acceptance**
 Test gradation according to GDT-22.

D. **Materials Warranty**
 General Provisions 101 through 150.

Office of Materials and Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 894—Fencing

Delete Subsection 894.2.0.6.A and substitute the following:

894.2.06 Silt Fabric Fencing

A. Requirements

1. Fabric
 b. Use a woven wire support fence or a polypropylene support mesh with Type “C” fence.
 1) Woven Wire Support Fence
 a) Ensure the woven wire support fence is at least 26 inches (660 mm) high with at least 6 horizontal wires.
 b) Ensure the vertical wires have a maximum spacing of 12 in (155 mm).
 c) Ensure the top and bottom wires are at least 10 gauge (2.49 mm) and all other wires are at least 12-1/2 gauge (2.03 mm). Use Washburn and Moen Standard requirements for determining wire gauge.
 d) You may use other designs subject to approval by the Office of Materials and Research.
 2) Polypropylene Support Mesh
 a) Ensure the polypropylene support mesh is sewn to the fabric 2 in (50 mm) ± 1 in (25 mm) from top and bottom of fabric and 11 in (279 mm) ± 1 in (25 mm) from top and bottom of fabric. Use a T-90 black polyester thread to sew mesh to fabric with a lock stitch at 5 to 7 stitches per inch.
 b) Ensure the height of the polypropylene support mesh is at least 36 in (914 mm) with a plus tolerance of 1 in (25 mm).
 c) Ensure the polypropylene support mesh minimum tensile strength in the machine direction is 60 lb/3 inches and 72 lb/3 inches in the transverse direction.
 d) Ensure minimum average weight of the polypropylene support mesh is 10.3 lb/1000 ft².
 e) Ensure the average strand count of the polypropylene support mesh in the machine direction is 9.0 ± 1.5 per 10 inches and 14.5 ± 0.7 per 10 inches in the transverse direction.
 f) Ensure the polypropylene support mesh contains stabilizers and/or inhibitors that make the mesh resistant to deterioration from exposure to sunlight or heat.

2. Posts
 Use post sizes and types as determined by the type of fence being installed. Generally hardwood posts will be limited to ash, hickory, or oak. Other hardwoods may be acceptable if approved by the Office of Materials and Research.
 a. Type “A” Fence: Use either wood or steel posts that are at least 4 ft (1.2 m) long.
 1) If using soft wood, use posts that are at least 3 in (75 mm) in diameter or nominal 2 x 4 in (33 x 89 mm) and straight enough to provide a fence without noticeable misalignment.
2) If using hardwood, use posts that are 1-1/2 x 1-1/2 in (38 x 38 mm) with a minus tolerance of 3/8 in (9 mm) providing the cross sectional area is at least 2.15 in² (1385 mm²).

3) If using steel, use posts that are “U,” “T,” or “C” shaped with a minimum weight of 1.15 lb/ft (1.7 kg/m), and have projections for fastening the fence to the posts.

b. Type “B” Fence: Use either wood or steel posts that are at least 3 ft (900 mm) long.

1) If using soft wood, use posts that are at least 2 in (50 mm) in diameter or nominal 2 x 2 in (33 x 33 mm).

2) If using hardwood, use posts that are 1 x 1 in (25 x 25 mm) with a minus tolerance of 1/4 in (6 mm) providing the cross sectional area is at least 0.95 in² (610 mm²).

3) If using steel posts, use types “U,” “T,” or “C” shapes with a minimum weight of 0.75 lb/ft (1.1 kg/m).

c. Type “C” Fence:

1) Woven Wire Supported: Use only steel posts with a minimum length of 4 ft (1.2 m). Use “U,” “T,” or “C” shaped posts with a minimum weight of 1.15 lb/ft (1.7 kg/m). Use posts that have projections for fastening the woven wire and filter fabric.

2) Polypropylene Mesh Supported: Use either wood or steel posts that are at least 4 ft (1.2 m) long.

 a) If using soft wood, use posts that are at least 3 in (75 mm) in diameter or nominal 2 x 4 in (33 x 89 mm) and straight enough to provide a fence without noticeable misalignment.

 b) If using hardwood, use posts that are 2 x 2 in (50 x 50 mm) with a minus tolerance of 1/4 in (6 mm) providing the cross sectional area is at least 3.28 in² (2120 mm²).

 c) If using steel posts, use “U,” “T,” or “C” shaped posts with a minimum weight of 1.15 lb/ft (1.7 kg/m). Use posts that have projections for fastening the woven wire and filter fabric.

NOTE: You must use woven wire or polypropylene mesh to provide extra support for Type “C” fence installations.

3. Fasteners for Wooden Posts

 a. Wire Staples: Use staples that are at least 17 gauge (1.37 mm), legs at least 1/2 in (13 mm) long, and a crown at least 3/4 in (19 mm) wide.

 b. Nails: Use nails that are at least 14 gauge (2.03 mm), 1 in (25 mm) long, with button heads of at least 3/4 in (19 mm).

Office of Materials and Research
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 895—Polyacrylamide (PAM)

895.1 General Description
This section covers the use of anionic Polyacrylamide (PAM) as a floculant on construction projects.

895.1.01 Related References
A. Standard Specifications
 Section 700—Grassing
B. Referenced Documents
 QPL 84

895.2 Materials
A. Requirements
 Use only Polyacrylamide (PAM) products listed on the Qualified Products List (QPL 84).
 Ensure Polyacrylamide (PAM) emulsions and powders are of the anionic type only and meet the following requirements:
 1. Meets the EPA and FDA acrylamide monomer limits of equal to or greater than 0.05% acrylamide monomer.
 2. Has a density of 10% to 55% by weight and a molecular weight of 16 to 24 Mg/mole.
 3. Mixture is non-combustible.
 4. Contains only manufacturer recommended additives.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 1. Polyacrylamide (PAM) products must meet the requirements of Section 895 and be listed on QPL 84.
 2. Provide manufacturer’s data on charge density and molecular weight.
D. Materials Warranty
 General Provisions 101 through 150.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SUPPLEMENTAL SPECIFICATION

Section 913—Reflectorizing Materials

Delete Section 913 and substitute the following:

913.1 General Description
This section includes the requirements for reflective sheeting.

913.1.01 Definitions
- Reflective Sheeting Types:
 Type I: Medium-intensity retroreflective sheeting (engineering grade) that is typically an enclosed lens glass-bead retroreflective material.
 Type II: Medium-high-intensity retroreflective sheeting (super engineering grade), that is typically enclosed lens glass-bead retroreflective material.
 Type III: High-intensity retroreflective sheeting that is typically an encapsulated glass-bead retroreflective material.
 Type IV: High-intensity retroreflective sheeting that is typically an unmetallized microprismatic retroreflective element material.
 Type V: Super-high-intensity retroreflective sheeting that is typically a metallized microprismatic retroreflective element material. This material is typically used for delineators.
 Type VI: Elastomeric high-intensity retroreflective sheeting without adhesive that is typically a vinyl microprismatic retroreflective material. This material is typically used for orange temporary roll up signs.
 Type VII: Super-high-intensity retroreflective sheeting that is typically an unmetallized microprismatic retroreflective element material.
 Type VIII: Super-high-intensity retroreflective sheeting that is typically an unmetallized microprismatic retroreflective element material.
 Type IX: Very-high-intensity retroreflective sheeting that is typically an unmetallized microprismatic retroreflective element material.
 Type X: Super-high intensity retroreflective sheeting that is typically an unmetallized microprismatic retroreflective element material.

913.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ASTM D 4956
 QPL 29
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SUPPLEMENTAL SPECIFICATION

Section 917—Reflectors and Nonreflective Characters

Delete Section 917 and substitute the following:

917.1 General Description
This section includes the requirements of demountable characters with Type IX reflective sheeting, and direct-applied, nonreflective characters.

917.1.01 Related References
A. Standard Specifications
 Section 106—Certification of Materials
 Section 913—Reflectorizing Materials
B. Referenced Documents
 ASTM B 209 (B 209M)
 ASTM D 822

917.2 Materials

917.2.01 Demountable Characters with Type IX Reflective Sheeting
A. Requirements
 1. Use Type IX reflective sheeting letters, numerals, symbols, and borders that meet the requirements of Subsection 913.2.02, Type IX.
 2. Use a silver color, unless otherwise specified on the Plans.
 3. Apply the characters to aluminum flat frames as recommended by the sheeting manufacturer.
 4. Use flat frames (letter, numerals, symbols and borders) made from aluminum sheet 0.032 in (0.813 mm) thick matching ASTM B 209 (209M), Alloy 3003-H14.
 5. Submit to the Department:
 • One letter of a predominant size and type to be used on the Project.
 • A certificate to the Engineer stating that the material used on the Project is the same as the sample submitted.
B. Fabrication
 1. Before applying any sheeting, properly degrease, etch, and treat each frame with a light, tight amorphous chromate-type coating.
 2. Mechanically apply the reflective sheeting to the prepared flat aluminum frames. Use the proper equipment as prescribed by the sheeting manufacturer.
 3. When recommended by the sheeting manufacturer, coat the completed demountable letters, numerals, symbols and borders with a clear finish approved by the sheeting manufacturer.
 Apply the clear coat to the sheeting surface to ensure the sheeting has a fully glossy coat and a complete edge seal.
4. Ensure that the finished letters, numerals, symbols, and borders show careful workmanship, are clean cut, sharp, and have a plane surface.

5. Use the character size and shape to determine the hole spacing to mount the frame with aluminum rivets or other approved non-corrosive fasteners. Do not space holes more than 8 in (200 mm) on center.

C. Acceptance
The Department will accept the material based on test results of samples taken by the Department or of samples submitted by the manufacturer or fabricator, when directed. The sample shall consist of one letter of predominant size and type to be used on the Project. Samples submitted by the manufacturer or fabricator to the Engineer, shall include a certificate stating that the material used on the Project is the same as the sample submitted.

D. Materials Warranty
General Provisions 101 through 150.

917.2.02 Direct Applied Nonreflective Characters

A. Requirements
1. Use direct-applied, nonreflective characters as opaque legend, stripping, and symbols on traffic control signs made from reflective sheeting that meets Subsection 913.2.
2. Use nonreflective, weatherproof plastic film that is precoated with pressure-sensitive or heat-sensitive adhesive backing.
3. Use sheeting that is flexible enough to be easily cut, shaped, and applied over reflective sheeting.
4. Submit the manufacturer’s certification to the Engineer showing the properties of the materials used and how they match the Specifications, as required by Subsection 106.05, "Materials Certification."
5. Ensure that the nonreflective sheeting is weather resistant after processing and application, according to the manufacturer’s recommended procedures.
 a. Expose the nonreflective sheeting for 1,200 hours in an Atlas Twin Arc Weatherometer, as per ASTM D 822.
 b. Clean the sheeting.
 c. The Department will reject nonreflective sheeting that appreciably discolors, cracks, crazes, blisters, changes dimensionally, or adversely effects the reflective sheeting on which it is mounted.
6. Use adhesive that has the following characteristics:
 • Is precoated and pressure-sensitive (Class 1) or tack-free and heat-activated (Class 2). Be able to apply either without adding more adhesive to either the nonreflective sheeting or to the reflective sheeting.
 • Has a protective liner that can be peeled off without being soaked in water or other solvents.
 • Ensure that the liner is easily removed after accelerated storage for 4 hours at 150 °F (65 °C) under 2.5 psi (17 kPa) of pressure.
 • Forms a durable, vandal-resistant bond to smooth and weather resistant surfaces.
 • Adheres securely at temperatures ranging from −30 ° to 200 °F (−35 ° to 95 °C), just 48 hours after application.
 • Prevents the sheeting from shocking off the panel when struck at −10 °F (−25 °C).

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
The Department will accept the material based on the manufacturer’s certificate.

D. Materials Warranty
General Provisions 101 through 150.

Office of Materials & Research
913.2 Materials

913.2.01 Type I, II, III, IV, V, VI, VII, VIII, IX, and X Reflective Sheeting

A. Requirements

1. Use reflective sheeting that meets the requirements of ASTM D 4956.
2. Use reflective sheeting as listed in QPL 29.
3. Use reflective sheeting that has been evaluated by the National Transportation Product Evaluation Panel (NTPEP) test facility or other approved test facility.
4. Submit the following to the Department:
 a. A certificate with each lot or shipment stating the following:
 • The material supplied will meet all the test requirements listed herein.
 • You have performed the specified tests to ensure compliance.
 • You will submit test results upon request.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. The Engineer will reject reflective sheeting in the following situations:
 a. The material fails to meet any one of the designated requirements.
 b. The material meets the requirements but later fails during sign fabrication or in actual field use. Cracks, wrinkles, delamination, color change, or abnormal loss of reflectivity constitute failure.
 c. Natural causes deteriorate the material to the extent that:
 1) The sign is ineffective for its intended purpose as defined in Subsection 913.2.01.C.1.b above.
 2) The average nighttime reflective brightness does not meet the outdoor weathering requirements of ASTM D4956.

D. Materials Warranty

Transfer to the Department a performance warranty for Type I, II, III, IV, V, VI, VII, VIII, IX, or X reflective sheeting issued by the manufacturer.

Ensure that the warranties cover the full replacement cost, including material and labor.

Include in these warranties a provision that the warranty is subject to a transfer to the Department.

Submit a warranty from the manufacturer that states that the reflective sheeting—processed, applied to sign blank materials, and cleaned—meets the outdoor weathering photometric requirements of ASTM D 4956.

Office of Materials and Research
Delete Section 919 and substitute the following:

919.1 General Description
This section includes the requirements for raised pavement marker materials for use in reflective, ceramic, and channel markers.

919.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ASTM C 424
 ASTM C 373
 ASTM D 2240
 ASTM D 4280
 Federal Method TT-T-141, Method 4252

919.2 Materials
A. Requirements
 Do not use any marker materials until the laboratory approves it.
 1. Use raised pavement marker sources as listed in QPL 76.
 2. Use raised pavement markers of the type shown in the Plans or specified in the proposal. This Specification references markers as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Two-way, one-color, 4 x 2 in (100 mm x 50 mm), reflective</td>
</tr>
<tr>
<td>2</td>
<td>One-way, one-color, 4 x 2 in (100 mm x 50 mm), reflective</td>
</tr>
<tr>
<td>3</td>
<td>Two-way, two color, 4 x 2 in (100 mm x 50 mm), reflective</td>
</tr>
<tr>
<td>4</td>
<td>Round white, yellow or black ceramic, non reflective</td>
</tr>
<tr>
<td>5</td>
<td>Oval white, yellow or black ceramic, non-reflective</td>
</tr>
<tr>
<td>6</td>
<td>Oval white or yellow ceramic, reflective</td>
</tr>
<tr>
<td>7</td>
<td>White or yellow ceramic jiggle bar, non-reflective</td>
</tr>
<tr>
<td>8</td>
<td>White or yellow ceramic jiggle bar, reflective</td>
</tr>
<tr>
<td>9</td>
<td>White or yellow channel, non-reflective</td>
</tr>
</tbody>
</table>
Section 919—Raised Pavement Markers

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>White or yellow channel, reflective</td>
</tr>
<tr>
<td>11</td>
<td>Two-way, one-color, 4 x 4 in (100 mm x 100 mm), reflective</td>
</tr>
<tr>
<td>12</td>
<td>One-way, one color, 4 x 4 in (100 mm x 100 mm), reflective</td>
</tr>
<tr>
<td>13</td>
<td>Two-way, two color, 4 x 4 in (100 mm x 100 mm), reflective</td>
</tr>
<tr>
<td>14</td>
<td>Two-way, one color, flexible reflective</td>
</tr>
<tr>
<td>15</td>
<td>One-way, one color, flexible reflective</td>
</tr>
</tbody>
</table>

3. Certification

 Submit a certification to the Engineer from the manufacturer showing the physical properties of the markers and their conformance to this Specification.

4. Packaging

 Pack shipments in containers that are acceptable to common carriers.
 a. Pack the containers to ensure delivery in perfect condition.
 b. Clearly mark each package of pavement markers with the size, color, type, and lot number.
 c. You are liable to replace any damaged shipments.

919.2.01 Raised Retro-Reflective Pavement Markers (Type 1, 2, 3, 11, 12, and 13)

A. Requirements

 1. Use raised retro-reflective pavement markers that meets the requirements of ASTM D 4280, designation H.
 2. Use raised retro-reflective pavement markers as listed in QPL 76.
 3. Use raised retro reflective pavement markers that have been evaluated by the National Transportation Product Evaluation Panel (NTPEP) test facility or other approved test facility.

B. Fabrication

 General Provisions 101 through 150

C. Acceptance

 The Department will give conditional and final approval to retro reflective pavement markers evaluated by the National Transportation Product Evaluation Program (NTPEP), the Georgia Department of Transportation, or other Department-approved test facilities and place them on QPL 76.

 All white and yellow retro reflective pavement markers must meet the requirements of this Specification and the following NTPEP field performance requirement.

 a. Conditional QPL Placement: The Department may add markers on a conditional basis to QPL 76. These markers must maintain an average coefficient of luminous intensity for 12 months during the NTPEP evaluation of not less than 25% of the values shown in Table 1 of ASTM D 4280.
 b. Final QPL Approval or Rejection: The Department will approve or reject markers based on the marker maintaining an average coefficient of luminous intensity of 0.2 cd/ft for 24 months during the NTPEP evaluation.

919.2.02 Flexible Reflective Markers (Type 14 and 15)

A. Requirements

 Use markers manufactured by extruding plastic into an “L” shape, with nominal dimensions of 4 in (100 mm) long x 2 in (50 mm) high (vertical face) x 1 in (25 mm) wide (base leg). Ensure that the markers have the following:
 - A pressure-sensitive adhesive with a paper release liner to the bottom of the base leg.
 - Strips of metallized acrylic reflective sheeting on either one or both sides of the vertical face.
 - A clear plastic cover to protect the reflective strip. Ensure that the cover withstands a chip-seal operation and is easily removed after the operation.

 1. Hardness
 a. Select five random markers
b. Use ASTM D 2240 to determine the Shore A hardness
c. The Department will reject markers whose body and clear protective cover hardness is less than 80.

B. Fabrication

General Provisions 101 through 150.

919.2.03 Ceramic Pavement Markers (Type 4, 5, 6, 7, and 8)

A. Requirements

1. Use ceramic pavement markers made from a heat-fired, white, vitreous, ceramic base and a heat fired, opaque, glazed surface to produce the properties required in these Specifications.
 a. Do not place glaze on the marker bottom where it connects to the road surface.
 b. Thoroughly and evenly mature the markers. Ensure that they have no defects that affect appearance and serviceability.
 c. Use reflective ceramic markers that meet the specific intensity of each reflective surface according to Table 1 of ASTM D 4280.
 d. Ensure that the mean thickness of the glazed surface is at least 0.005 in (0.13 mm) when measured at least 0.25 in (6 mm) from the edge of the marker.
 e. Ensure that the water absorption of the ceramic markers does not exceed 2 percent of the original dry weight when tested according to ASTM C 373.
 f. Ensure that the glazed surface does not craze, spoil, or peel when passed through one cycle of the Autoclave test at 250 psi (1724 kPa) (ASTM C 424).

2. Use the designated colors for the white and yellow markers.
 a. Ensure that the colors are uniform.
 b. Ensure that black matches Federal Color No. 595-27038.
 c. Determine the color by visually comparing each marker with calibrated standards having CIE Chromaticity Coordinate limits. Determine the limits with Federal methods of test TT-T-141, Method 4252, using a rectangle with the following corner points:

 ![Corner Points Table]

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. Use a random sample of five markers for lens impact strength, temperature cycling and compressive strength tests specified in ASTM D 4280.

2. Use the following table to determine if the markers pass the tests.

<table>
<thead>
<tr>
<th>Markers that Pass</th>
<th>Department Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 of 5</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>3 or less of 5</td>
<td>Reject the lot; no resample allowed.</td>
</tr>
<tr>
<td>4 of 5</td>
<td>The Contractor may request a retest. The Department will retest an additional 25 random markers in the test or tests where the original sample failed.</td>
</tr>
<tr>
<td>20 of 25 retested</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>19 or less of 25 retested</td>
<td>Reject the lot; no resample allowed.</td>
</tr>
</tbody>
</table>

3. Compressive Strength Test
Section 919—Raised Pavement Markers

a. The markers pass if the average compressive load of all five markers is at least 1,500 psi (6.7 kN). No individual marker shall be less than 1,200 psi (5.3 kN).

D. Materials Warranty

General Provisions 101 through 150.

919.2.04 Channel Pavement Markers (Type 9 and 10)

A. Requirements

1. Use channel pavement markers made of either a heat-fired, white, vitreous, ceramic base with a heat-fired, opaque, glazed surface, or a 9 gauge (3.9 mm) steel body with a heat-fired porcelain finish.
 a. Ensure both ceramic and steel channel markers have no defects that affect appearance and serviceability.
 b. Ensure that the mean thickness of the glazed surface of ceramic channel markers is at least 0.005 in (0.13 mm) when measured at least 0.25 in (6 mm) from the edge of the marker.
 c. Ensure that mean thickness of the porcelain finish on the steel channel markers is at least 0.030 in (0.76 mm).
 d. Ensure that the water absorption of the ceramic markers does not exceed 2.0 percent of the original dry weight when tested according to ASTM C 373.
 e. Ensure that the surface of the markers do not craze, spoil, or peel when passed through one cycle of the Autoclave test at 250 psi (1724 kPa) (ASTM C 424).

2. Use the designated colors for the white and yellow markers.
 a. Ensure that the colors are uniform.
 b. Determine the color by visually comparing them with calibrated standards having CIE Chromaticity Coordinate limits. Determine the limits with Federal methods of test TT-T-141, Method 4252, using a rectangle with the following corner points:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(90MGO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>.290</td>
<td>.316</td>
<td>.310</td>
<td>.296</td>
<td>.330</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. Ensure that Type 10 markers meet the specific intensity of each reflective surface according to Table 1 in ASTM D 4280.

2. Use a random sample of five markers for lens impact strength, temperature cycling and compressive strength tests specified in ASTM D 4280.

3. Select two of the five markers and subject them to all the required tests.

4. Use the following table to determine if the markers pass the tests.

<table>
<thead>
<tr>
<th>Markers that Pass</th>
<th>Department Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 of 2</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>0 of 2</td>
<td>Reject the lot; no resample allowed.</td>
</tr>
<tr>
<td>1 of 2</td>
<td>Retest the three remaining markers.</td>
</tr>
<tr>
<td>3 of 3 retested</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>2 or less of 3 retested</td>
<td>Reject the lot; no resample allowed</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.
Add the following to Subsection 925.1.01.B:

Add the following to Subsection 925.2.15.A.1:

Provide LED modules that are pixilated (5mm) for all circular indications, arrow indications, and hand and person pedestrian displays.

Delete Subsection 925.2.19.A and substitute the following:

925.2.19 Pedestrian Push Button Station

A. Requirements

Ensure that Pedestrian push buttons are of tamperproof construction and consist of a direct push type button and single momentary contact switch in cast aluminum housing. The pushbutton cover shall also be of cast aluminum. The housing and cover shall be free of voids, pits, dents, molding sand excessive foundry grinding marks. Exterior surface shall be smooth and cosmetically acceptable, free of molding fins, cracks and other exterior blemishes.

Provide housing and cover with an alodine conversion coating so as to provide a proper base for paint adhesion. Finish the housing with baked enamel and paint the push button housing and Pedestrian heads highway yellow (unless otherwise specified by the Engineer).

The assembly shall be capable of being mounted to a flat or curved surface. Ensure the assembly includes the appropriate sign as shown in the Plan Details.

Ensure that any screws or bolts are stainless steel and vandal proof. Provide the unit with a 0.5 inch (13 mm) threaded opening with plug.

Ensure that the assembly is weatherproof and so constructed that when properly installed, it will be impossible to receive an electrical shock under any weather condition.

Ensure that Pedestrian Pushbuttons are integrated with a sign as shown in the standard details. Provide the sign size as indicated on the Plans. GDOT will allow an adapter of cast aluminum. GDOT will allow one of three options:

1. The use of a 9 inch (229 mm) by 15 inch (381 mm) cast aluminum plate adapter to upgrade existing push button station, 9 inch (229 mm) by 12 inch (305 mm).
2. Push button station assembly 9 inch (229 mm) by 15 inch (381 mm) sign w/round pushbutton adapter.
3. The use of a 9 inch (229 mm) by 15 inch (381 mm) cast aluminum plate adapter to upgrade existing push button station, 5 inch (127 mm) by 7 inch (178 mm).

Ensure that the Pedestrian Push Button sign adapter plate is, die-cast aluminum and separate, such that it is interchangeable.

Ensure that the Pedestrian Push Button sign adapter assembly be, die-cast aluminum and attached, prior to shipping.

The plate shall be finished with highway yellow baked enamel paint (unless otherwise specified by the Engineer).

Ensure the button assembly is configured to be a mechanical switch with ball and 2 inch mushroom plunger.

Delete Subsection 925.2.34.A and substitute the following:

925.2.34 Prefabricated Controller Cabinet Base

A. Requirements

Provide controller cabinet bases that are precast polymer concrete and grey in color. Ensure the prefabricated controller cabinet base has the correct bolt pattern for the cabinet(s) to be installed. Provide prefabricated controller cabinet bases with UNC inserts as shown on plans. UNC inserts shall be stainless steel and be designed for a minimum of 15 foot-pounds of torque.

Ensure that prefabricated controller cabinet bases are designed to withstand wind loading of 125 mph (200 km/h) with the cabinets as shown in the Plans mounted. Ensure that prefabricated controller cabinet bases are designed for a minimum static vertical load of 5,000 pounds over a 10 inch (254 mm) by 10 inch (254 mm) by 1 inch (25 mm) thick distribution plate and withstand a tested load of 7,500 pounds. Ensure that prefabricated controller cabinet bases are designed for a minimum lateral load of 1800 pounds over an 18 inch (457 mm) by 24 inch (610 mm) by 1 inch (25 mm) steel plate applied to the longest side and shall withstand a tested load of 2700 pounds. The prefabricated controller cabinet base shall withstand a 50 foot-pound impact administered with a 12-pound weight having a “C” tup without puncture or splitting, in accordance with ASTM D2444. The prefabricated controller cabinet base shall meet the requirement of ASTM D543 Section 7, Procedure 1. Provide a copy of all test reports from a certified lab along with the materials certification package.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 934—Rapid Setting Patching Materials for Portland Cement Concrete

Delete Section 934 and substitute the following:

934.1 General Description
This section includes the requirements for rapid setting patching materials used in Portland cement concrete.

934.1.01 Related References
A. Standard Specifications
 Section 886—Epoxy Resin Adhesives

B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 97</td>
<td>C 31/C31M</td>
</tr>
<tr>
<td>T 260</td>
<td>C 109/C 109M</td>
</tr>
<tr>
<td></td>
<td>C 140</td>
</tr>
<tr>
<td></td>
<td>C 666</td>
</tr>
</tbody>
</table>

Federal Hazardous Products Labeling Act

QPL 27

934.2 Materials

934.2.01 Rapid Setting Patching Materials

A. General Requirements

1. Use rapid setting patching materials that have the following characteristics:
 - Are nonmetallic.
 - Have a color similar to Portland cement concrete.
 - Can be mixed and placed like concrete.
 - Have accelerated hardening characteristics.
 - Yield a permanent patch in concrete that can withstand traffic within 2 hours.
 For a list of sources, see QPL-27.

2. Type I
 Use Type I to patch reinforced or nonreinforced horizontal Portland cement concrete surfaces.

3. Type II
 Use Type II to patch only nonreinforced horizontal Portland cement concrete surfaces.

4. Type III
 Use Type III to patch reinforced vertical or overhead Portland cement concrete surfaces.
5. Classify Type I, Type II, and Type III as follows:
 a. Class A, Premixed: Use these materials as received by adding water or an activator solution, according to the manufacturer’s instructions.

 NOTE: DO NOT add extra aggregate to Class A patching material without approval from the Office of Materials and Research.

 b. Class B, Non-Premixed: These materials contain no aggregate. Add aggregate (fine and/or coarse) according to the manufacturer’s recommendations.

6. Type IV
 Use elastomeric patching material to patch nonreinforced horizontal Portland cement concrete surfaces.

7. Type V
 Use two-component cross linked resins to patch nonreinforced horizontal Portland cement concrete surfaces.

8. Type VI
 Use cementitious, rapid setting, structural repair mortar to patch nonreinforced horizontal Portland cement concrete surfaces.

B. Physical Requirements

1. Use Type I, Type II, and Type III patching materials that have been evaluated by the National Transportation Product Evaluation Program (NTPEP) or other approved test facility, and meet the following requirements.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow of Mortar, Type I and Type II</td>
<td>100% minimum</td>
</tr>
<tr>
<td>Type III</td>
<td>80% to 100%</td>
</tr>
<tr>
<td>Flexural Strength, Minimum</td>
<td>500 psi (3.5 MPa) in 24 hours</td>
</tr>
<tr>
<td>Compression Strength, Minimum</td>
<td></td>
</tr>
<tr>
<td>2 hours</td>
<td>1,200 psi (8.5 MPa)</td>
</tr>
<tr>
<td>24 hours</td>
<td>3,000 psi (20 MPa)</td>
</tr>
<tr>
<td>7 days (moisture cure)</td>
<td>4,000 psi (27.5 MPa)</td>
</tr>
<tr>
<td>Absorption, Maximum</td>
<td>10%</td>
</tr>
<tr>
<td>Shear Bond, Minimum</td>
<td>200 psi (1.5 MPa) in 24 hours</td>
</tr>
<tr>
<td>Freeze Thaw Durability Factor</td>
<td>75% of the reference concrete after 300 freeze-thaw cycles</td>
</tr>
<tr>
<td>Total Chlorides</td>
<td></td>
</tr>
<tr>
<td>Type I and Type III</td>
<td>0.6 lb/yd² (0.4 kg/m²) maximum</td>
</tr>
<tr>
<td>Type II</td>
<td>No limits</td>
</tr>
</tbody>
</table>

C. Fabrication

1. Packaging
 a. Package this material in strong, moisture-proof paper bags or other suitable containers that can withstand shipping, normal handling, and storage without breaking.
 b. Clearly label each container of the components of a patching system with the following information:
 ● Component designation, if two components.
 ● Manufacturer’s batch number.
D. Acceptance

1. Follow the mixing instructions of the manufacturer to create test specimens.
2. Air-cure all test specimens except for the 7-day moisture cure cubes.
3. Test Types I, II, and III using the following methods:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow of mortar</td>
<td>ASTM C 230</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>AASHTO T 97</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>ASTM C 109/C 109M or C 31/C 31M, whichever is applicable</td>
</tr>
<tr>
<td>Absorption</td>
<td>ASTM C 140</td>
</tr>
<tr>
<td>Shear bond strength</td>
<td>See Subsection 934.2.01.C, “Acceptance”, Step 4</td>
</tr>
<tr>
<td>Rapid freeze thaw</td>
<td>ASTM C 666</td>
</tr>
<tr>
<td>Total chlorides</td>
<td>AASHTO T 260</td>
</tr>
</tbody>
</table>

4. Shear Bond Strength
 a. Place a Type II epoxy resin adhesive meeting the requirements of Section 886 on the surface of a cured mortar bar 16 x 3 x 3 in (400 x 75 x 75 mm).
 b. Cast a 16 x 2 x 0.5 in (400 x 50 x 13 mm) rapid-setting material patch in the center of the mortar base.
 c. Air-cure the test sample for 24 hours.
 d. Saw the mortar bar base and the cured rapid setting material patch into 2 in (50 mm) segments for testing.
 e. Use a holding device and plunger to apply a load at a rate of 0.05 in (1.3 mm) per minute to the patch until the patch fails.
 f. Read the load in pounds (newtons) on the plunger.
 g. Calculate the shear bond strength in pounds per square inch by dividing the load in pounds by the interfacial area of the patch in square inches. Calculate the metric equivalent for shear bond strength in MPa by dividing the load in newtons by gravitational acceleration (9.81 m/s²).

5. Use Type IV, Type V and Type VI patching materials that have been evaluated by NTPEP, and received a subjective field rating of ≥ 4 on an ascending scale from 1 to 5.

6. The Department will reject a patching system that meets all the requirements of this Specification, but does not work as required in actual use.

E. Materials Warranty

 Ensure that the material has a minimum storage life of at least 1 year under conditions of 40° to 90° F (4° to 32° C) and maximum relative humidity of 90 percent.

Office of Materials & Research
Add the following:

ESCROW BID DOCUMENTATION

Scope and Purpose

The purpose of this specification is to preserve the bid documents of the successful bidder (Contractor) for use by the parties in any claims or litigation between the Department and Contractor arising out of this contract. The Contractor shall submit a legible copy of bid documentation used to prepare the bid for this contract to the Department. Such documentation shall be placed in escrow with a banking institution or other bonded document storage facility and preserved by that institution/facility as specified in the following sections of this specification.

Bid Documentation

The term "bid documentation" as used in this specification means all writings, working papers, computer printouts, charts, and all other data compilations which contain or reflect information, data, and calculations used by the Contractor to determine the bid in bidding for this project. The term "bid documentation" includes, but is not limited to, Contractor equipment rates, Contractor overhead rates, labor rates, efficiency or productivity factors, arithmetic extensions, and quotations from subcontractors and material suppliers to the extent that such rates and quotations were used by the Contractor in formulating and determining the amount of the bid. The term "bid documentation" also includes any manuals which are standard to the industry used by the Contractor in determining the bid for this project. Such manuals may be included in the bid documentation by reference. Such reference shall include the name and date of the Publication and the Publisher. The term does not include bid documents provided by the Department for use by the Contractor in bidding on this project.

Submittal of Bid Documentation

The Contractor shall submit the bid documentation to the Department in a container suitable for sealing, no later than ten calendar days following award of the Contract by the Department. The Department will not issue a Notice to Proceed until the acceptable documentation has been received. The container shall be clearly marked “Bid Documentation” and shall also show on the face of the container the Contractor's name, the date of submittal, the Project Number, the P.I. Number, the Contract Number, and the County.

Affidavit

In addition to the bid documentation, an affidavit, signed under oath by an individual authorized by the Contractor to execute bidding proposals shall be included. The affidavit shall list each bid document with sufficient specificity so a comparison may be made between the list and the bid documentation to ensure that all of the bid documentation listed in the affidavit has been enclosed. The affidavit shall attest that the affiant has personally examined the bid documentation, that the affidavit lists all of the documents used by the Contractor to determine the bid for this project, and that all such bid documentation has been included.

Verification

Upon receipt of the bid documentation authorized representatives of the Department and the Contractor will verify the accuracy and completeness of the bid documentation compared to the affidavit. Should a discrepancy exist the
Contractor shall immediately furnish the Department with any other needed total documentation. The Department, upon determining that the bid documentation is complete, will, in the presence of the Contractor's representative, immediately place the complete documentation and affidavit in the container and seal it. Both parties will deliver the sealed container to a banking institution or other bonded document storage facility selected by the Department for placement in a safety deposit box, vault or other secure accommodation.

Duration and Use

The bid documentation and affidavit shall remain in escrow during the life of the Contract or until such time as the Contractor notifies the Department of his intention to file a claim or his initiation of litigation against the Department related to the Contract. Notification of the Contractor's intention to file a claim or litigation against the Department shall be sufficient evidence for the Department to obtain the release and custody of the bid documentation. If no such notification is received and the Contractor has signed the final Standard Release Form the Department shall instruct the banking institution or other bonded document storage facility to release the sealed container to the Contractor.

The Contractor agrees that the sealed container placed in escrow contains all of the bid documentation used to determine the bid and that no other bid documentation shall be utilized by the Contractor in litigation over claims brought by the Contractor arising out of this contract.

Refusal or Failure to Provide Bid Documentation

Failure or refusal to provide bid documentation shall be deemed either:

1. Failure to execute the Contract if the Contract has not yet been executed or,
2. Material breach of the Contract if the Contract has been executed.

Should the Contractor fail to execute the Contract as stated in 1 above, the Department will retain the bid bond. Refusal of the Contractor to provide adequate documentation after execution of the Contract will be considered material breach of the Contract and the Contractor will be declared in default of the Contract. The Department may, at its option terminate the contract for default. These remedies are not exclusive and the Department may take such other action as is available to it under the law.

Confidentiality of Bid Documentation

The bid documentation and affidavit in escrow are, and will remain, the property of the Contractor. The Department has no interest in, or right to, the bid documentation and affidavit other than to verify the contents and legibility of the bid documentation unless notification of the intention to file claim is received or litigation ensues between the Department and Contractor. In the event of such notification or litigation, the bid documentation and affidavit shall become the property of the Department.

Cost and Escrow Instructions

The cost of the escrow will be borne by the Department. The Department will provide escrow instructions to the banking institution or other bonded document storage facility consistent with this specification.

Escrow Agreement

A copy of the Escrow Agreement the successful bidder will be required to sign is attached. The successful bidder (contractor) agrees that they will sign the Escrow Agreement. Should the Contractor fail to sign the Escrow Agreement, when presented, the Department will retain the bid bond. If the Contract has been executed, and the Contractor fails to sign the Escrow Agreement, the Contractor may be declared in default of the Contract.

Payment

There will be no separate payment for compilation of the data, container or cost of verification of the bid documentation. All costs shall be included in the overall Contract bid price.
Escrow Agreement
For
Bid Documents

THIS AGREEMENT is made and entered into this _____ day of ________, 20____, by and among the Department of Transportation, an agency of the State of Georgia, hereinafter called the "DEPARTMENT"; __________________________; hereinafter called the "CONTRACTOR"; and ________________________________, hereinafter called the "ESCROW AGENT".

WHEREAS, the DEPARTMENT awarded a project on _________________, 20__, based on a bid proposal submitted by the CONTRACTOR, hereinafter called the "PROPOSAL", for the construction of Project Number ___________________________ County(ies), Georgia, hereinafter called the "PROJECT", pursuant to which the CONTRACTOR shall cause the work therein to be constructed; and

WHEREAS, the DEPARTMENT and CONTRACTOR are desirous of entering into an Escrow Agreement, to provide for specific contingencies governing the escrow and control of the PROPOSAL bid documentation; hereinafter called "BID DOCUMENTS"; and

WHEREAS, the DEPARTMENT and CONTRACTOR desire the ESCROW AGENT to hold the BID DOCUMENTS of the CONTRACTOR;

NOW THEREFORE, for and in consideration of the mutual covenants contained herein, it is agreed by and between the parties hereto that:

ARTICLE I
ESCROW BID DOCUMENTATION

The parties hereto agree to the establishment of Escrow of the BID DOCUMENTS for the PROPOSAL pursuant to the Specifications, Supplemental Specifications, or Special Provisions pertaining to construction under the contract. It is the understanding of the parties hereto that the DEPARTMENT shall pay the ESCROW AGENT, as determined by separate agreement, for the escrow of the BID DOCUMENTS submitted to the ESCROW AGENT under the terms of this Agreement.

ARTICLE II
ACKNOWLEDGMENT
By its signature below, the ESCROW AGENT hereby acknowledges receipt from the
DEPARTMENT and CONTRACTOR of a sealed container bearing the CONTRACTOR'S name, address and
PROJECT Number assigned by the DEPARTMENT and containing, as specified by the affidavit of the
CONTRACTOR, the PROPOSAL BID DOCUMENTS for the aforementioned PROJECT.

ARTICLE III
DEPOSIT OF BID DOCUMENTS
The PROPOSAL BID DOCUMENTS shall remain on deposit with the ESCROW AGENT until
those conditions of release, as specified in ARTICLE IV, RELEASE FROM ESCROW, are met. As long as the
BID DOCUMENTS remain in escrow with the ESCROW AGENT, the ESCROW AGENT shall not allow any
person access, to gain possession, or to in any way interfere with the sealed BID DOCUMENT container.

ARTICLE IV
RELEASE FROM ESCROW
Upon being presented, by the DEPARTMENT, with a CONTRACTOR signed final Standard
Release Form for the contract for the PROJECT, the ESCROW AGENT shall deliver to the CONTRACTOR the
sealed container bearing the CONTRACTOR'S name and address and project number on it. The ESCROW AGENT
is also authorized to release the BID DOCUMENT sealed container to the DEPARTMENT without the
CONTRACTOR'S signed consent subject to the following conditions:

1. The CONTRACTOR has provided written notification to the DEPARTMENT of the
 CONTRACTOR'S intention to file a claim related to the contract for the PROJECT; or

2. The CONTRACTOR has initiated litigation against the DEPARTMENT relating to the
 contract for the PROJECT.

Prior to any release from escrow to the DEPARTMENT the ESCROW AGENT shall verify that
either condition of release to the DEPARTMENT, as stated above, has been met by providing written notice to the
CONTRACTOR of the ESCROW AGENT'S intention to release the PROPOSAL BID DOCUMENTS to the
DEPARTMENT. Such written notice from the ESCROW AGENT shall be sent by certified mail no less than ten
(10) calendar days prior to release to the DEPARTMENT. Upon any release from escrow of the PROPOSAL BID
DOCUMENT container the ESCROW AGENT shall cause the execution of Exhibit A, Escrow Release for
PROPOSAL BID DOCUMENTS, as attached hereto and incorporated herein as if fully contained, by the party receiving the BID DOCUMENT container.

ARTICLE V

INDEMNITY

The CONTRACTOR agrees to indemnify and hold the ESCROW AGENT harmless against any loss, claim, damage, liability or expenses incurred in connection with any action, suit, proceeding, claim or alleged liability arising from this Escrow Agreement, provided, however, that the ESCROW AGENT shall not be so indemnified or held harmless for its negligence or acts of bad faith by it or any of its agents or employees.

ARTICLE VI

NOTICES

All notices and other communication shall be in writing and shall be deemed to have been duly given and delivered if mailed by certified mail, return receipt requested, postage prepaid to the addresses stated herein:

DEPARTMENT:

Georgia Department of Transportation

ATTN: Treasurer

600 West Peachtree Street

Atlanta, Georgia 30308

CONTRACTOR:

ESCROW AGENT:

ARTICLE VII

DUTIES OF ESCROW AGENT

The duties and responsibilities of the ESCROW AGENT shall be limited to those expressly set forth herein and the ESCROW AGENT shall act only in accordance with this ESCROW Agreement.
Notwithstanding specific provisions hereunder, the ESCROW AGENT shall at all times act upon and in accordance with the joint written instructions of the DEPARTMENT and CONTRACTOR.

ARTICLE VIII.
LAWS
This Escrow Agreement shall be deemed to have been executed in Fulton County, Georgia and the laws of the State of Georgia shall apply.

ARTICLE IX
ASSIGNMENT
This Escrow Agreement shall not be assigned without the written consent of all the parties hereto.

ARTICLE X
SURVIVAL OF CONTRACT
Except as may be expressly modified, all terms and conditions of this Escrow Agreement remain in full force and effect. The establishment of this Escrow Agreement is limited solely by the contingency of release of the PROPOSAL BID DOCUMENTS by the CONTRACTOR to the DEPARTMENT, as established by Article IV, Release From Escrow. Nothing contained herein shall alter the rights of the parties hereto.

The covenants herein contained shall, except as otherwise provided, accrue to the benefit of and be binding upon the successors and assigns of the parties hereto.
IN WITNESS WHEREOF, the parties hereunto set their hands and seals the day above first written.

CONTRACTOR: ESCROW AGENT:

BY: BY:

(SEAL) (SEAL)

TITLE: TITLE:

WITNESS WITNESS

DEPARTMENT OF TRANSPORTATION

BY:

TITLE: STATE TRANSPORTATION OFFICE ENGINEER

WITNESS

ESCROW CONTAINER SEAL NUMBERS:
Exhibit A

ESCROW RELEASE
OF
BID DOCUMENTS

This is to certify that on this ______________ day of ________, 20__, the sealed container identified as:

“Bid Documentation”

CONTRACTOR:

PROJECT NUMBER:
P.I. NUMBER:
CONTRACT NUMBER:
DATE OF SUBMITTAL:

(Evidence by Agreement dated ____________). was released from escrow and personally handed to the below named individual acknowledging receipt, representing the CONTRACTOR/DEPARTMENT, by the ESCROW AGENT upon the presentation of the required documentation pursuant to Article IV, Release from Escrow, of the agreement dated ________, 20__, a copy of such documentation is attached hereto.

Acknowledgment of Receipt:

Acknowledgment of Release:

ESCROW AGENT

ESCROW CONTAINER SEAL NUMBERS:
STATE OF GEORGIA
COUNTY OF FULTON

COMES NOW ___________________________ (Name) ___________________________, __________________ (Title)

of ___________________________ (Company Name) ___________________________ who, after having been duly sworn,
on oath, state and depose as follows:

1. This Affidavit is based upon the personal knowledge of the Affiant.

2. ___________________________ (Company Name) ___________________________ submitted a bid on Georgia Department of
Transportation Project ____________________________, _________ COUNTY(IES) which bid was
the low, responsive bid, and a Contract has been entered into between ___________________________ (Company Name) ______________ and the Georgia
Department of Transportation, known as Contract No. ____________________________.

3. This Affidavit is given in compliance with the special provision entitled “ESCROW BID
DOCUMENTATION” forming part of the Contract Documents of Contract No. B-__________________________.

4. The Affiant attests that, in his capacity for ___________________________ (Company Name) ___________________________, he is personally
aware the “Bid Documentation” which was used by the Company in determining, formulating, and submitting the
bid on Project No. ____________________________, _________ COUNTY(IES).

5. The Affiant further states that he has examined the bid documentation which has been placed in a sealed
contAINER marked “Bid Documentation”, and that all such Bid Documentation utilized by the Company in
determining, formulating, and submitting its bid is contained in the sealed container so marked.

6. Each bid document contained in the sealed container is separately listed on Exhibit A, which is attached
hereeto and incorporated herein as fully as if included in this Affidavit at this paragraph 6.
Further Affiant sayeth not.

__
(Company Name)

By: ______________________________________

__
(Name)

Its: _____________________________
(Title)

Sworn to and subscribed before me this ________ day of _______________________, 20____.

NOTARY PUBLIC

My Commission expires:________________________
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

GEORGIA PROJECT:
G.D.O.T.P.I.NO.: 0009542
DeKalb County

INSURANCE PROTECTION OF UTILITY INTERESTS
GEORGIA POWER COMPANY

WHERE IT IS NECESSARY AND SPECIFIED THAT FACILITIES BE ATTACHED TO UTILITY POLES WHICH DO NOT BELONG TO THE DEPARTMENT, THE CONTRACTOR SHALL AND DOES HEREBY AGREE INDEMNIFY, SAVE HARMLESS AND DEFEND THE OWNER OF SUCH POLES AND ANY JOINT USE LICENSEES THEREOF (HEREINAFTER REFERRED TO AS THE UTILITY COMPANY) FROM THE PAYMENT OF ANY SUM OF MONEY TO ANY PERSON WHOMSOEVER ON ACCOUNT OF CLAIMS OR SUITS GROWING OUT OF INJURIES TO PERSONS, INCLUDING DEATH, OR DAMAGE TO SUBCONTRACTORS OR IN ANY WAY ATTRIBUTABLE TO THE PERFORMANCE AND PROSECUTION OF THE WORK HEREIN CONTRACTED FOR, INCLUDING (BUT WITHOUT LIMITING THE GENERALITY OF THE FOREGOING), ALL CLAIMS FOR INJURIES TO PERSONS OR DAMAGE TO PROPERTY, LINES, FEES, COSTS OF INVESTIGATION AND OF DEFENSE.

THE CONTRACTOR HEREBY WAIVES AND RELINQUISHES ANY RIGHT OF SUBORNATION IT MIGHT HAVE AGAINST THE UTILITY COMPANY UNDER THE PROVISIONS OF THE WORKMEN'S COMPENSATION ACT OF GEORGIA OR OF ANY OTHER STATE ON ACCOUNT OF ANY INJURY TO ITS EMPLOYEES OR SUB-CONTRACTORS CAUSED IN WHOLE OR IN PART BY ANY NEGLIGENCE OF THE UTILITY COMPANY. THE CONTRACTOR FURTHER AGREES THAT IT WILL REQUIRE ITS WORKMEN'S COMPENSATION INSURER, IF ANY, TO LIKewise WAIVE AND RELINQUISH SUCH SUBORNATION RIGHTS.

I. INSURANCE

A. IN ADDITION TO ANY OTHER FORMS OF INSURANCE OR BONDS REQUIRED UNDER THE TERMS OF THE CONTRACT AND SPECIFICATIONS, THE CONTRACTOR WILL BE REQUIRED TO FURNISH AND MAINTAIN POLICIES OF INSURANCE COVERING:

1) THE LEGAL LIABILITY OF THE CONTRACTOR AND HIS SUB-CONTRACTORS UNDER THE GEORGIA WORKMEN'S COMPENSATION ACT FOR CLAIMS FOR PERSONAL INJURIES AND DEATH TO EMPLOYEES ENGAGED IN THIS WORK.

2) THE LEGAL LIABILITY (INCLUDING CONTRACTUAL) OF THE CONTRACTOR AND HIS SUB-CONTRACTORS, WHO MAY BE ENGAGED IN THIS WORK, FOR CLAIMS OF DAMAGES, PERSONAL INJURIES OR DEATH RESULTING FOR THE WORK TO BE PERFORMED UNDER THIS CONTRACT BY THE CONTRACTOR OR THIS SUB-CONTRACTORS, TO PERSONS OTHER THAN ENGAGED IN THE WORK INCLUDED IN THIS CONTRACT IN AN AMOUNT NOT LESS THAN:

$500,000 FOR ANY ONE PERSON
$1,000,000 FOR ANY ONE ACCIDENT
3) THE LEGAL LIABILITY (INCLUDING CONTRACTUAL) OF THE CONTRACTOR AND HIS SUB-CONTRACTORS, WHO MAY BE ENGAGED IN THIS WORK, TO PAY CLAIMS FOR DAMAGES TO PROPERTY BELONGING TO OTHERS THAN SUCH CONTRACTOR OR THIS SUB-CONTRACTORS, IN THE AMOUNT NOT LESS THAN:

$1,000,000 (FOR ANY ACCIDENT)
AND SUBJECT TO THE SAME LIMIT FOR ANY ONE ACCIDENT, IN AN AGGREGATE AMOUNT NOT LESS THAN
$5,000,000.

4) PROTECTIVE LIABILITY INSURANCE SHALL BE PROVIDED BY THE CONTRACTOR BY A SEPARATE POLICY IN WHICH THE UTILITY COMPANY IS THE NAMED INSURED. ORIGINAL AND DUPLICATE COPIES WITH LIMITS OF LIABILITY IN THE SAME AMOUNTS AS SHOWN IN SECTIONS IA (1) AND (2) ABOVE SHALL BE FURNISHED TO THE UTILITY COMPANY(IES) OR THE CONTRACTOR MAY ELECT TO HAVE HIS CERTIFICATE OF INSURANCE INCLUDE AN ENDORSEMENT CLAUSE ADDING THE UTILITY COMPANY(IES) AS ADDITIONAL INSURED PARTY(IES) BUT ONLY WITH RESPECT TO THE OPERATIONS OF: (NAME OF CONTRACTOR)

DURING THE DURATION OF DEPARTMENT OF TRANSPORTATION, STATE OF GEORGIA, PROJECT: P.I. NO. 0009542

B. ALL OF THE AFOREMENTIONED INSURANCE SHALL BE PLACED WITH AN INSURANCE COMPANY WHICH IS LICENSED TO DO BUSINESS IN THE STATE OF GEORGIA AND SHALL BE ENDORSED TO COVER THE LIABILITY ASSUMED BY THE CONTRACTOR UNDER THE PROVISIONS OF THIS CONTRACT.

1) IT IS UNDERSTOOD, HOWEVER, THAT THE PROVISIONS REQUIRING THE CONTRACTOR TO CARRY SAID INSURANCE SHALL NOT BE CONSTRUED AS IN ANY MANNER WAIVING OR RESTRICTING THE LIABILITY OF THE CONTRACTOR PURSUANT TO THE TERMS HEREOF WHICH MAY NOT BE INSURED UNDER SAID INSURANCE POLICIES ABOVE REQUIRED.

2) AS EVIDENCE OF THIS INSURANCE AND PRIOR TO THE BEGINNING OF ANY WORK IN CONNECTION WITH THIS CONTRACT, THE CONTRACTOR SHALL SUBMIT TO THE DISTRICT ENGINEER, DEPARTMENT OF TRANSPORTATION, STATE OF GEORGIA, AND THE UTILITY COMPANY A CERTIFICATE PROVIDING THE ABOVE COVERAGE AND WHICH CERTIFIES THAT THE SAID POLICIES HAVE BEEN PROPERLY ENDORSED TO MEET THE ABOVE REQUIREMENTS.

C. IF ANY PART OF THE WORK IS SUBLET, SIMILAR INSURANCE AND EVIDENCE THEREOF, IN THE SAME AMOUNTS AS REQUIRED OF THE PRIME CONTRACTOR, SHALL BE PROVIDED BY OR IN BEHALF OF THE SUB-CONTRACTOR TO COVER HIS OPERATIONS. ENDORSEMENTS TO THE PRIME CONTRACTOR’S POLICIES SPECIFICALLY NAMING SUB-CONTRACTORS AND DESCRIBING THEIR OPERATIONS WILL BE ACCEPTABLE FOR THIS PURPOSE.

D. ALL INSURANCE HEREINBEFORE SPECIFIED SHALL BE CARRIED UNTIL ALL WORK REQUIRED TO BE PERFORMED UNDER THE TERMS OF THE CONTRACT HAS BEEN SATISFACTORILY COMPLETED AS EVIDENCED BY THE FORMAL ACCEPTANCE BY THE
STATE. INSURING THE UTILITY COMPANY(IES), OR ON THIRTY (30) DAYS WRITTEN NOTICE TO THE DEPARTMENT AND THE UTILITY COMPANY(IES) AS FOLLOWS:

NOTICE TO:
1) GEORGIA POWER COMPANY
 BIN 10140
 241 RALPH MCGILL BLVD
 ATLANTA, GEORGIA 30308
 ATTN: MR. MARK TILDEN

2)

COPY NOTICE TO:
STATE UTILITIES ENGINEER
GEORGIA DEPARTMENT OF TRANSPORTATION
NO. 2 CAPITOL SQUARE, S.W.
ATLANTA, GEORGIA 30334

II. FAILURE TO COMPLY

IN THE EVENT OF CANCELLATION OR LAPSE OF INSURANCE POLICY:

THE GEORGIA POWER COMPANY ENGINEER MAY REQUIRE THAT THE CONTRACTOR VACATE GEORGIA POWER PROPERTY.

THE HIGHWAY ENGINEER MAY WITHHOLD ALL MONIES DUE THE CONTRACTOR ON MONTHLY STATEMENTS, ANY SUCH ORDERS SHALL REMAIN IN EFFECT UNTIL THE CONTRACTOR HAS REMEDIED THE SITUATION TO THE SATISFACTION OF THE UTILITY COMPANY’S ENGINEER AND THE HIGHWAY ENGINEER.

III. PAYMENT FOR COST OF COMPLIANCE:

NO SEPARATE PAYMENT WILL BE MADE FOR ANY EXTRA COST INCURRED ON ACCOUNT OF COMPLIANCE WITH THESE SPECIAL PROVISIONS. ALL SUCH COST SHALL BE INCLUDED IN PRICES BID FOR OTHER ITEMS OF THE WORK.

OFFICE OF UTILITIES
Georgia DOT Project: N/A
GDOT P.I. Number: 0009542, DESIGN-BUILD (DeKalb County)

DESIGN-BUILD

MEMORANDUM OF UNDERSTANDING

between the

Georgia Department of Transportation (hereafter the DEPARTMENT)

and

ATLANTA GAS LIGHT CO. (hereafter the OWNER)

Whereas the DEPARTMENT proposes to undertake a design-build project hereafter referred to as PROJECT to I-20 EB from I-285 TO CR 5151/PANOLA RD. CD SYSTEM, Georgia by contract through competitive bidding procedures; and,

Whereas the DEPARTMENT will accomplish the PROJECT through a Design Consultant, Design Consultant Team and/or Contractor hereafter referred to as CONTRACTOR; and,

Whereas, where OWNER has property rights ("Prior Rights") at the location of the PROJECT, OWNER will provide written evidence as to said prior rights within the area and will provide written documentation of prior rights relating to any individual crossing or Utility Facility, at the location of the PROJECT; and

Whereas, OWNER acknowledges that, generally, absent a showing of prior rights, the costs of relocation, protection, removal, or adjustment performed by OWNER shall be borne by OWNER; and

Whereas, pursuant to O.C.G.A. § 32-6-170(b), DEPARTMENT is authorized to pay or participate in the payment of the costs of relocation, protection, or adjustment of OWNER’S facilities where DEPARTMENT has made the determination that (i) such payments are in the best interest of the public and necessary in order to expedite the staging of the design-build project; and (ii) the costs of the removal, relocation, protection, or adjustment of such facilities are included as part of the Contract between the Department and the Department's roadway contractor for the design-build project; and

I. Type of Utility

OWNER has the following utility facilities which may need to be adjusted or relocated as a result of the proposed PROJECT:

Type of facility or facilities of OWNER:

_____ Domestic water mains and distribution lines and associated appurtenances

_____ Sanitary Sewer facilities and/or Storm Drainage System

_____ Electrical Distribution (overhead and underground) wires, poles, etc.

_____ Electrical Transmission (overhead and underground) wires, poles, etc.

_____ Natural Gas Distribution Facilities (underground)

X Natural Gas Transmission Facilities (underground)

_____ Petroleum Pipeline (underground)

_____ Telecommunications facilities and equipment

_____ Cable TV facilities

_____ Street Lighting

_____ Internet Data Service

_____ Other Facilities (Description) 444
2. New Utility Facilities Proposed (Betterment)

OWNER desires the following to be installed as new additional facilities within the PROJECT. Insert here or attach a detailed description of proposed new additional utility installations:

N/A

3. Assignment of Responsibilities for Design and Construction

This MEMORANDUM OF UNDERSTANDING and the following shall serve as a basis for assignment of responsibilities and costs for the DEPARTMENT to enter into a Standard Utility Agreement (SUA) or Contract Item Agreement (CIA), if necessary, with OWNER once the PROJECT is awarded to the CONTRACTOR. For a PROJECT implementation, GDOT will not have in its possession exact costing plans to be utilized to determine exact locations of the removal, relocation, protection, or adjustment. However, Overhead/Subsurface Utility Engineering (SUE) investigations plans exist providing the best information and signifying the layout of known existing facilities. Please use these plans for developing the final determination of services as indicated below. The CONTRACTOR developed plans will be provided to the OWNER for after the design build project is awarded by GDOT which shall be used by the CONTRACTOR as the final basis for the SUA or CIA.

OWNER hereby intends to:

A. OWNER, at the DEPARTMENT’S cost, will provide the following services for the properties for which it has established prior rights (check to signify):

<table>
<thead>
<tr>
<th>Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>X</td>
</tr>
<tr>
<td>Construction</td>
<td>X</td>
</tr>
</tbody>
</table>

B. OWNER, for any removal, relocation, protection, or adjustments that do not have prior rights will allow their facilities to be placed into the DEPARTMENT’S contract for the following services pursuant to O.C.G.A. § 32-6-170(b). The DEPARTMENT will add the removal, relocation, protection, or adjustment costs to the overall PROJECT’s cost. The OWNER will be responsible for all design work and cost (check to signify):

<table>
<thead>
<tr>
<th>Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>X</td>
</tr>
</tbody>
</table>

C. OWNER, at OWNER’S cost, will provide the following services (check to signify):

<table>
<thead>
<tr>
<th>Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
</tbody>
</table>
The following is hereby mutually agreed to and understood by both parties:

1. The identification of existing facilities including preparation of Overhead/Subsurface Utility Engineering (SUE) investigations plans will be accomplished by the DEPARTMENT prior to award of the PROJECT and thereafter supplemented by the CONTRACTOR.

2. The CONTRACTOR shall coordinate reviews of the utility relocation information and obtain acceptance from the OWNER and DEPARTMENT when required. However, the OWNER shall apply for and obtain any required permits from the DEPARTMENT and perform any final design or proprietary design needed to administer its own relocation work if the work will not be included in the PROJECT (list any work not included in the PROJECT in space provided above). If the preliminary plans indicate that no conflict exists, and the OWNER concurs with this information, the OWNER shall provide a letter of “no conflict” to the CONTRACTOR.

3. The CONTRACTOR will research the property interest of each OWNER and present the findings to the DEPARTMENT and OWNER for approval. The CONTRACTOR will coordinate resolution of any disputed items. The plans and estimate for the utility work shall be subject to approval of both the DEPARTMENT and the OWNER prior to construction. If the OWNER chooses to include the subject utility work in the PROJECT and the research indicates that no property interest exists, the OWNER did not indicate Section 3B above, and the OWNER cannot refute this finding with evidence that would substantiate the property interest in legal proceedings, the OWNER shall provide confirmation in writing that OWNER will reimburse the DEPARTMENT for any adjustment or relocations necessary; and an agreement will be prepared and executed in accordance with the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual”. If the OWNER chooses to perform its own relocations and the OWNER holds no property interest as stated above, the OWNER shall confirm in writing that the OWNER will relocate its own facilities at no cost to the DEPARTMENT and the CONTRACTOR.

4. All construction engineering and contract supervision shall be the responsibility of the DEPARTMENT and the CONTRACTOR to ensure that all utility work included in the PROJECT is accomplished in accordance with the PROJECT’s plans and specifications. The CONTRACTOR will consult with the OWNER before authorizing any changes or deviations which affect the OWNER’s facility.

5. For Utility work included in the PROJECT, the CONTRACTOR shall ensure that the construction and installation of the OWNER’S facilities is performed by a contractor prequalified/registered with both the DEPARTMENT and the OWNER. The CONTRACTOR shall contact the OWNER to obtain the current list of the OWNER’S prequalified Contractors.

6. For Utility work included in the PROJECT’s contract, the OWNER or the OWNER’S Consultant shall have the right to visit and inspect the work at any time and advise the CONTRACTOR and the DEPARTMENT’S Engineer of any observed discrepancies or potential issues. The DEPARTMENT agrees to notify the OWNER when all utility work is completed and ready for final inspection by the OWNER.

7. Upon Maintenance Acceptance or Final Acceptance of the utility work included in the contract and upon certification by the DEPARTMENT’S Engineer and the OWNER, that the work has been completed in accordance with the plans and specifications, the OWNER will accept the adjusted, relocated, and additional facilities and will thereafter operate and maintain said facilities located within the PROJECT right of way subject to the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect without further cost to the DEPARTMENT or it’s CONTRACTOR.
3. For the purpose of utility coordination, relocation and reimbursement matters, the OWNER shall cooperate with the CONTRACTOR in the same manner as if coordinating directly with the DEPARTMENT in accordance with the laws of the State of Georgia, the DEPARTMENT'S "Utility Accommodation Policy and Standards Manual, current edition" and any agreements in effect between the DEPARTMENT and OWNER. The OWNER agrees to cooperate in good faith with the CONTRACTOR and to respond to all requests for information or meetings required to reach a resolution of any disputed items.

The Memorandum of Understanding will be incorporated into the project contract by reference or Exhibit.

APPROVED FOR THE OWNER BY:

[Signature]
8/31/10
(Date)

Mbr Engineering Design AGC+CCE

(Title)

APPROVED FOR THE DEPARTMENT BY:

[Signature]
9/13/2010
(Date)

STATE UTILITIES ENGINEER
Received
SEP 07 2010

MEMORANDUM OF UNDERSTANDING
between the
Georgia Department of Transportation (hereafter the DEPARTMENT)
and
BELLSOUTH TELECOMMUNICATIONS, INC. d/b/a AT&T Georgia (hereafter the
OWNER)

Whereas the DEPARTMENT proposes to undertake a design-build project hereafter referred to as
PROJECT to I-20 EB from I-285 TO CR 5151/PANOLA RD. CD SYSTEM, Georgia by contract through
competitive bidding procedures; and,

Whereas the DEPARTMENT will accomplish the PROJECT through a Design Consultant, Design
Consultant Team and/or Contractor hereafter referred to as CONTRACTOR; and,

Whereas, where OWNER has property rights ("Prior Rights") at the location of the PROJECT, OWNER
will provide written evidence as to said prior rights within the area and will provide written documentation of
prior rights relating to any individual crossing or Utility Facility, at the location of the PROJECT; and

Whereas, OWNER acknowledges that, generally, absent a showing of prior rights, the costs of
relocation, protection, removal, or adjustment performed by OWNER shall be borne by OWNER; and

Whereas, pursuant to O.C.G.A. § 32-6-170(b), DEPARTMENT is authorized to pay or participate in the
payment of the costs of relocation, protection, or adjustment of OWNER’S facilities where DEPARTMENT has
made the determination that (i) such payments are in the best interest of the public and necessary in order to
expedite the staging of the design-build project; and (ii) the costs of the removal, relocation, protection, or
adjustment of such facilities are included as part of the Contract between the Department and the Department's
roadway contractor for the design-build project; and

1. Type of Utility

OWNER has the following utility facilities which may need to be adjusted or relocated as a result of the
proposed PROJECT:

Type of facility or facilities of OWNER:
 Domestic water mains and distribution lines and associated appurtenances
 Sanitary Sewer facilities and/or Storm Drainage System
 Electrical Distribution (overhead and underground) wires, poles, etc.
 Electrical Transmission (overhead and underground) wires, poles, etc.
 Natural Gas Distribution Facilities (underground)
 Natural Gas Transmission Facilities (underground)
 Petroleum Pipeline (underground)
 Telecommunications facilities and equipment
 Cable TV facilities
 Street Lighting
 Internet Data Service

448
2. New Utility Facilities Proposed (Betterment)

OWNER desires the following to be installed as new additional facilities within the PROJECT. Insert here or attach a detailed description of proposed new additional utility installations:

No conflict with AT&T facilities as currently designed.

3. Assignment of Responsibilities for Design and Construction

This MEMORANDUM OF UNDERSTANDING and the following shall serve as a basis for assignment of responsibilities and costs for the DEPARTMENT to enter into a Standard Utility Agreement (SUA) or Contract Item Agreement (CIA), if necessary, with OWNER once the PROJECT is awarded to the CONTRACTOR. For a PROJECT implementation, GDOT will not have in its possession exact costing plans to be utilized to determine exact locations of the removal, relocation, protection, or adjustment. However, Overhead/Subsurface Utility Engineering (SUE) investigations plans exist providing the best information and signifying the layout of known existing facilities. Please use these plans for developing the final determination of services as indicated below. The CONTRACTOR developed plans will be provided to the OWNER for after the design build project is awarded by GDOT which shall be used by the CONTRACTOR as the final basis for the SUA or CIA.

OWNER hereby intends to:

A. OWNER, at the DEPARTMENT’S cost, will provide the following services for the properties for which it has established prior rights (check to signify):

- Design X
- Construction X

B. OWNER, for any removal, relocation, protection, or adjustments that do not have prior rights will allow their facilities to be placed into the DEPARTMENT’S contract for the following services pursuant to O.C.G.A. § 32-6-170(b). The DEPARTMENT will add the removal, relocation, protection, or adjustment costs to the overall PROJECT’s cost. The OWNER will be responsible for all design work and cost (check to signify):

- Construction X

C. OWNER, at OWNER’S cost, will provide the following services (check to signify):

- Design
- Construction
The following is hereby mutually agreed to and understood by both parties:

1. The identification of existing facilities including preparation of Overhead/Subsurface Utility Engineering (SUE) investigations plans will be accomplished by the DEPARTMENT prior to award of the PROJECT and thereafter supplemented by the CONTRACTOR.

2. The CONTRACTOR shall coordinate reviews of the utility relocation information and obtain acceptance from the OWNER and DEPARTMENT when required. However, the OWNER shall apply for and obtain any required permits from the DEPARTMENT and perform any final design or proprietary design needed to administer its own relocation work if the work will not be included in the PROJECT (list any work not included in the PROJECT in space provided above). If the preliminary plans indicate that no conflict exists, and the OWNER concurs with this information, the OWNER shall provide a letter of “no conflict” to the CONTRACTOR.

3. The CONTRACTOR will research the property interest of each OWNER and present the findings to the DEPARTMENT and OWNER for approval. The CONTRACTOR will coordinate resolution of any disputed items. The plans and estimate for the utility work shall be subject to approval of both the DEPARTMENT and the OWNER prior to construction. If the OWNER chooses to include the subject utility work in the PROJECT and the research indicates that no property interest exists, the OWNER did not indicate Section 3B above, and the OWNER cannot refute this finding with evidence that would substantiate the property interest in legal proceedings, the OWNER shall provide confirmation in writing that OWNER will reimburse the DEPARTMENT for any adjustment or relocations necessary; and an agreement will be prepared and executed in accordance with the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual”. If the OWNER chooses to perform its own relocations and the OWNER holds no property interest as stated above, the OWNER shall confirm in writing that the OWNER will relocate its own facilities at no cost to the DEPARTMENT and the CONTRACTOR.

4. All construction engineering and contract supervision shall be the responsibility of the DEPARTMENT and the CONTRACTOR to ensure that all utility work included in the PROJECT is accomplished in accordance with the PROJECT’s plans and specifications. The CONTRACTOR will consult with the OWNER before authorizing any changes or deviations which affect the OWNER’s facility.

5. For Utility work included in the PROJECT, the CONTRACTOR shall ensure that the construction and installation of the OWNER’S facilities is performed by a contractor prequalified/registered with both the DEPARTMENT and the OWNER. The CONTRACTOR shall contact the OWNER to obtain the current list of the OWNER’S prequalified Contractors.

6. For Utility work included in the PROJECT’s contract, the OWNER or the OWNER’s Consultant shall have the right to visit and inspect the work at any time and advise the CONTRACTOR and the DEPARTMENT’S Engineer of any observed discrepancies or potential issues. The DEPARTMENT agrees to notify the OWNER when all utility work is completed and ready for final inspection by the OWNER.

7. Upon Maintenance Acceptance or Final Acceptance of the utility work included in the contract and upon certification by the DEPARTMENT’S Engineer and the OWNER, that the work has been completed in accordance with the plans and specifications, the OWNER will accept the adjusted, relocated, and additional facilities and will thereafter operate and maintain said facilities located within the PROJECT right of way subject to the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect without further cost to the DEPARTMENT or it’s CONTRACTOR.
8. For the purpose of utility coordination, relocation and reimbursement matters, the OWNER shall cooperate with the CONTRACTOR in the same manner as if coordinating directly with the DEPARTMENT in accordance with the laws of the State of Georgia, the DEPARTMENT'S "Utility Accommodation Policy and Standards Manual, current edition" and any agreements in effect between the DEPARTMENT and OWNER. The OWNER agrees to cooperate in good faith with the CONTRACTOR and to respond to all requests for information or meetings required to reach a resolution of any disputed items.

The Memorandum of Understanding will be incorporated into the project contract by reference or Exhibit.

APPROVED FOR THE OWNER BY:

[Signature]

[Title]

APPROVED FOR THE DEPARTMENT BY:

[Signature]

STATE UTILITIES ENGINEER

Sept. 1, 2010

9-13-2010
Georgia DOT Project: N/A
GDOT P.I. Number: 0009542, DESIGN-BUILD (DeKalb County)

DESIGN-BUILD

MEMORANDUM OF UNDERSTANDING

between the
Georgia Department of Transportation (hereafter the DEPARTMENT)
and
DeKalb County Department of Watershed Management (hereafter the OWNER)

Whereas the DEPARTMENT proposes to undertake a design-build project hereafter referred to as PROJECT to I-20 EB from I-285 TO CR 5151/PANOLA RD. CD SYSTEM, Georgia by contract through competitive bidding procedures; and,

Whereas the DEPARTMENT will accomplish the PROJECT through a Design Consultant, Design Consultant Team and/or Contractor hereafter referred to as CONTRACTOR; and,

Whereas, where OWNER has property rights ("Prior Rights") at the location of the PROJECT, OWNER will provide written evidence as to said prior rights within the area and will provide written documentation of prior rights relating to any individual crossing or Utility Facility, at the location of the PROJECT; and

Whereas, OWNER acknowledges that, generally, absent a showing of prior rights, the costs of relocation, protection, removal, or adjustment performed by OWNER shall be borne by OWNER; and

Whereas, pursuant to O.C.G.A. § 32-6-170(b), DEPARTMENT is authorized to pay or participate in the payment of the costs of relocation, protection, or adjustment of OWNER’S facilities where DEPARTMENT has made the determination that (i) such payments are in the best interest of the public and necessary in order to expedite the staging of the design-build project; and (ii) the costs of the removal, relocation, protection, or adjustment of such facilities are included as part of the Contract between the Department and the Department’s roadway contractor for the design-build project; and

1. Type of Utility

OWNER has the following utility facilities which may need to be adjusted or relocated as a result of the proposed PROJECT: No utilities to be adjusted or relocated.

Type of facility or facilities of OWNER:

- Domestic water mains and distribution lines and associated appurtenances
- Sanitary Sewer facilities and/or Storm Drainage System
- Electrical Distribution (overhead and underground) wires, poles, etc.
- Electrical Transmission (overhead and underground) wires, poles, etc.
- Natural Gas Distribution Facilities (underground)
- Natural Gas Transmission Facilities (underground)
- Petroleum Pipeline (underground)
- Telecommunications facilities and equipment
- Cable TV facilities
- Street Lighting
- Internet Data Service
- Other Facilities (Description)
2. New Utility Facilities Proposed (Betterment)

OWNER desires the following to be installed as new additional facilities within the PROJECT.
Insert here or attach a detailed description of proposed new additional utility installations:

None

3. Assignment of Responsibilities for Design and Construction

This MEMORANDUM OF UNDERSTANDING and the following shall serve as a basis for assignment of responsibilities and costs for the DEPARTMENT to enter into a Standard Utility Agreement (SUA) or Contract Item Agreement (CIA), if necessary, with OWNER once the PROJECT is awarded to the CONTRACTOR. For a PROJECT implementation, GDOT will not have in its possession exact costing plans to be utilized to determine exact locations of the removal, relocation, protection, or adjustment. However, Overhead/Subsurface Utility Engineering (SUE) investigations plans exist providing the best information and signifying the layout of known existing facilities. Please use these plans for developing the final determination of services as indicated below. The CONTRACTOR developed plans will be provided to the OWNER for after the design build project is awarded by GDOT which shall be used by the CONTRACTOR as the final basis for the SUA or CIA.

OWNER hereby intends to:

A. OWNER, at the DEPARTMENT’S cost, will provide the following services for the properties for which it has established prior rights (check to signify):

<table>
<thead>
<tr>
<th>Service</th>
<th>Checkmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
</tbody>
</table>

B. OWNER, for any removal, relocation, protection, or adjustments that do not have prior rights will allow their facilities to be placed into the DEPARTMENT’S contract for the following services pursuant to O.C.G.A. § 32-6-170(b). The DEPARTMENT will add the removal, relocation, protection, or adjustment costs to the overall PROJECT’s cost. The OWNER will be responsible for all design work and cost (check to signify):

<table>
<thead>
<tr>
<th>Service</th>
<th>Checkmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>X</td>
</tr>
</tbody>
</table>

C. OWNER, at OWNER’S cost, will provide the following services (check to signify):

<table>
<thead>
<tr>
<th>Service</th>
<th>Checkmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
</tbody>
</table>
The following is hereby mutually agreed to and understood by both parties:

1. The identification of existing facilities including preparation of Overhead/Subsurface Utility Engineering (SUE) investigations plans will be accomplished by the DEPARTMENT prior to award of the PROJECT and thereafter supplemented by the CONTRACTOR.

2. The CONTRACTOR shall coordinate reviews of the utility relocation information and obtain acceptance from the OWNER and DEPARTMENT when required. However; the OWNER shall apply for and obtain any required permits from the DEPARTMENT and perform any final design or proprietary design needed to administer its own relocation work if the work will not be included in the PROJECT (list any work not included in the PROJECT in space provided above). If the preliminary plans indicate that no conflict exists, and the OWNER concurs with this information, the OWNER shall provide a letter of “no conflict” to the CONTRACTOR.

3. The CONTRACTOR will research the property interest of each OWNER and present the findings to the DEPARTMENT and OWNER for approval. The CONTRACTOR will coordinate resolution of any disputed items. The plans and estimate for the utility work shall be subject to approval of both the DEPARTMENT and the OWNER prior to construction. If the OWNER chooses to include the subject utility work in the PROJECT and the research indicates that no property interest exists, the OWNER did not indicate Section 3B above, and the OWNER cannot refute this finding with evidence that would substantiate the property interest in legal proceedings, the OWNER shall provide confirmation in writing that OWNER will reimburse the DEPARTMENT for any adjustment or relocations necessary; and an agreement will be prepared and executed in accordance with the DEPARTMENT’S "Utility Accommodation Policy and Standards Manual". If the OWNER chooses to perform its own relocations and the OWNER holds no property interest as stated above, the OWNER shall confirm in writing that the OWNER will relocate its own facilities at no cost to the DEPARTMENT and the CONTRACTOR.

4. All construction engineering and contract supervision shall be the responsibility of the DEPARTMENT and the CONTRACTOR to ensure that all utility work included in the PROJECT is accomplished in accordance with the PROJECT’s plans and specifications. The CONTRACTOR will consult with the OWNER before authorizing any changes or deviations which affect the OWNER’s facility.

5. For Utility work included in the PROJECT, the CONTRACTOR shall ensure that the construction and installation of the OWNER’S facilities is performed by a contractor prequalified/registered with both the DEPARTMENT and the OWNER. The CONTRACTOR shall contact the OWNER to obtain the current list of the OWNER’S prequalified Contractors.

6. For Utility work included in the PROJECT’s contract, the OWNER or the OWNER’S Consultant shall have the right to visit and inspect the work at any time and advise the CONTRACTOR and the DEPARTMENT’S Engineer of any observed discrepancies or potential issues. The DEPARTMENT agrees to notify the OWNER when all utility work is completed and ready for final inspection by the OWNER.

7. Upon Maintenance Acceptance or Final Acceptance of the utility work included in the contract and upon certification by the DEPARTMENT’S Engineer and the OWNER, that the work has been completed in accordance with the plans and specifications, the OWNER will accept the adjusted, relocated, and additional facilities and will thereafter operate and maintain said facilities located within the PROJECT right of way subject to the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect without further cost to the DEPARTMENT or it’s CONTRACTOR.
8. For the purpose of utility coordination, relocation and reimbursement matters, the OWNER shall cooperate with the CONTRACTOR in the same manner as if coordinating directly with the DEPARTMENT in accordance with the laws of the State of Georgia, the DEPARTMENT'S "Utility Accommodation Policy and Standards Manual, current edition" and any agreements in effect between the DEPARTMENT and OWNER. The OWNER agrees to cooperate in good faith with the CONTRACTOR and to respond to all requests for information or meetings required to reach a resolution of any disputed items.

The Memorandum of Understanding will be incorporated into the project contract by reference or Exhibit.

APPROVED FOR THE OWNER BY:

[Signature]
(Title)

APPROVED FOR THE DEPARTMENT BY:

[Signature]
(Date)

STATE UTILITIES ENGINEER

[Signature]
(Date)
MEMORANDUM OF UNDERSTANDING
between the
Georgia Department of Transportation (hereafter the DEPARTMENT)
and
Georgia Power Company (hereafter the OWNER)

Whereas the DEPARTMENT proposes to undertake a design-build project hereafter referred to as PROJECT to I-20 EB from I-285 TO CR 5151/PANOLA RD. CD SYSTEM, Georgia by contract through competitive bidding procedures; and,

Whereas the DEPARTMENT will accomplish the PROJECT through a Design Consultant, Design Consultant Team and/or Contractor hereafter referred to as CONTRACTOR; and,

Whereas, where OWNER has property rights ("Prior Rights") at the location of the PROJECT, OWNER will provide written evidence as to said prior rights within the area and will provide written documentation of prior rights relating to any individual crossing or Utility Facility, at the location of the PROJECT; and

Whereas, OWNER acknowledges that, generally absent a showing of prior rights, the costs of relocation, protection, removal, or adjustment performed by OWNER shall be borne by OWNER; and

Whereas, pursuant to O.C.G.A. § 32-6-170(b), DEPARTMENT is authorized to pay or participate in the payment of the costs of relocation, protection, or adjustment of OWNER’S facilities where DEPARTMENT has made the determination that (i) such payments are in the best interest of the public and necessary in order to expedite the staging of the design-build project; and (ii) the costs of the removal, relocation, protection, or adjustment of such facilities are included as part of the Contract between the Department and the Department’s roadway contractor for the design-build project; and

1. Type of Utility

OWNER has the following utility facilities which may need to be adjusted or relocated as a result of the proposed PROJECT:

Type of facility or facilities of OWNER:

[] Domestic water mains and distribution lines and associated appurtenances
[] Sanitary Sewer facilities and/or Storm Drainage System
[] Electrical Distribution (overhead and underground) wires, poles, etc.
[] Electrical Transmission (overhead and underground) wires, poles, etc.
[] Natural Gas Distribution Facilities (underground)
[] Natural Gas Transmission Facilities (underground)
[] Petroleum Pipeline (underground)
[] Telecommunications facilities and equipment
[] Cable TV facilities
[] Street Lighting
[] Internet Data Service
[] Other Facilities (Description)
2. New Utility Facilities Proposed (Betterment)

OWNER desires the following to be installed as new additional facilities within the PROJECT. Insert here or attach a detailed description of proposed new additional utility installations:

Not Applicable

3. Assignment of Responsibilities for Design and Construction

This MEMORANDUM OF UNDERSTANDING and the following shall serve as a \textit{basis} for assignment of responsibilities and costs for the DEPARTMENT to enter into a Standard Utility Agreement (SUA) or Contract Item Agreement (CIA), if necessary, with OWNER once the PROJECT is awarded to the CONTRACTOR. For a PROJECT implementation, GDOT will not have in its possession exact costing plans to be utilized to determine exact locations of the removal, relocation, protection, or adjustment. However, Overhead/Subsurface Utility Engineering (SUE) investigations plans exist providing the best information and signifying the layout of known existing facilities. Please use these plans for developing the final determination of services as indicated below. The CONTRACTOR developed plans will be provided to the OWNER for after the design build project is awarded by GDOT which shall be used by the CONTRACTOR as the final basis for the SUA or CIA.

OWNER hereby intends to:

A. OWNER, at the DEPARTMENT’S cost, will provide the following services for the properties for which it has established prior rights (check to signify):

- Design \textit{x}
- Construction \textit{x}

B. OWNER, for any removal, relocation, protection, or adjustments that do not have prior rights will allow their facilities to be placed into the DEPARTMENT’S contract for the following services pursuant to O.C.G.A. \S\ 32-6-170(b). The DEPARTMENT will add the removal, relocation, protection, or adjustment costs to the overall PROJECT’s cost. The OWNER will be responsible for all design work and cost (check to signify):

- Construction \\

C. OWNER, at OWNER’S cost, will provide the following services (check to signify):

- Design \\
- Construction \\

457
The following is hereby mutually agreed to and understood by both parties:

1. The identification of existing facilities including preparation of Overhead/Subsurface Utility Engineering (SUE) investigations plans will be accomplished by the DEPARTMENT prior to award of the PROJECT and thereafter supplemented by the CONTRACTOR.

2. The CONTRACTOR shall coordinate reviews of the utility relocation information and obtain acceptance from the OWNER and DEPARTMENT when required. However, the OWNER shall apply for and obtain any required permits from the DEPARTMENT and perform any final design or proprietary design needed to administer its own relocation work if the work will not be included in the PROJECT (list any work not included in the PROJECT in space provided above). If the preliminary plans indicate that no conflict exists, and the OWNER concurs with this information, the OWNER shall provide a letter of “no conflict” to the CONTRACTOR.

3. The CONTRACTOR will research the property interest of each OWNER and present the findings to the DEPARTMENT and OWNER for approval. The CONTRACTOR will coordinate resolution of any disputed items. The plans and estimate for the utility work shall be subject to approval of both the DEPARTMENT and the OWNER prior to construction. If the OWNER chooses to include the subject utility work in the PROJECT and the research indicates that no property interest exists, the OWNER did not indicate Section 3B above, and the OWNER cannot refute this finding with evidence that would substantiate the property interest in legal proceedings, the OWNER shall provide confirmation in writing that OWNER will reimburse the DEPARTMENT for any adjustment or relocations necessary; and an agreement will be prepared and executed in accordance with the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual”. If the OWNER chooses to perform its own relocations and the OWNER holds no property interest as stated above, the OWNER shall confirm in writing that the OWNER will relocate its own facilities at no cost to the DEPARTMENT and the CONTRACTOR.

4. All construction engineering and contract supervision shall be the responsibility of the DEPARTMENT and the CONTRACTOR to ensure that all utility work included in the PROJECT is accomplished in accordance with the PROJECT's plans and specifications. The CONTRACTOR will consult with the OWNER before authorizing any changes or deviations which affect the OWNER’s facility.

5. For Utility work included in the PROJECT, the CONTRACTOR shall ensure that the construction and installation of the OWNER'S facilities is performed by a contractor prequalified/registered with both the DEPARTMENT and the OWNER. The CONTRACTOR shall contact the OWNER to obtain the current list of the OWNER'S prequalified Contractors.

6. For Utility work included in the PROJECT’S contract, the OWNER or the OWNER’S Consultant shall have the right to visit and inspect the work at any time and advise the CONTRACTOR and the DEPARTMENT’S Engineer of any observed discrepancies or potential issues. The DEPARTMENT agrees to notify the OWNER when all utility work is completed and ready for final inspection by the OWNER.

7. Upon Maintenance Acceptance or Final Acceptance of the utility work included in the contract and upon certification by the DEPARTMENT’S Engineer and the OWNER, that the work has been completed in accordance with the plans and specifications, the OWNER will accept the adjusted, relocated, and additional facilities and will thereafter operate and maintain said facilities within the PROJECT right of way subject to the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect without further cost to the DEPARTMENT or it’s CONTRACTOR.
8. For the purpose of utility coordination, relocation and reimbursement matters, the OWNER shall cooperate with the CONTRACTOR in the same manner as if coordinating directly with the DEPARTMENT in accordance with the laws of the State of Georgia, the DEPARTMENT'S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect between the DEPARTMENT and OWNER. The OWNER agrees to cooperate in good faith with the CONTRACTOR and to respond to all requests for information or meetings required to reach a resolution of any disputed items.

The Memorandum of Understanding will be incorporated into the project contract by reference or Exhibit.

APPROVED FOR THE OWNER BY:

[Signature]
Mark Allen
Project Manager - DOT/Joint Use

(Date)
9-1-10

APPROVED FOR THE DEPARTMENT BY:

[Signature]

(Date)
9-13-2010

STATE UTILITIES ENGINEER
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 103—Award and Execution of Contract
(50 Day Clause)

Delete paragraph one of Subsection 103.02 and substitute the following:

If a Contract is Awarded, it will be Awarded to the lowest reliable bidder whose Proposal shall have met all the prescribed requirements. The Contract will be Awarded, if at all, within 50 calendar days after the opening of the Proposals, unless a longer period is specified in the Proposal or the successful Bidder agrees in writing a longer period for the Award.
Delete Section 105.04 and Substitute the following:

105.04 Coordination of Plans, Specifications, Supplemental Specifications, and Special Provisions
The Standard Specifications, the Supplemental Specifications, the Plans, Special Provisions, and all supplementary documents are essential parts of the Contract, and a requirement occurring in one is as binding as though occurring in all. They are intended to be complementary and to describe and provide for a complete work.

In cases of discrepancy, the governing descending order will be as follows:

1. Special Provision Section 999- Design - Build
2. Special Provisions
3. Project Plans including Special Plan Details
4. Supplemental Specifications
5. Standard Plans including Standard Construction Details
6. Standard Specifications

Calculated dimensions will govern over scaled dimensions.

The Contractor shall take no advantage of any apparent error or omission in the Plans or Specifications. In the event the Contractor discovers such an error or omission, he shall immediately notify the Engineer. The Engineer will then make such corrections and interpretations as may be deemed necessary for fulfilling the intent of the Plans and Specifications.

A. Specifications of Other Organizations
 When work is specified to be done or when materials are to be furnished according to the published specifications of organizations other than the Department, the latest specifications published by those organizations at the time bids are received shall apply unless otherwise specified.
 AASHTO Interim Specifications and ASTM Tentative Specifications will be considered effective on date of issue.

B. Item Numbers
 The first three digits of any Item Number in the itemized Proposal designates the Specification section under which the Item shall be constructed.

Office of Construction Bidding Administration
Resurfacing project CSNHS-M003-(234), DeKalb (PI No. M003234) will be under construction within the limits of project PI No. 0009542 at the time of letting. The Contractor shall conduct weekly meetings to ensure adequate coordination between the Projects. Meeting agendas shall include discussion of the following and any other pertinent information:

1. Current status updates for project PI Nos. M003234 and 0009542
2. Work scheduled for the next week
3. Scheduled lane closures/detours
4. Media/public involvement
5. Law enforcement coordination
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Project No. 0009542
DeKalb County

Section 107 – Legal Regulations and Responsibility to the Public

Subsection 107.23: Add the following:

G. Protection of Federally Protected Species

The following conditions are intended as a minimum to protect these species and its habitat during any activities that are in close proximity to the known location(s) of these species. When there is a conflict between the General Provisions and the Special Provisions, these Special Provisions will govern the work.

1. The Contractor shall advise all project personnel about the potential presence and appearance of the federally protected barn swallow (Hirundo rustica), cliff swallow (Petrochelidon pyrrhonota), and eastern phoebe (Sayornis phoebe). All personnel shall be advised that there are civil and criminal penalties for harassing, harming, pursuing, hunting, shooting, wounding, killing, capturing, or collecting these species in knowing violation of the Migratory Bird Treaty Act of 1918. Pictures and habitat information will be provided to the Contractor at the preconstruction conference and shall be posted in a conspicuous location in the project field office until such time that Final Acceptance of the project is made.

2. Work on box culvert(s) shall take place outside of the breeding and nesting season of phoebes and swallows, which begins April 1 and extends through August 31, unless exclusionary barriers are put in place to prevent birds from nesting in box culverts. Exclusionary barriers can be overlapping strips of flexible plastic (also called “PVC Strip Doors” or “Strip Curtains”). The Contractor may propose alternate methods provided prior approval of Project Engineer is obtained. Exclusionary barriers may be installed on the box culvert(s) prior to March 1 or after August 31, but in no time in between this period. The following steps shall be followed if exclusionary barriers are to be used:

 a. Notify the project ecologist by phone (404) 631-1100 of the decision to install exclusionary barriers in culvert(s) prior to the installation.

 b. Check the box culvert(s) for nests prior to the placement of exclusionary barriers. If nests are present, check to ensure that eggs or birds are not present in the nests. If the nests are found to be occupied, postpone construction activities associated with the culvert(s) until after August 31 when the breeding season is complete.

 c. Install exclusionary barriers on both the inlet and outlet openings of the box culvert(s). Install barriers prior to March 1 and leave in place until August 31 or until the culvert work is complete, whichever occurs first. If the exclusionary barriers fail to prevent nesting (i.e., birds are able to bypass barriers and build nests), postpone construction activities associated with the culvert(s) until after August 31.
d. During construction, exclusionary barriers shall be inspected daily for holes or other defects that impair their ability to exclude migratory birds from entering the culvert(s). Any holes shall be immediately repaired.

3. In the event any incident occurs that causes harm or that could be detrimental to the continued existence of the barn swallow, cliff swallow, and eastern phoebe along the project corridor, the Contractor shall report the incident immediately to the Project Engineer who in turn will notify the State Environmental Administrator at (404) 631-1101 and the Environmental Compliance Manager at (404) 463-1048. All activity shall cease pending consultation by the Department with the U. S. Fish and Wildlife Service and the Federal Highway Administration.

4. The Contractor shall keep a log detailing any sightings or injury to barn swallows, cliff swallows, and eastern phoebes in or adjacent to the project until such time that Final Acceptance of the project is made. Following project completion, the log and a report summarizing any incidents and/or sightings with these species shall be submitted by the Contractor to the:

 a. Project Engineer;

 b. U.S. Fish and Wildlife Service, Brunswick Field Office, 4270 Norwich Street, Brunswick, Georgia 31520;

 c. State Environmental Administrator, Georgia Department of Transportation, Office of Environmental Services, 600 West Peachtree Street NW, Atlanta, Georgia 30308;

 d. Georgia Department of Natural Resources, Wildlife Resources Division, Nongame Wildlife Regional Office, 116 Rum Creek Drive, Forsyth, GA 31029; and

 e. Federal Highway Administration, Georgia Division, 61 Forsyth Street, S.W., Suite 17T100, Atlanta, Georgia 30303-3104.

5. All costs pertaining to any requirement contained herein shall be included in the overall bid submitted unless such requirement is designated as a separate Pay Item in the Proposal.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 108—Prosecution and Progress
(Federal Aid Projects)

Delete Subsection 108.06 and substitute the following:

The Engineer has the authority to suspend the Work wholly or in part, for as long as he may deem necessary, because of unsuitable weather, or other conditions considered unfavorable for continuing the Work, or for as long as he may deem necessary by reason of failure of the Contractor to carry out orders given, or to comply with any provisions of the Contract. If the performance of all or any portion of the Work is suspended or delayed by the Engineer, in writing, for an unreasonable period of time (not originally anticipated, customary, or inherent to the construction industry) and the Contractor believes that additional compensation and/or contract time is due as a result of such suspension or delay, the Contractor shall submit to the Engineer, in writing, a request for adjustment within 7 calendar days of receipt of the notice to resume work. The request shall set forth the reasons and support for such adjustment.

Upon receipt, the Engineer will evaluate the Contractor's request. If the Engineer agrees that the cost and/or time required for the performance of the Contract has increased as a result of such suspension and the suspension was caused by conditions beyond the control of, and not the fault of, the Contractor, its suppliers, or subcontractors at any approved tier, and not caused by weather, the Engineer will make an adjustment (excluding profit) and modify the Contract in writing accordingly. The Engineer will notify the Contractor of his/her determination whether or not an adjustment of the Contract is warranted.

No contract adjustment will be allowed unless the Contractor has submitted the request for adjustment within the time prescribed.

No contract adjustment will be allowed under this clause to the extent that performance would have been suspended or delayed by any other cause, or for which an adjustment is provided for or excluded under any other term or condition of this Contract.
SPECIAL PROVISION

Project No. 0009542
DeKalb County

Section 108 – Prosecution and Progress

Subsection 108.08: Add the Following:

C. Intermediate Completion Schedule

An overall Completion Date is established for this Project of July 31, 2013.

Additional Liquidated Damages that may be assessed are as follows:

1. Cover Milled Area

 Failure to cover each milled area up through SMA Asphalt, before opening to traffic, will result in the assessment of Liquidated Damages at a rate of $5,000.00 per calendar day.

2. Permanent Striping Placement

 Failure to ensure placement of permanent striping does not begin until thirty (30) calendar days after completion of the final surface course and completion within ninety (90) calendar days after completion of the final surface course will result in the assessment of Liquidated Damages at a rate of $1,000.00 per calendar day.

3. Traffic Loop Replacement

 Failure to replace Traffic Loops and have operational within the designated time as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $500.00 per hour or any part thereof.

4. Lane Closures

 Failure to reopen lanes as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $5,000.00 per hour or any part thereof.

5. Wrecker Service

 Failure to respond to and remove incidents as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $1,000.00 per hour or any part thereof.

6. ITS System

 Failure to adhere to outage restrictions as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $500.00 per hour or any part thereof.

7. ITS System Contractor Response during Warranty Period

 Failure to respond to and repair the System as specified in Section 150.11 will result in the assessment of Liquidated Damages in the amount of $600 per day or any part thereof.

These rates are cumulative and in addition to Liquidated Damages that may be assessed in accordance with Subsection 108.08 for failure to complete the overall project.
Section 150: Add the following:

150.11 Special Conditions

A. WORK HOURS:

1. I-20 Eastbound from I-285 Interchange to Panola Road
 a) The following are allowable times for weekday Single Lane and Shoulder Closures: From 9:00 P.M. to 5:00 A.M. Monday through Friday
 b) The following are allowable times for continuous weekend Single Lane and Shoulder Closures: From Friday 9:00 P.M. until Monday 5:00 A.M.

 Double Lane Closures
 c) The following are allowable times for weekday Double Lane Closures: From 12:00 A.M. to 5:00 A.M. Monday through Friday, but must maintain 2 lanes by utilizing existing travel lanes or the outside shoulder for a maximum of 12 weekends.
 d) The following are allowable times for continuous weekend Double Lane Closures: From Friday 9:00 P.M. until Monday 5:00 A.M., but must maintain 2 lanes by utilizing existing travel lanes or the outside shoulder for a maximum of 12 weekends.

 Triple Lane Closure along I-20 Eastbound will not be permitted.

2. I-285 ramps to I-20 eastbound, I-20 eastbound off ramp to Wesley Chapel Road, I-20 eastbound on ramp from Wesley Chapel Road, and I-20 eastbound off ramp to Panola Road
 a) The following are allowable times for weekday Single Lane and Shoulder Closures: From 9:00 P.M. to 5:00 A.M. Monday through Friday
 b) The following are allowable times for weekend continuous Single Lane and Shoulder Closures: From Friday 9:00 P.M. until Monday 5:00 A.M

 Long term shoulder closures for periods longer than stated above will be allowable only with prior Department authorization.

 Failure in maintaining work hours within the time specified will result in the assessment of Liquidated Damages as
specified in Special Provision 108.08.C.

B. TRAFFIC LOOPS:

Traffic Loops removed during the resurfacing shall be replaced and operational within seven (7) calendar days or removal. Failure in having replacement traffic loops operational within the time specified will result in the assessment of Liquidated Damages as specified in Special Provision 108.08.C.

C. HOLIDAY WORK RESTRICTIONS:

Work that interferes with traffic shall not be allowed during the following holiday periods:

- Independence Day
- Labor Day
- Thanksgiving through New Year
- Memorial Day

D. SPECIAL EVENT RESTRICTIONS:

Lane closures shall not be allowed during the weekends which conflict with special events, including but not limited to the Tax Free Days in Georgia and the week of the Masters Tournament. Additional restrictive hours may occur prior to and after unforeseen special events.

F. WORKZONE LAW ENFORCEMENT:

Workzone law enforcement consists of utilizing uniformed police officer(s) equipped with a marked patrol vehicle and blue flashing lights to enforce traffic laws in construction workzones and the administration of this service. Payment for Workzone law enforcement shall be made only for its utilization in workzones during lane closures, traffic pacing, or other activities that occur within travel lanes. The Contractor shall be responsible for coordinating and scheduling the utilization of the Workzone Law Enforcement.

Workzone Law Enforcement will be measured and paid for by the hour up to maximum number of hours included in the Contract. The Department will not pay for any Workzone Law Enforcement beyond the number of hours included in the Contract. The cost for utilization above the number of hours included in the Contract shall be included Lump Sum price bid for Traffic Control.

The Contractor shall provide a daily work record containing the actual number of hours charged by the police officer, to be paid by the Department. The daily work record shall be complied on form provided by the Department, signed by the police officer and the Contractor’s Worksite Traffic Control Supervisor attesting that the police officer was utilized during the hours recorded.

Payment shall be full compensation for reimbursing the law enforcement agency, and for all other cost incurred by the Contractor in coordinating, scheduling, and administering the item Workzone Law Enforcement.

Payment shall be made under:
ITEM NO. 150-9011 - Traffic Control Workzone Law Enforcement (Contractor Bids)...............................per HR.

G. WRECKER SERVICE:

The Contractor shall provide continual means of incident removal and clearing of the travel way and shoulders during periods of Construction that reduce the number of existing available lanes to the traveling public.

This work shall consist of providing equipment and operators necessary to clear the lanes and shoulders. Provide unrestricted passage in all areas within the projects limits. Remove any disabled vehicles or debris, regardless if it occurs by accident, incident or otherwise including but not limited to motorcycles, cars, trucks, tractor trailers, etc. Provide assistance to other incidents as directed by the Engineer or when requested by the Georgia State Patrol and Local Law Enforcement as relayed through the Engineer.

The Contractor shall provide wrecker service and necessary equipment capable of clearing all manner of vehicles shall be on-site 24 hours a day and able to respond and clear incidents to open travel lanes within forty-five (45)
minutes of notification by Engineer. The wrecker shall be assigned exclusively to the project limits and shall be used only at times and locations as specified herein, or as directed by the Engineer, until such time as traffic is not impeded by lane reduction. As a minimum, disabled vehicles or debris shall be removed from the Right of Way and relocated to an acceptable area adjacent to the interchanges within the project limits.

Operators of this service shall be trained in the traffic Incident Management procedures as defined and detailed in the current MUTCD (2003 Edition). The service’s Traffic Control efforts are to be supervised and similarly supported by the Contractor’s WTCS. The Contractor shall indemnify the Department from all matters arising from the service in addition to indemnifications required elsewhere within the specifications and or contract.

Failure to respond and clear incidents within the time specified shall result in the assessment of Liquidated Damages as specified in Sub-section 108.08.C.

This item will not be paid separately and shall be included in the overall Lump Sum price bid for Traffic Control.

H. ITS System:

The westbound portion of the ITS System on I-20 and all those portions outside of the Project limits on eastbound I-20 shall not be taken out of service for more than 24 hours at any time during construction.

Within 24 hours, the Contractor shall repair any existing broken fiber/cable that is damaged, on the westbound side of I-20 and outside of the limits of construction (I-20 construction centerline STA. 1134+00 to STA. 1385+80.96) on the eastbound side of I-20 in the vicinity of the Project, by the Contractor at no additional cost to the Department. Construction activities that result in a failure to restore system functionality within the time specified will result in the assessment of Liquidated Damages as specified in Special Provision 108.08.C.

I. ITS System Contractor Response during Warranty Period:

When the Department detects a failure of any component of the ITS System during the warranty period, the Department will notify the Contractor in writing of the problem. The Contractor shall have a maximum of seven calendar days after receiving the notification to correct the problem. Construction activities that result in a failure to restore system functionality within the time specified will result in the assessment of Liquidated Damages as specified in Special Provision 108.08.C. Upon final acceptance of the project by the Department, the Contractor shall transfer all warranties.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

PROJECT NO. 0009542
DeKalb County

SECTION 208 – EMBANKMENTS

Retain Section 208 and add the following:

208.1 General Description

This work includes providing and placing lightweight embankment with galvanized fasteners, impermeable geomembrane and load distribution slabs to the lines and grades shown on the Plans. This work also includes providing manufacturer’s certifications and test results of the lightweight embankment and impermeable geomembrane to be used.

208.2 Materials

F. Lightweight Embankment

Construct embankments noted on the Plans as lightweight embankment using expanded polystyrene (EPS) blocks, EPS 22, ASTM D 6817, with the following properties:

A. Maximum unit weight of 1.50 pounds per cubic foot
B. Minimum unit weight of 1.35 pounds per cubic foot
C. Minimum compressive resistance of 7.3 pounds per square inch
D. Minimum elastic modulus of 730 pounds per square inch
E. Minimum flexural strength of 40 pounds per square inch
F. Minimum compressive resistance of 16.7 pounds per square inch at 5% deformation
G. Minimum compressive resistance of 19.6 pounds per square inch at 10% deformation

Use EPS blocks that have been seasoned a minimum of 72 hours prior to shipping to the project site. Ensure that the seasoning is done in a building or other structure that protects the blocks from moisture and ultraviolet radiation, and that adequate space has been provided between the EPS blocks for ventilation. Use EPS blocks that do not deviate from a flat plane more than 0.25 inches in 10 feet on any side.

Provide galvanized, barbed metal fasteners supplied by the EPS block manufacturer.
Provide an impermeable high density polyethylene (HDPE) geomembrane with the following minimum average roll values:

A. Minimum thickness- 60 mils
B. Minimum tensile strength at yield- 125 lb per inch (ASTM D 6693)
C. Minimum tensile strength at break- 225 lb per inch (ASTM D 6693)
D. Break elongation- 700% (ASTM D 6693)
E. Yield elongation- 12% (ASTM D 6693)
F. Minimum tear resistance- 40 lb (ASTM D 1004)
G. Minimum puncture resistance- 100 lb (ASTM D 4833)
H. Minimum carbon black content- 2% (ASTM D 1603)
I. Stress crack resistance- 300 hr. (ASTM D 5397)

208.3.05 Construction

F. Lightweight Embankment

At least 30 days prior to placing lightweight embankment, submit the following information to the Engineer for review and approval:

1. Certified test results performed on the EPS blocks by an independent laboratory acceptable to the Engineer, indicating that the EPS blocks meet the properties specified herein.
2. The proposed sequence of construction and manufacturer’s installation recommendations.
3. A shipping, storage and material handling procedure that ensures that the EPS blocks are not damaged in any manner.
4. Certified test results performed on the impermeable HDPE geomembrane by an independent laboratory acceptable to the Engineer, indicating that the impermeable geomembrane, including any seams, meet the properties specified herein.

Do not begin placement of the lightweight embankment until the Engineer has approved the submittal.

Follow the manufacturer or suppliers’ recommendations for the handling, placing, construction sequencing and protection of the lightweight embankment and impermeable geomembrane. Prior to placing EPS blocks, complete all excavation and construct benches as indicated on the Plans. Remove any sharp-edged materials and level the foundation surface to within 1 inch in 10 feet. Place all blocks in a given layer with the longitudinal axis of all blocks parallel to each other. Ensure that the vertical joints between the adjacent ends of blocks in a given row are offset to the greatest extent practicable to joints in adjacent rows. Place each subsequent layer of blocks with the longitudinal axis perpendicular to the longitudinal axis of the blocks below that layer. Place blocks such that they are supported over their entire bearing area. Adjust underlying blocks or foundation surface if necessary to prevent rocking or unevenness of blocks.

Place EPS blocks so that all joints are no greater than approximately 0.25 inches. Install the type and number of fasteners in accordance with the manufacturer’s recommendations in between each layer of blocks. Cut EPS blocks using only wire saws or hot wire cutters. Prevent blocks from being dislodged by wind by using temporary weights. Do not allow open flames, petroleum products or smoking materials to come in contact with blocks.
Do not allow any construction equipment or vehicles on top of the EPS blocks prior to covering. Replace any damaged blocks with undamaged blocks at no additional cost to the Department. Place impermeable geomembrane over the top section of the EPS blocks extending 2 feet past the outer most EPS blocks in accordance with Plan details. Field or factory seam the geomembrane in accordance with the manufacture’s recommendations such that the seams provide a minimum of 85% of the minimum geomembrane tensile strength. Prior to placing the geomembrane, remove any sharp-edged materials that may puncture the geomembrane. Replace any punctured or torn geomembrane at no additional cost to the Department. Cover all EPS blocks with impermeable geomembrane, the load distribution slab and/or earth fill within 45 days of placing blocks to limit exposure to ultraviolet radiation.

Remove any damaged or unused blocks from the project site and do not place in the embankment outside of the lightweight embankment Plan limits.

208.4 Measurement

Lightweight embankment will be measured per cubic yard of material in place accepted by the Engineer. Lightweight embankment placed outside the limits shown on the Plans will not be measured for payment. The load distribution slab will be measured per cubic yard of Class A concrete including reinforcement steel. No separate measurement will be made for galvanized fasteners, impermeable geomembrane, providing manufacturer’s certifications or test results, benching of existing fill or other materials, labor, supplies or equipment to complete the work.

208.5 Payment

Lightweight embankment will be paid for per cubic yard of material in place accepted by the Engineer. The load distribution slab will be paid for per cubic yard of Class A concrete including reinforcement steel under Section 500. No separate payment will be made for galvanized fasteners, impermeable geomembrane, providing manufacturer’s certifications or test results, benching of existing fill or other materials, labor, supplies or equipment to complete the work. Include the cost of this work in the pay item for Lightweight Embankment.

Payment will be made under:

Item No. 208-0300 – LIGHTWEIGHT EMBANKMENT……………… PER CUBIC YARD

Office of Materials and Research
Lightweight Embankment Construction Detail
I-20 EB DeKalb County, P.I. No. 0009542
(Applies to CD Ramp Station 74+50 to 75+00 ±)

Sequence of Construction

1. Construct permanent excavation bracing and remove existing embankment.
2. Construct retaining wall and place lightweight embankment.
3. Construct adjacent MSE Walls as lightweight embankment is placed.
4. Place impermeable membrane and load distribution slab.
5. Place remainder of roadway embankment and pave.

Cross Section View
Lightweight Embankment Construction Detail
I-20 EB DeKalb County, P.I. No. 0009542
(Appplies to CD Ramp Station 74+50 to 75+00±)

Load Distribution Slab Over Impermeable Membrane (See Detail)

Load Distribution Slab

Pavement

Normal Embankment

MSE Wall Backfill

Lightweight Embankment

MSE Wall Backfill

Existing Quad 10' X 12' Box Culvert

Profile View
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Section 300—General Specifications for Base and Subbase Courses

Delete Subsection 300.3.02.H and substitute the following:

H. Fine Grading Equipment

An approved fine grading machine is required for finishing the base and subbase material supporting Portland cement concrete pavement or hot mix asphaltic concrete pavement. Ensure fine grader:

- Is self-propelled and track driven.
- Is capable of trimming and finishing the base and subbase to the specified tolerances utilizing a rotating cutter head in front of a strike-off screed.
- Spans at least one lane width and is controlled automatically by direct contact with a string line or a combination of string line and existing pavement as appropriate.
- Is capable of trimming and finishing base and subbase to the specified tolerances.

Furnish, place, and maintain the necessary string lines to provide continuous line and grade reference to the fine grader control system. GPS controlled equipment can be used in lieu of string lines.

For Graded Aggregate Base construction, a motor grader equipped with GPS controlled equipment can be used as an option for fine grading.

GPS controlled Equipment will include but is not limited to:
1. Ability to read electronic files containing Department supplied data used to design the project.
2. Fixed or movable base station setup on the project to serve as a point of reference for the project. As the project progresses, the movable base station shall be moved for proper system function. If the base station is at a fixed location, radio repeaters will be utilized to ensure the signals from the base station are received throughout the project.
3. A GPS sensor mounted atop a mast affixed to the cutting blade. The masts will be arranged in a dual mast setup with a mast on each end of the blade attachment or in a lone mast setup. The sensor will be able to receive signals from the base station and/or a laser transmitter.
4. A blade position sensor with the ability to detect blade attitude and elevation of the cutting blade and relay this information to the operator. Blade attitude is defined as the orientation of the blade with respect to the three spatial axes in relation to a reference plane.
5. An operator-visible display allowing the operator to visually receive all necessary data in real-time from the GPS system and the cutting blade to properly construct the section to grade. The display will also reflect any changes made by the operator to any operation of the cutting blade.

6. If conformity to the cross sections with the prior listed equipment is unsatisfactory, provide a laser transmitter placed no farther than 800 feet (244 m) from the fine grading equipment. Projects having work progressing at different work sites more than 800 feet (244 m) apart necessitate the use of more than one laser transmitter to ensure accuracy. Select a location for the laser transmitter having a change in elevation of 25 feet (7.62 m) or less from the laser transmitter to the sensor mounted on the cutting blade. If project geography necessitates the use of more than one laser transmitter, the setup of the transmitters will be set to ensure the elevation difference between two consecutive transmitters in an array is not more than 25 feet (7.62 m); and this array cannot exceed a total change in elevation of 100 feet (30.5 m).
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

PROJECT No. 0009542
Dekalb County

SECTION 307 – IMPERMEABLE MEMBRANE FOR SUBGRADES,
BASINS, DITCHES AND CANALS

Delete Sub-section 307.2 Materials, and add the following:

307.2 Materials

Use waterproofing membrane made of high density polyethylene (HDPE) that meets the requirements of Special Provision Section 888.

307.2.01 Delivery, Storage and Handling

General Provisions 101 through 150.

Delete Sub-section 307.3.05.B Placement, and add the following:

Prior to placing waterproofing membrane, remove any objects from the ground that would tend to puncture the membrane. Spread the membrane as uniformly as practical over the contour of the ground to avoid looseness. Place according to the Plans. Protect the membrane from chemicals and prolonged sunlight. Join sections of membranes by thermal bonding using a wedge welder or similar device. Ensure that the membrane has seam strengths at least 90% of the membrane strength.

Office of Materials and Research
Delete Section 615 as written and substitute the following:

615.1 General Description

This work shall consist of installing various sizes of bores by directional boring through whatever materials may be encountered.

615.1.01 Definitions

General Provisions 101 through 150.

615.1.02 Related References

A. Standard Specifications

Section 205 – Roadway Excavation

Section 208 - Embankments

B. Referenced Documents

General Provisions 101 through 150

615.1.03 Submittals

Furnish, for the Engineer’s approval, a plan showing the proposed methods for the installation of the horizontal directional bore. The Engineer will review the proposed installation plan within 10 working days of receipt by the Department. No directional boring work will be allowed until the Contractor’s submitted plan is approved by the Engineer. This plan shall include the following detail as a minimum:

- List of projects completed by the company performing the boring operation, environment of installation (urban work, river crossing, freeway), diameter of product installation and length of bores. This list of projects must include the name, address and phone number of an owner’s representative with knowledge of the performance of the work. Provide at least five previously completed projects of similar scope as the boring work included in this contract.

- List of the Contractor’s key personnel with a resume of boring experience. The Department will be the sole judge of the qualifications of the foreman and the drill operators.

- Location of all proposed boring entry and exit pits.
• Proposed alignment of bore both horizontal and vertical. The proposed alignment shall maintain a minimum clearance of 18 inches (450 mm) or 2 times the diameter of the final product installation, whichever is greater, at any obstruction. Boring will not be allowed in select backfill areas such as at mechanically stabilized wall locations.

• Proposed diameter of bore. This diameter is the diameter of the final product installation.

• Proposed diameter of pilot borehole.

• Proposed diameter of back reamer. In no case shall the diameter of the back reamer exceed 1.5 times the diameter of the final product installation.

• Proposed depth of cover. The depth of cover shall be equal to or greater than 10 times the diameter of the final product installation. Additionally, the minimum depth of cover allowed in paved shoulders shall be 4 feet (1.22 meters). The minimum depth of cover under travel lanes or otherwise outside of the paved shoulder shall be 8 feet (2.44 meters).

• Evaluation of soil conditions to be encountered. Full soil survey not required. As a minimum, excavate the entrance and exit pits for the proposed bore and determine the nature of the material likely to be encountered. The drilling fluid composition should be based on the evaluation of the materials encountered in the bore pit excavation.

• Proposed composition of drilling fluid.

• Proposed drilling fluid pressure and flow rates.

• Proposed drilling fluid management plan.

• Proposed pull back rate.

• Type of tracking system.

615.2 Materials

Use conduit types and sizes that conform to the Plans and the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Wire, Cable, and Conduit</td>
<td>682</td>
</tr>
</tbody>
</table>

615.3 Construction Requirements

Suitable pits or trenches shall be excavated for the boring operation and for placing end joints or termination connectors of conduit when required. Pits or trenches shall be securely sheeted and braced where necessary to prevent caving.

Where directional boring is required under railroads, highways, streets or other facilities, construction shall be done in the manner that will not interfere with the operation of the facility, and shall not weaken the roadbed or structure. No roadway pavement, subgrade, roadbed, paved shoulder, or unpaved median shall be disturbed or excavated as part of the boring or pipe placing operation for any reason without written authorization by the Engineer. In the above areas, any broken or damaged boring rod/stem, boring head (including transmitter/transponder locating heads and cutter heads), couplings (including backreaming, swivel or connector couplings), or any other material that cannot be retrieved as part of the pullback operation shall become the property of the Department and shall be abandoned in place unless otherwise authorized in writing by the Engineer. There shall be no additional payment for abandoned material.

Continuously monitor the location and alignment of the pilot drill progress to insure compliance with the proposed installation alignment and to verify depth of the bore. Monitoring shall be accomplished by manual plotting based on location and depth readings provided by the locating/tracking system or by computer generated bore logs which map the bore path based on information provided by the locating/tracking system. Readings or plots shall be obtained on every drill rod and provided to the Engineer on a daily basis for as-builds.

Monitoring of the drilling fluids such as the pumping rate, pressures, viscosity and density during the pilot bore, back reaming, and/or pipe installation stages shall be undertaken to ensure adequate removal of soil cuttings and to ensure that the stability of the borehole is maintained. Drilling fluid pressures should not exceed that which can be supported by the
overburden (soil) pressure to prevent heaving or a hydraulic fracture of the soils. Excess drilling fluids shall be contained at the entry and exit points until recycled or removed from the site. Ensure that all drilling fluids are disposed of in a manner acceptable to the appropriate local, state and federal regulations. The Contractor’s work will be immediately suspended whenever drilling fluids seep to the surface other than in the boring entrance or exit pit. The Contractor must propose a method to prevent further seepage and must remove and dispose of any drilling fluid on the surface prior to resuming the boring operation.

To minimize heaving during pullback, the pullback rate should be determined to maximize the removal of soil cuttings and minimize compaction of the ground surrounding the borehole. The pullback rate shall also minimize over cutting of the borehole during the back reaming operation to ensure that excessive voids are not created resulting in post installation settlement. Any surfaces damaged by the work shall be restored to their preconstruction conditions. All costs associated with the restoration are to be borne by the Contractor.

The distance that the excavation extends beyond the end of the bore will depend upon the character of the excavated material, but shall not exceed 2 feet (0.61 meters) in any case. This distance shall be decreased on instructions from the Engineer if the character of the material being excavated makes it desirable.

Once the directional boring is begun, the operation shall be carried on without interruption, insofar as practical.

The pits or trenches excavated to facilitate boring operations shall be backfilled immediately after the boring has been completed.

The boring shall proceed from a surface staging area provided for the boring equipment and workers. The location of the staging area shall be approved by the Engineer. The holes shall be bored mechanically. Excavated material will be placed near the top of the working pit and disposed of as required. The use of water or other fluids in connection with the boring operation will be permitted only to the extent necessary to lubricate cutting. Jetting will not be permitted.

Excavation will not be paid for separately, but all of the provisions of Section 205 and 208 shall govern.

In unconsolidated soil formations a gel-forming colloidal drilling fluid consisting of at least 10% high grade carefully processed bentonite may be used to consolidate excavated material, seal the walls of the hole, and furnish lubrication for subsequent removal of material and immediate backreaming/installation of conduit. Flow pressure on the drilling fluid shall be continuously monitored and maintained at the minimal pressure required to place the fluid. At no time shall the flow pressure exceed 500 psi (3448 k Pa) and should normally not exceed 200 psi (1379 k Pa). All drilling fluid spoils shall be completely removed from both ends of the bore and properly disposed of at a location provided by the Contractor.

Allowable variation from line and grade established by the Engineer shall be a maximum of 2 percent. Any voids which develop during the installation operation and are determined by the Engineer to be detrimental to the Work, shall be pressure grouted with an approved mix.

Directional boring operations inherently include the risk of encountering under grade obstructions that begin to alter the bore direction. Should an obstruction be encountered, the Engineer shall be notified immediately. Attempts at corrective measures to restore the proper bore alignment should include but are not limited to boring deeper or shallower (if minimum pipe depth can be maintained), moving the boring head to the right or left of the obstruction, or attempt to bore through the obstruction (if other than solid rock). To restore the bore alignment, a minimum of three attempts shall be made to the Engineer’s satisfaction at each encountered obstruction with different corrective measures. If a suitable bore alignment cannot be restored, the Engineer may authorize a relocation of the bore. Unsuccessful boring attempts shall be paid in accordance with Sections 615.4 and 615.5 below, using the obstruction location as one end of the measured length of directional boring.

615.4 Measurement

Directional bores will be measured by the horizontal linear foot (meter) of bore complete in place. The measurement for payment shall be determined by obtaining measurements from the points at which the bore arrives at the required minimum acceptable depth, at the entrance and exit of the boring operation, following the central axis of the bore. Directional boring above the minimum acceptable depth shall not be measured for payment.
615.5 Payment

This work performed and materials furnished as prescribed by this Item, measured as provided under Measurement will be paid for at the Contract Price per linear foot (meter) for Directional Boring of the size of bore specified, which shall be full compensation for furnishing the bore and all incidentals necessary to complete the Item. All excavated material resulting from the directional boring operations shall be disposed of or used as directed by the Engineer at no additional cost to the Department.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 615-</th>
<th>Directional Bore Pipe (Size)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 615-</td>
<td>Directional Bore (Size)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

615.5.01 Adjustments

General Provisions 101 through 150.
628.1 General Description
This work includes furnishing materials, labor, tools, equipment, and other incidental items to design, detail, and construct a soil nailed wall. This Specification also applies to any Contractor-proposed alternate design of Department-furnished plans.

628.1.01 Definitions
Soil Nail - Synonymous with nail or soil reinforcing

The term Soil Nailed Wall includes the following items:
• Soil nails
• Nails
• Shotcrete (pneumatically applied concrete) – for temporary facing
• Cast-in-place reinforced concrete facing – for permanent facing
• Drainage

628.1.02 Related References
A. Standard Specifications
 Section 500 - Concrete Structures
 Section 511 - Reinforcement Steel
 Section 853 - Reinforcement and Tensioning Steel

B. Referenced Documents
 General Provisions 101 through 150.

628.1.03 Submittals
A. Proof of Ability
 Submit the following proof of ability (or ability of the subcontractor) when requested by the Department to design or construct soil nailed walls:

 • Evidence of successfully completing at least 5 projects similar in concept and scope to the proposed wall.
 • Resumes of foremen, nail testing personnel, and drilling operators to be employed on this project. Show the type, length, and number of soil nails each has installed or tested within the past 5 years.
 • Evidence of experience in nail testing. Persons performing nail testing shall prove experience by performing sample tests supervised by the Engineer.

 The Department is the sole judge of the qualifications of the foreman, drilling operator, and testing personnel. Do not begin wall construction until the Engineer has approved proof of ability.

B. Design Criteria for Alternate Design
If the department receives more than 2 submittals of the Plans and calculations for review, the Contractor will be assessed $60 per hour of engineering time for reviews in excess of the 2 submittals.

C. Construction Drawings and Design Notes
Submit construction drawings and design notes within 28 days of the award of the Contract. The Design Engineer shall prepare and stamp the submission. Include design notes and reproducible drawings in the submission concerning the following:
- Details, dimensions, and schedules of reinforcing steel including dowels and/or studs for attaching the facing to the soil nailed wall.
- Details of the shotcrete installation and nails, including the thickness of shotcrete and spacing and angle of installation of nails.
- Detailed plans for testing of nails showing loading and measuring devices to be used and procedures to be followed.

D. Final Wall Plans and Calculations
Submit final wall plans and calculations to the Department for review and approval before beginning construction on the wall. The time required for Plan and calculation review will be charged to the allowable Contract time. The Department has 30 days for Plan and calculation review per item after receiving the structure calculations and drawings.

New submittals from the Contractor showing corrections from the Department’s review or changes to ease construction or to correct field errors have a 30-day review. The Department is the sole judge of information adequacy.

The Department’s review and acceptance of the final Plans and construction methods do not relieve the Contractor from successfully completing the work. Time extensions are not granted for Contractor delays from untimely submissions or insufficient information.

E. Admixture Literature
Before using an admixture, submit the manufacturer’s literature to the Engineer. Indicate the admixture type and the manufacturer’s recommendations for mixing the admixtures with grout.

628.2 Materials
A. Concrete
Use concrete conforming to Section 500.

B. Reinforcing Steel
Use reinforcing steel conforming to Section 511. Reinforcing steel used as soil nails shall be full length. Couplers will not be allowed.

C. Structural Steel
Use structural steel shapes or plates conforming to Section 501. Use ASTM A 709 Grade 36 (Grade 250) structural steel unless otherwise specified on the plans.

D. Cement Grout
Produce cement grout using Portland cement conforming to AASHTO M-85, Type I, II, or III, and potable water. Use cement that is fresh and free of lumps and hydration.

Follow these restrictions if using admixtures:
1. Do not use admixtures with chemicals that may harm the soil nail, reinforcing steel, or cement.
2. Do not use admixtures that cause air bubbles in the grout.
3. If approved by the Engineer, use admixtures imparting low water content, flowability, and minimum bleeding in the cement grout.

E. Plastic
Use Polyethylene conforming to AASHTO M-252 with a minimum wall thickness of 30 mils (0.76 mm) for corrosion protection.

F. Shotcrete
Use shotcrete conforming to the following:

1. Cement – Section 830.2.01 Type I, II or III.
2. Fine Aggregate – Section 801.2.02.
3. Coarse Aggregate – Section 800.2.01.
4. Fly Ash – Section 831.2.03
6. Air Entraining Admixtures for wet mix – Section 831.2.01.
7. Plasticizers – AASHTO M-194, Type A, D, F, G.
8. Use accelerating admixtures that are compatible with the cement, are non-corrosive to steel and do not promote other detrimental effects such as cracking and excessive shrinkage and do not contain calcium chloride. Use admixtures in accordance with the manufacturer’s recommendations. Silica fume, if used, shall not exceed 10 percent of the cement weight and shall be an admixture with a minimum of 90 percent SiO₂ with a proven record of performance in shotcrete.
9. Use water in shotcrete that is potable, clean, free from substances which may be injurious to concrete and steel, and is free of elements which would cause staining.
10. Provide premixed and prepackaged concrete products specifically manufactured as a shotcrete product for on-site mixed shotcrete, if approved by the engineer. The packages shall contain cement and aggregates conforming to Section 500.

G. Corrosion Inhibitor

Use corrosion inhibitor (grease) conforming to the following:

1. Drop point 300 degrees F (149 degrees C) minimum by ASTM D-566.
2. Flash point 300 degrees F (149 degrees C) minimum by ASTM D-92.
3. Water content 0.1% maximum by ASTM D-95.
4. Rust test – Rust Grade 7 or better after 720 hours, aggressive conditions: Rust Grade 7 or better after 1000 hours by ASTM B-117 and ASTM D-610.
5. Water soluble ions.
 - Chlorides 10 ppm maximum by ASTM D-512
 - Nitrates 10 ppm maximum by ASTM D-3867
 - Sulfates 10 ppm maximum by APHA 427D (15th ED)
6. Oil separation – 0.5% by weight maximum at 160 degrees F (71 degrees C) by FIMS 719B, Method 321.2
7. Soak test – 5% Salt Fog at 100 degrees F (38 degrees C), 5 mils (0.13 mm) (Q Panel Type S), immerse panels in 50% salt solution and expose to 5% Salt Fog – no emulsification after 720 hours by ASTM B117 Modified.

628.2.01 Delivery, Storage, and Handling

A. Protection Systems

Protect soil nails against corrosion by properly storing, fabricating, and handling the nail components before inserting them into the borehole. Avoid prolonged exposure of the nail components to the elements, and avoid mechanical or physical damage that reduces or impairs the component’s ability to resist adverse conditions during service. Nail components will be rejected for heavy corrosion or pitting, but not for a light coating of rust.

Use the protection systems as follows:

1. Soil Nail
 a. Encase the nail in a corrugated plastic tube.
 b. Use cement grout to fill the voids between the tube and the nail and the tube and the soil. Place cement grout between the soil and the tube to at least ¼ in (20 mm) thick and extend the entire length of the nail. Cement grout between the tube and the nail shall be a minimum of ½ in (12 mm) thick.
 c. Provide centralizers spaced at a maximum of 5 feet (1.5 m) center-to-center throughout the nail length. Do not use wood or material harmful to the soil nail or the corrugated plastic tubing as centralizers.
 d. Provide a smooth piece of plastic sheath to encapsulate the entire free length. Do not splice the sheath. Ensure that the sheath is at least 0.05 in (1.27 mm) thick. Provide a void space between the sheath and the steel as shown on the plans and maintain that space with centralizers. Fill visible void space with grease and seal the bottom to prevent grout intrusion.
2. **Area Underneath Anchorage**
 Protect the area immediately behind the stressing anchorage.

a. Weld a pipe sleeve to the bearing plate and seal the pipe sleeve to the anchor sheath at the other end of the sleeve.

b. Clean the pipe sleeve to remove dirt, rust, or other harmful material before inserting the soil nail into the pipe sleeve.

c. If a seal is not provided at the lower end of the pipe sleeve, during installation and grouting, fill the lower end of the pipe sleeve with grout. Keep the pipe sleeve free of harmful material until the upper portion of the pipe sleeve and anchor head are filled with grout.

d. Fill the void inside the sleeve and anchor head with anti-bleed expansion grout after the nails have been stressed.

3. **Anchorage**
 Encase the anchorage system head into a corrosion protective system before proceeding to the next lift. Install the protective system for each lift within 30 days after installing the nails for that lift. Ensure that the anchorage system has a cover of at least 3 in (75 mm) once the wall face is placed.

628.3 Construction Requirements

628.3.01 Personnel

A. Contractor Qualifications

The Contractor and Subcontractor shall be experienced in constructing permanent soil nailed walls. Provide at least one Registered Professional Engineer licensed to perform work in the State of Georgia and a supervising Engineer for the Project with at least 5 years of experience in constructing permanent soil nailed walls.

Furnish verification of these qualifications to the Engineer before beginning operations.

B. Design Engineer

The Design Engineer shall:
- Be registered as a Professional Engineer in the State of Georgia
- Have considerable knowledge and experience designing and constructing soil nailed walls
- Be available at any time during the Contract to discuss the design of the walls with the Department.

C. Registered Professional Engineer

Retain the services of a second Professional Engineer licensed to perform work in the State of Georgia and prequalified by the Department. The Engineer shall operate independently from the Professional Engineer of Subsection 628.3.01.B, “Design Engineer.”

This Engineer will independently check the design calculations and Plan details for the permanent soil nailed wall before submitting them to the Department.

628.3.02 Equipment

Use anchorage and hardware suitable for the type of soil nails used. Ensure that the anchorage and hardware are capable of the following:
- Developing 75 percent of the yield capacity of the nails when tested in the unbonded state and without failure of the nail
- Holding the soil nail at a load producing a stress of not less than 75 percent of the yield capacity of the nail without exceeding the anticipated set and without causing anchorage or soil nail failure
- Test nails shall be capable of lifting-off, detensioning, or retensioning a nail before secondary grouting to fill voids at the top of the pipe sleeve.

628.3.03 Preparation

Before beginning the work, survey the condition of the adjoining properties. Keep records and photograph settlement or cracking of adjacent structures that may become the subject of possible damage claims. Deliver the report to the Department before beginning work at the site.

Obtain a Foundation Investigation Report from the Geotechnical/Environmental Bureau of the Department to assist in evaluating existing conditions for design and construction.
628.3.04 Fabrication
A. Soil Nails
 Fabricate the soil nails according to the approved details.
 1. Keep the nails free of dirt, rust, and other harmful substances.
 2. Use a plastic sheath that is a single piece without splices.
 3. Before installation, handle and store the nails so as to avoid corrosion and physical damage. Nails will be rejected for damage such as abrasions, cuts, nicks, welds, weld splatters, or heavy corrosion and pitting. Replace the nails at the Contractor’s expense for material replacements or time delays.

628.3.05 Construction
A. Design Criteria
 The design criteria for a proposed design or design include:
 1. Design soil nails according to this Specification.
 2. Use reinforced concrete facing according to the latest AASHTO Standard Specifications for Highway Bridges, including interims. Ensure that the structural thickness is at least 12 in (300 mm). Provide architectural facing treatment as shown on the Department drawings.
 3. Ensure that the concrete strength is at least 3000 psi (20 MPa) 28-day strength. Extend the facing 2 ft (600 mm) below the gutterline or, if applicable, the ground line adjacent to the wall unless otherwise indicated on the Department Plans.
 4. Design and install permanent drainage systems behind the wall. Connect the drainage systems to the nearest drop inlet using pipe or free drainage through traffic barriers or other obstructions. Ensure that holes through traffic barriers and/or facing are no higher than 3 in (75 mm) above the gutterline or ground line.
 5. Ensure that the wall is compatible with the horizontal and vertical criteria indicated in the Department Plans.
 6. Provide a wall design that is adequate to resist sliding, overturning and bearing forces. Safety factors shall be as follows:
 - Sliding 1.50
 - Overturning 2.00
 - Bearing 1.00
 7. See Figure 3 for typical section of permanent soil nail wall.

B. Ground Movements and Load Transfer Instruments
 During construction of the wall, the Department may install devices to monitor ground movements and load transfers during or after construction. The Department will schedule installation to minimize interference with the Contractor’s operations. Cooperate with the instrumentation installers. Anticipate delays of two to four hours per instrumented nail.

Although the Instrumentation Specialist maintains the instruments, assume responsibility for damage to the instruments, connections or readouts from operations. Replace and install damaged equipment at the Department’s approval and at the Contractor’s expense.

C. Soil Nail Installation
 Install the soil nails as follows:
 1. Before installation, visit the site to observe existing conditions that may affect the work or design, if applicable, and to review the geotechnical data available for the Project.
 2. Drive or drill the holes for the soil nails by core drilling, rotary drilling, auger drilling, or percussion drilling. If using water in the drilling operation, dispose of the water to minimize wall erosion. Repair water erosion damage to the site at no cost to the Department.
 3. If the hole will not stand open, install casing to maintain a clean and open hole. Ensure that the hole diameter is at least 3 in (75 mm) if no pressure grouting is used. Pressure grouting is grouting with a pressure greater than 60 psi (415 kPa).
 4. Ensure that the drill bit diameter is not more than 1/8 in (3 mm) smaller than the specified hole diameter.
 5. Start soil nail holes within an angle tolerance of 3 degrees from the inclination specified on the approved design Plans. Do not allow the holes to deviate from a straight line by more than 2 in (50 mm) in 10 ft. (3 m). Do not allow the holes to extend outside the Right-of-Way limits. Thoroughly clean the holes of all dust, grease, or other deleterious material before inserting the nail.
 6. Install the nail in the casing or the hole drilled for the nail. Ensure that the nail’s corrosion protection is not damaged during handling or installation.
7. Install the nail in the bond length to achieve at least 1½ in (38 mm) of grout cover.
8. Do not use nails to ground electric equipment and do not subject the nails to sharp bends.
9. Provide centralizers spaced a maximum of 5 ft (1.5 m) center to center throughout the nail length. Do not use spacers of wood or other material harmful to the nail or corrosion protection.
10. Inject grout at the lowest point of the nail and place over the entire length of the nail.
 a. Ensure that the grouting equipment can continuously mix and produce lump-free grout. Equip the grout pump nozzle with a grout pressure gauge capable of measuring pressure of at least 150 psi (1 MPa) or twice the actual pressure used.
 b. Base the material proportions used in the grout on grout tests made before beginning grouting; or select the proportions based on prior documented experience with similar materials and equipment under comparable field conditions.
 c. Use the minimum water content necessary for proper placement and do not exceed a water-cement ratio of 0.45. Do not leave the grout in the mixer longer than 45 minutes.
11. After grouting, do not disturb the nail until the grout has reached a cube strength of 3500 psi (25 MPa). Keep the mouth of the hole clean after grouting. Record the following data in a Project field book during the grouting operation:
 • Type of mixer
 • Water-cement ratio
 • Type of additives
 • Grout pressure
 • Type of cement
 • Test sample strengths (before stressing)
 • Volume placed in bond and free lengths
12. If using pressure grouting, choose whether to perform a water-tightness test. However, if injecting grout with a pressure of 60 psi (415 kPa) or less, always perform a water-tightness test. Perform the test as follows:
 a. Fill the entire hole in the rock with water and subject it to a pressure of 5 psi (35 kPa) in excess of the hydrostatic head as measured at the top of the hole.
 b. If after 10 minutes the leakage rate from the hole exceeds 0.001 gal per inch diameter per foot of depth per minute (0.5 ml per mm diameter per meter of depth per minute), consolidate grout, redrill, and retest the hole. If the second water-tightness test fails, repeat the entire process.
 c. During the tests, observe holes adjacent to the hole being tested for water-tightness to detect and seal inter-hole connections.
 d. If artesian or flowing water is encountered in the drilled hole, maintain the pressure on the consolidation grout until the grout has initially set.

D. Temporary Shotcrete Facing

Provide temporary shotcrete facing.

1. Shotcrete Quality - Produce the shotcrete by the wet mix process and achieve a minimum compressive strength of 3000 psi (20 MPa) in seven (7) days and 4600 psi (32 MPa) in 28 days.
2. Mixture Proportions - Submit for acceptance the recommended mixture proportions, strength results, water cement ratio, and source of materials. Select the mixture proportions based on compressive strength tests of specimens continuously moist cured until tested at 28 days in accordance with AASHTO T-22. Use a maximum water cement ratio of 0.40, air content of 6.5% ± 1.5%, slump of 1.5 to 3 inches (38 to 50 mm). The mixture is acceptable if the average core compressive strength is at least 1.2 times the required compressive strength in 628.4.07.A above.
4. Delivery Equipment - Provide equipment capable of delivering the premixed materials accurately, uniformly and continuously through the delivery hose. Follow the recommendations of the equipment manufacturer on the type and size of nozzle to be used, and on cleaning, inspecting and maintaining the equipment. Deliver ready-mix shotcrete in transit mixers that comply with AASHTO M-157. Provide a supply of clean, dry air adequate for maintaining sufficient nozzle velocity for all parts of the work and, if required, for simultaneous operation of a suitable blow pipe for clearing away rebound. Provide a compressor capable of providing a minimum of 315 cfm (8.9 m3/min) per operating nozzle.
5. Curing:
a. Keep shotcrete continuously moist for 24 hours after completion by one of the following methods or materials:

- Continuous sprinkling
- Absorptive mat or fabric, or other covering kept continuously moist
- Curing compounds in accordance with Section 500.3.05.Z. On natural gun or flash finishes, apply one gallon per 100 square feet (0.4 l per square meter). Do not use curing compounds on any surfaces against which additional shotcrete or other cementitious finishing materials are to be bonded unless positive measures, such as sandblasting, are taken to completely remove curing compounds prior to application of such additional materials.

b. Provide final curing immediately following the initial curing and before the shotcrete has dried by one of the following materials or methods:

- Continuation of the method used in the initial curing
- Application of impervious sheet material conforming to AASHTO M-171.

c. Continue curing for the first seven days after shotcreting or until the required seven-day strength is obtained. During the curing period, maintain the shotcrete above 38 degrees F (3.3 degrees C) and in a moist condition as specified.

6. Construction Testing - Cut cores from the structure and test in accordance with AASHTO T-24. Take a minimum of three cores from each 1000 square feet (93 square meters) of completed facing. Alternatively, construct a test panel with minimum dimensions of 18 X 18 X 4 in (450 X 450 X 100 mm) gunned in the same position as the work represented for each 1000 square feet (93 square meters) of completed facing. The Contractor’s regular nozzlemen shall gun the panels during the course of the work. Field cure the panels in the same manner as the work, except that the test panels shall be soaked for a minimum of 40 hours prior to testing. Cut a minimum of three cores from each panel for testing in accordance with AASHTO T-24. The average compressive strength of each core of a set of three cores must equal or exceed 85 percent of the compressive strength specified in 628.3.05.A.

E. Permanent Cast-In-Place Facing

Provide permanent cast-in-place reinforced concrete facing in accordance with the requirements of this specification, as shown in the plans and the following:

1. Provide vertical expansion joints at a maximum spacing of 90'-0”
2. Provide vertical contraction or construction joints at a maximum spacing of 30'-0”
3. Form vertical rustication grooves at a maximum spacing of 10'-0”. Rustication grooves are to be equally spaced between expansion joints and coincide with construction joints.
4. Provide studs in the construction of the soil nail system for anchoring the cast-in-place facing.

628.3.06 Quality Acceptance

A. Nail Testing and Acceptance

Perform testing according to this subsection.
Perform load tests on at least 5% of the nails in each row to verify the soil-to-grout bond stress used in the design. Provide separate nails specifically for the purpose of testing. Test nail locations shall be approved by the Engineer. Test nails will not be considered part of the permanent support system. Install the test nails in accordance with Figure 2. Grout only the bonded length of the nail prior to testing. Provide and use the following testing equipment:

- A dial gauge that can measure elongation to the nearest 0.001 in (0.025 mm)
- A hydraulic jack and pump with a pressure gauge graduated in increments of 100 psi (690 kPa) or less.

Test by incrementally loading the nail according to the following schedule:

- AL = minimum load required to support the jacking system tightly against the bearing surface = 2 kips (8.9 kN).
- P = design load

Measure the nail movement with the dial gauge fixed to an independent reference point. Apply the load with a hydraulic jack and measure it with a hydraulic pressure gauge. Increase the load from one increment to the next immediately after the nail movement is recorded.
Hold the maximum test load for ten (10) minutes. Start the load hold period as soon as the maximum test load is applied, and measure the nail movements at one (1), two (2), three (3), four (4), five (5), six (6), and ten (10) minutes. The nail test is acceptable if the nail carries the maximum test load with less than 0.08 in (2 mm) of movement between one (1) and ten (10) minutes.

If the nail fails the test, determine the cause. If the failure indicates that the nails will not achieve the design soil-to-grout bond stress, then modify the design and/or construction procedures. These modifications may include, but are not limited to, installing replacement nails, reducing the design bond stress by increasing the number of soil nails or by lengthening the nails, or modifying the installation methods. After modifications, test the nails for acceptance of the new design. Make the modifications of the design and/or construction procedures at no cost to the Department unless the modifications are due to changed conditions.

After completion of testing and determination of acceptance, detension all test nails and all nails shall be tensioned to 200 ft-lb (270 N-m) of torque.

628.4 Measurement

Permanent Soil Nailed Walls are not measured separately for payment.

628.5 Payment

Payment for this work is made per Lump Sum. Payment includes costs for concrete, reinforcing steel, excavation, backfill, shotcrete, soil nails, anchorages, labor, design, and all other materials and equipment. Payment also includes grouting, drilling holes, performing and evaluating all tests, submitting records of tests, all tools and all other items to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item 628</th>
<th>Permanent Soil Nailed Wall, wall no. ____</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

628.5.01 Adjustments

Additional wall area required because of unforeseen foundation conditions or other reasons that are approved by the Engineer will be paid for by adjusting the Lump Sum Price Bid. If the wall area is increased or decreased, the Lump Sum Price Bid will be adjusted proportionally based on the change in wall area as determined from the stations, elevations and dimensions on the Plans.

No additional compensation will be made for additional material, equipment, design, or other items to comply with the Project specifications as a result of the Department’s review of the contractor’s design.

OFFICE OF BRIDGE DESIGN
DESIGN CONDITION

FIGURE 1
TEST NAIL DETAIL
NO SCALE

FIGURE 2
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

PROJECT NO.: 0009542
DEKALB COUNTY

Section 682 - Electrical Wire, Cable, And Conduit

Add the following:

Delete Subsection 682.1 General Description and substitute the following:

682.1 General Description

This work includes furnishing and installing wire, cable, and conduit for roadway and structure lighting systems, complete or as indicated on the Plans. This work also consists of furnishing and installing a Multi-cell or Continuous Flexible Conduit System for Fiber Optic Cable, complete or as indicated on the Plans. The installation of conduit for fiber optic cable shall not require the presence of a qualified electrician on the job site.

Add the following to Subsection 682.2:

All multi-cell and continuous flexible conduit products shall meet the General Specifications as set out in these Special Provisions. Those products shall be installed, applied, inspected, and/or utilized in accordance with the Construction Section of these Special Provisions. Prior to any conduit work and within 60 days after Notice to Proceed, submit catalog sheets, engineering drawings, and maintenance procedures for review by the Engineer for all products and procedures in these Special Provisions to be used on the Project. If the products to be used are not specified within these Special Provisions or not listed separately and/or completely on the details of the Plans, submit catalog sheets, engineering drawings, factory specifications, a set of installation procedures, and a set of operation and maintenance procedures (for multi-cell conduit) for review by the Engineer. No work shall be done using these products until after submittals have been approved by the Engineer.

A summary of the products, their Sections, and each product’s specification included in these Special Provisions are listed below:

A. MARKING TAPE .. Section 682.2.03

Visible marking tape, location and warning system.

B. CONDUIT, NONMETAL, TYPE 2 - POWER SERVICE.............................. Section 682.2.04

All conduit shall be Schedule 40 polyvinyl chloride.
C. MULTI-CELL FACTORY INSTALLED DUCT SYSTEM .. Section 682.2.05

The multi-cell innerducts shall be colored red, white, yellow, and orange, and utilized as noted: red = hybrid fiber optic
cable; white = open spare/interconnect/control circuit; yellow = single mode fiber optic cable; and orange = multi-mode
fiber optic cable.

D. CONDUIT DUCT BANK... Section 682.2.06

Conduit duct bank shall be a configuration of high density polyethylene conduits.

E. CONDUIT, NONMETAL, TYPE 3 ... Section 682.2.07

F. CONDUIT, FIBERGLASS .. Section 682.2.08

G. PULL TAPE .. Section 682.2.09

H. DUCT PLUGS... Section 682.2.10

I. CONDUIT DETECTION WIRE.. Section 682.2.11

J. ELECTRICAL COMMUNICATION BOX... Section 682.2.13

K. ELECTRICAL COMMUNICATION BOX REHABILITATION Section 682.2.14

Add the following Subsections: 682.2.02 – 682.2.14

682.2.02 MATERIAL CERTIFICATION

The following chart provides an outline of the submittal requirements for the equipment and components for this pay item.
This chart shall be used as a guide and does not relieve the Contractor from submitting additional information to form a
complete submittal package.

Submit submittal data for all equipment, materials, test procedures, and routine maintenance procedures required for these
items within 60 calendar days after the Notice To Proceed and prior to any installation, unless noted otherwise in the
Contract Documents.

Submit to the Engineer for approval, six (6) copies of the manufacturer’s descriptive literature (catalog cuts), technical data,
operational documentation, service and maintenance documentation, and all other materials required within these Special
Provisions.

Provide submittal data that is neat, legible, and orderly. Neatly organize each package of submittal data and separate by
hardware item. Use the “Materials Certification Package Index and Transmittal Form”, contained in Section 105.02 of the
Special Provisions, for each pay item to document and list all material and components that are included in the submittal
package. Any submittal data submitted without the index/transmittal form or that is incomplete will be rejected.
Submittal data shall include complete technical and performance specifications on all elements of the conduit system. Below is a sample listing of submittal data requirements by 682.X.X subsection.

For **Subsection 682.2.03 Marking Tape** submit materials submittal data for the marking tape.

For **Subsection 682.2.04 Conduit, Nonmetal, Type 2 - Power Service** submit materials submittal data for the conduit, fittings, pull boxes, and electrical service wire.

For **Subsection 682.2.05 Multi-Cell Factory Installed Conduit System** submit materials data for the conduit system, innerduct, outerduct, coupling body, fittings, accessories, bends and sweeps, installation procedures, and maintenance procedures.

For **Subsection 682.2.06 Conduit Duct Bank** submit materials submittal data for conduit, couplings, and coupling procedures.

For **Subsection 682.2.07 Conduit, Nonmetal, Type 3** submit materials submittal data for conduit, couplings, and coupling procedures.

For **Subsection 682.2.08 Conduit, Fiberglass** submit materials submittal data for conduit, couplings and fittings, and coupling and fittings procedures.

For **Subsection 682.2.09 Pull Tape** submit materials submittal data for pull tape and installation procedure.

For **Subsection 682.2.10 Duct Plugs** submit materials submittal data for duct plugs for empty conduit and duct plugs with cable installed.

For **Subsection 682.2.11 Conduit Detection Wire** submit materials submittal data for conduit detection wire and testing procedure.

For **Subsection 682.2.13 Electrical Communication Box, Type ____** submit materials submittal data for electrical communication box, ring and cover, conduit terminators, cable racks and hardware, sealant, and conduit alignment jigs or spacers.
For Subsection 682.2.14 Electrical Communication Box, Rehabilitation submit materials submittal data for cable racks and hardware.

682.2.03 MARKING TAPE SPECIFICATIONS

A. Requirement For Use

When fiber optic cable is installed underground in conduit or directly buried or when empty conduit is installed, install a dielectric marking tape directly over the conduit or cable below finished grade. The tape shall be installed for the full length of the cable or conduit run. When the conduit or cable is in a trench backfilled with full depth concrete, no marking tape shall be installed.

B. Printing

The color of the tape shall be orange with “GEORGIA DOT FIBER OPTIC CABLE-CALL 1-404-624-2661” printed every 6.5 ft (2.0 m).

C. Physical Properties

The tape shall be a dielectric, polyolefin film tape, 0.004 in. (0.1 mm) thick, 3 in. (76 mm) wide. The tape shall be constructed using material and ink colors which will not change when exposed to acids and other destructive substances commonly found in the soil.

The physical test methods along with typical properties and values are specified below:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Weight</td>
<td>ASTM-D2103</td>
<td>0.02 lb/ft²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1 kg/m²)</td>
</tr>
<tr>
<td>Thickness-Overall</td>
<td>ASTM-D2103</td>
<td>0.004 in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1 mm)</td>
</tr>
<tr>
<td>3” Tensile Break-MD</td>
<td>ASTM-D882</td>
<td>35 lbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(160 N)</td>
</tr>
<tr>
<td>3” Tensile Strength-MD</td>
<td>ASTM-D882</td>
<td>2900 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20000 kPa)</td>
</tr>
<tr>
<td>3” Tensile Break-TD</td>
<td>ASTM-D882</td>
<td>38 lbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(170 N)</td>
</tr>
<tr>
<td>3” Tensile Strength-TD</td>
<td>ASTM-D882</td>
<td>3160 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(21790 kPa)</td>
</tr>
<tr>
<td>Elongation-MD</td>
<td>ASTM-D882</td>
<td>530%</td>
</tr>
<tr>
<td>Elongation-TD</td>
<td>ASTM-D882</td>
<td>660%</td>
</tr>
<tr>
<td>PPT Resistance-MD</td>
<td>ASTM-D2582</td>
<td>12 lbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(53 N)</td>
</tr>
<tr>
<td>PPT Resistance-TD</td>
<td>ASTM-D2582</td>
<td>14 lbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(62 N)</td>
</tr>
<tr>
<td>Tear Strength-3” x 8”-MD</td>
<td>ASTM-D2261</td>
<td>24 lbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(110 N)</td>
</tr>
<tr>
<td>Tear Strength-3” x 8”-TD</td>
<td>ASTM-D2261</td>
<td>32 lbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(140 N)</td>
</tr>
</tbody>
</table>

PPT – Puncture Propagation Tear
MD/TD – Machine Direction/Transverse Direction

682.2.04 POWER SERVICE, NONMETAL, TYPE 2 - POWER SERVICE

Install conduit as indicated in the Plans. Conduit and fittings shall be Schedule 40 unplasticized PolyVinyl Chloride (PVC) that meets Federal Specification WC-1904-A. If the conduit is shown in the plans crossing pavement, install the conduit under the pavement via the directional bore method in accordance with Section 615 and Details. If using the directional bore method of installation, install a Schedule 40, UL-listed conduit suitable for being installed via the directional bore method that does not require solvent welds. Install Type 2 pull boxes if in unpaved shoulder or concrete ground mounted electrical junction boxes if in pavement along the conduit route between the electrical service pole and the equipment cabinet requiring power. Install the pull boxes as described in Section 647 and in Details that meet requirements in Section 496.
925 except that the covers should be furnished with the logo “ELECTRICAL”. Make any repairs to pavement required as a result of the installation of electrical junction boxes in accordance with Department standards. Within the conduit and pull boxes, install electrical service wire that meets requirements in Section 922. Install any transformers as may be required because of voltage drops between the electrical service pole and the equipment cabinet requiring power.

682.2.05 MULTI-CELL “FACTORY INSTALLED” CONDUIT SYSTEM

A. DESCRIPTION
The multi-cell conduit system shall be a pre-assembled conduit manufactured from a 4 in. (102 mm) round outerduct containing either 3 or 4 factory installed round innerducts. The innerducts shall be held together in a square (4 conduit system) or triangular (3 conduit system) configuration by a system of spacers, bands, or other mechanism. The coupling system shall be resistant to water infiltration, air loss during cable installation and shall be capable of locking the system tightly together in order to not allow free twisting of the innerducts.

B. OUTERDUCT
All outerduct shall be 4 in. (102 mm) trade size and shall have a nominal 20 ft (6 m) lay length except for the steel conduit which shall have a minimum lay length of 10 ft (3 m). Types to be used shall be designated on the plans or in the proposal. All outerduct shall conform to the following requirements.

1. The outerduct shall have the following identification information:

 Line text height shall be at least ½ in. (10 mm). Text labeling shall occur a maximum of every 2 ft (0.6 m). The text shall be indelibly printed in high contrast to the conduit. The text shall be oriented to face up for underground installation; the text shall be oriented to face down for under bridge installation.

2. The duct shall be marked with data which will provide traceability of the manufacturer, plant location, date, shift, and machine of manufacturer.

3. Any additional wording on the conduit, such as “this side up” or “this side down”, shall be consistent with the installation orientation.

4. The spigot end of the duct shall have a circumferential insertion depth mark to insure that proper insertion depth is achieved. This mark is not required for spigots with threaded fittings.

C. INNERDUCT
Innerduct shall be manufactured from Poly-vinyl Chloride (PVC) or High Density Polyethylene (HDPE).

D. COUPLING BODY
The multi-cell conduit shall be joined by use of a coupling system which effectively seals the outerducts and innerducts but allows for expansion or contraction in the system.

E. ACCESSORIES AND FITTINGS
The multi-cell conduit system shall be furnished with all necessary fittings and accessories. These shall include, but shall not be limited to, coupling kits, lubrication fittings, repair kits, manhole terminator kits w/plugs, installation accessories, deflection fittings, and epoxy adhesive kits. Each multi-cell system shall offer a complete line of fixed, rigid bends and sweeps. For applications in which the multi-cell conduit system is specified on the Plans and/or by the Engineer to be attached to a bridge or other structure, bridge hanger assemblies, expansion joints, and conduit support devices shall be required. These hanger assemblies, expansion joints, and support devices shall be designed for application to the specific bridge or structure for which they will be used, and their materials and design shall be approved by the Department prior to their use.
F. MATERIALS

Provide the Engineer with Manufacturer’s test results for the required testing and certification in accordance with Subsection 106.05 of the Georgia Standard Specifications.

1. OUTERDUCT
 a. Schedule 40, Polyvinyl Chloride (PVC) Conduit - Schedule 40, polyvinyl chloride (PVC) conduit shall conform to the requirements of the National Electrical Manufacturers Association (NEMA) Standards Publication No. TC-6 and 8-2003, Type DB-120, except that the conduit shall be white in color and shall have a minimum 5 in. (127 mm) long integral bell to accommodate the coupling body.

 b. Type “C”, Polyvinyl Chloride (PVC) Conduit - Type “C,” polyvinyl chloride (PVC) conduit shall conform to the requirements of the National Electrical Manufacturers Association (NEMA) Standards Publication No. TC-6 and 8-2003, Type DB-120, except that the conduit shall be white in color and shall have a minimum 5 in. (127 mm) long integral bell to accommodate the coupling body.

 c. Steel Conduit - Rigid steel conduit shall meet the requirements of Sub-Section 923.2 of The Georgia Standard Specifications. All metal accessories and fitting used with the conduit shall be compatible and shall meet the galvanization requirements of Sub-Section 923.2.

 d. “Bullet Resistant” Fiberglass Conduit - Bullet resistant fiberglass conduit shall have a minimum wall thickness of 0.250 in. (6.35 mm). The conduit shall prevent the penetration of a 0.45 caliber slug fired from a distance of 20 ft (6 m). The conduit shall conform to the following requirements when tested in accordance with the referenced specification. All accessories and fittings, including outerduct couplings and expansion joints, shall meet all the same “bullet resistant” requirements as the conduit. All conduit and fittings shall be black.

 PHYSICAL AND MECHANICAL PROPERTIES TEST METHODS
 - Ultimate Tensile Strength - 11,000 PSI (75800 kPa) Min. ASTM D 2105
 - Dielectric Strength - 500 Volts/Mil. ASTM D 149
 - Water Absorption - 1% Max. ASTM D 570
 - Specific Gravity - 1.9 - 2.0 ASTM D 792
 - Glass Content - 68 +- 2% API SPEC 15 LR
 - Barcol Hardness - 58-52 ASTM D 2583

2. INNERDUCT (WITHIN MULTI-CELL)
 Innerducts shall be manufactured from polyvinyl chloride (PVC) or high density polyethylene (HDPE). Innerducts shall be factory treated with an atomized silicone or manufactured in a manner to reduce friction during pulling of fiber optic cable. Innerduct to be used in bends and sweeps shall have a minimum burn through time of 30 minutes when tested in accordance with Generic Requirement GR-356-CORE, Issue 1, October 1995. The dimensions of innerduct shall meet the requirements of the manufacturer’s catalog cuts approved by the Department.

 a. PVC INNERDUCT
 PVC innerduct shall be factory treated with an atomized silicone to reduce friction. The innerduct shall conform to the following requirements:

COLOR OF INNERDUCTS	NOMINAL SIZE
3-way (2 gray & 1 white)	1 1/2” (38 mm)
4-way (3 gray & 1 white)	1 1/4” (32 mm)

 Note: The white innerduct shall be located directly under the print line on the outerduct.

 Alternate innerduct colors shall be permitted only when requested in writing and upon receiving written approval from the Engineer.

 b. HDPE INNERDUCT
 HDPE innerduct shall have a permanent dry lubricant extruded within the inner wall and shall incorporate longitudinal ribs within the inner wall. HDPE innerduct shall conform to the following requirements:
COLOR OF INNERDUCTS | NOMINAL SIZE
---|---
3-way (yellow, orange, red) | 1 1/2" (38 mm)
4-way (red, white, yellow, orange) | 1 1/4" (32 mm)

Innerduct colors shall be oriented in a clockwise direction as shown above, looking at the spigot end of the multicell conduit system. The white innerduct for 4-way and yellow innerduct for 3-way shall be located directly under the print line on the outerduct.

Alternate innerduct colors shall be permitted only when requested in writing and upon receiving written approval from the Engineer.

3. COUPLING BODY
The coupling body shall be designed with either 3 or 4 bores as required. The coupling body shall be designed so that when the conduit is joined, the outer walls of the innerducts and the inner walls of the outerduct shall be sealed, providing an airtight seal from within the innerduct system and a watertight seal from the outside of the outerduct. The coupling body shall be tested for water tightness and air tightness per Bellcore TA-NWT-000356 and shall conform to the following specifications.

- Water infiltration: minimum 11-foot head or more for 7 days
- Air Tightness: minimum 100 PSI (690kPa)

4. BENDS AND SWEEPS
Each multi-cell system shall offer a complete line of fixed bends and sweeps. No flexible bends will be permitted. HDPE, PVC, and bullet resistant fiberglass bends and sweeps shall have compatible bell and spigot ends. Steel conduit bends and sweeps shall have compatible threads and reversing couplings for connection to the conduit. PVC innerducts shall not be allowed in bends and sweeps. In no case shall bends and sweeps exceed a 90 degree direction change. Bends and sweeps shall be available as follows:

Fixed Bends: Fixed bends for steel conduit shall be available in no less than 4 ft (1.22 m) radii in 11 1/4 degrees, 22 1/2 degrees, 45 degrees, and 90 degree bends. Fixed bends for PVC and bullet resistant fiberglass multicell conduit shall be available in radii no less than the following:

<table>
<thead>
<tr>
<th>RADIUS DEGREE BEND</th>
<th>BEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ft. (1.22 m)</td>
<td>11 1/4 degrees</td>
</tr>
<tr>
<td>6 ft. (1.83 m)</td>
<td>22 1/2 degrees</td>
</tr>
<tr>
<td>9 ft. (2.74 m)</td>
<td>45 and 90 degrees</td>
</tr>
</tbody>
</table>

682.2.06 CONDUIT DUCT BANK

A. MATERIAL
Install Conduit Duct Banks by configuring individual conduits into a continuous duct bank from termination point to termination point as shown in the Standard Details and other Contract Documents. Conduit Duct Bank, Type 1 shall include six 1-1/4" (32 mm) conduits and three 2" (51 mm) conduits. Conduit Duct Bank, Type 2 shall include eight 1-1/4" (32 mm) conduits and three 2"(51 mm) conduits. Conduit Duct Bank, Type 3 shall include four 2"(51 mm) conduits. Conduit Duct Bank, Type Special shall be as shown in the Plans.

Conduit shall be manufactured from virgin high-density polyethylene. Conduit shall be extruded from colored material for uniform full-thickness coloring. Where striping is required, a minimum of three colored longitudinal stripes of HDPE material shall be co-extruded on the conduit outer wall. The three stripes shall be equally spaced around the circumference and continuous for the entire length of conduit. Printed or embossed striping is not permitted.

All conduit shall be labeled with durable identification giving the name of the manufacturer, conduit size (inner diameter trade size and wall thickness/rating), manufacture/date codes, and sequential foot marking. Labeling shall occur at a maximum of every 2 ft (0.6 m).
Where required in the Contract Documents, conduits shall be located and secured in the conduit duct bank by conduit spacers configured into an assembly that is appropriate for the duct bank type.

1. 1-¾ in. (32 mm) Conduit
 1-¾ in. (32 mm) Conduit shall conform to ASTM D-3035 and meet the following requirements:
 - Smoothwall SDR 11
 - Nominal outer diameter: 1.660 in. (42.16 mm)
 - Minimum inner diameter: 1.313 in. (33.35 mm)
 - Minimum wall thickness: 0.151 in. (3.84 mm)

2. 2 in. (51 mm) Conduit
 2 in. (51 mm) Conduit shall conform to ASTM D-3035 and meet the following requirements:
 - Smoothwall SDR 11
 - Nominal outer diameter: 2.375 in. (60.32 mm)
 - Minimum inner diameter: 1.885 in. (47.88 mm)
 - Minimum wall thickness: 0.216 in. (5.49 mm)

3. Conduit Spacer
 Conduit spacers shall be steel or molded high impact polystyrene that is resistant to rot and moisture absorption. Spacers shall be manufactured to have an interlocking design such that spacers for different conduits can be assembled for the appropriate duct bank configuration. All spacers on the bottom of an assembly shall be “base” that includes a flat base with a minimum of 6 in² (3900 mm²) of bearing area for each bottom conduit.

B. COUPLING
 Make every effort to minimize coupling. Coupling shall only be permitted with the advance permission of the Engineer.

 Couplings shall be airtight and watertight. All couplings shall be installed in accordance with the conduit and the coupling manufacturer’s recommendations. Only couplings of the type specified below and approved by the conduit manufacturer are permitted.

 Couplings shall be accomplished only by hydraulic press-on or electro-fusion coupling methods. Use hydraulic press-on couplings of seamless tool-grade tubular aluminum with sealing barbs and center stop. Use hydraulic compression duct coupling tools and follow all manufacturer’s installation procedures, fully inserting both conduit sections to the coupling center stop. Use pre-fabricated electro-fusion couplings that are field-installed using the coupling manufacturer’s recommended automatic self-monitoring fusing machine and installation procedures. Do not use any other coupling methods.

C. TERMINATION
 Conduit duct banks shall be terminated in electrical communications boxes (ECBs) and pull boxes as shown in the Standard Details of the Contract Documents and in accordance with Section 647. Duct banks terminated in ECBs shall be installed into factory-installed knockout windows only, which shall be fully grouted and sealed around all conduits and to the full thickness of the box wall. Duct banks terminated in pull boxes shall be installed into factory-installed conduit terminators; conduit adhesive sealants recommended by the terminator and conduit manufacturers shall be used.
682.2.07 CONDUIT, NONMETAL, TYPE 3

A. MATERIAL

Conduit shall be manufactured from virgin high-density polyethylene (HDPE). Conduit shall be extruded from colored material for uniform full-thickness coloring. Where striping is required, a minimum of three colored longitudinal stripes of HDPE material shall be co-extruded on the conduit outer wall. The three stripes shall be equally spaced around the circumference and continuous for the entire length of conduit. Printed or embossed striping is not permitted. Unless otherwise noted in the Contract Documents, color code for conduit used for Type 3 installation shall comply with the Conduit Duct Bank Color Code schedule listed on the plan detail sheet.

All conduit shall be labeled with durable identification giving the name of the manufacturer, conduit size (inner diameter trade size and wall thickness/rating), manufacture/date codes, and sequential foot marking. The conduit shall also be labeled with the following: “Georgia DOT Cable – For Assistance Call 404-624-2661”. Labeling shall occur a maximum of every 4 ft. (1.2 m).

1. 1 in. (25 mm) Conduit
 1 in. (25 mm) Conduit shall conform to ASTM D-3035 and shall meet the following requirements:
 - Smoothwall SDR 11
 - Nominal outer diameter: 1.315 in. (33.40 mm)
 - Minimum inner diameter: 1.030 in. (26.16 mm)
 - Minimum wall thickness: 0.120 in. (3.05 mm)

2. 1¼ in. (32 mm) Conduit
 1¼ in. (32 mm) Conduit shall conform to ASTM D-3035 and shall meet the following requirements:
 - Smoothwall SDR 11
 - Nominal outer diameter: 1.660 in. (42.16 mm)
 - Minimum inner diameter: 1.313 in. (33.35 mm)
 - Minimum wall thickness: 0.151 in. (3.84 mm)

3. 1½ in. (38 mm) Conduit
 1½ in. (38 mm) Conduit shall conform to ASTM D-3035 and shall meet the following requirements:
 - Smoothwall SDR 11
 - Nominal outer diameter: 1.900 in. (48.26 mm)
 - Minimum inner diameter: 1.506 in. (38.25 mm)
 - Minimum wall thickness: 0.173 in. (4.39 mm)

4. 2 in. (51 mm) Conduit
 2 in. (51 mm) Conduit shall conform to ASTM D-3035 and shall meet the following requirements:
 - Smoothwall SDR 11
 - Nominal outer diameter: 2.375 in. (60.32 mm)
 - Minimum inner diameter: 1.885 in. (47.88 mm)
 - Minimum wall thickness: 0.216 in. (5.49 mm)

B. COUPLING

Make every effort to minimize coupling. Coupling shall only be permitted with the advance permission of the Engineer.

Couplings shall be airtight and watertight. All couplings shall be installed in accordance with the conduit and the coupling manufacturer’s recommendations. Only couplings of the type specified below and approved by the conduit manufacturer are permitted.

Couplings shall be accomplished only by hydraulic press-on or electro-fusion coupling methods. Use hydraulic press-on couplings of seamless tool-grade tubular aluminum with sealing barbs and center stop. Use hydraulic compression duct coupling tools and follow all manufacturer’s installation procedures, fully inserting both conduit sections to the coupling center stop. Use pre-fabricated electro-fusion couplings that are field-installed using the coupling manufacturer’s recommended automatic self-monitoring fusing machine and installation procedures. Do not use any other coupling methods.
C. TERMINATION

Install Type 3 conduits in pull boxes in accordance with Section 647 and the Standard Details of the Contract Documents. Unless otherwise shown in the Plans, install Type 3 conduits in different types of underground spaces as follows. Type 3 conduits shall be terminated in electrical communications boxes (ECBs) and Types 6 and 7 pull boxes using factory-installed terminators in the ECB or pull box; conduit adhesive sealants recommended by the terminator and conduit manufacturers shall be used. Type 3 conduits shall be terminated in Types 1, 2, 3, 4S and 5S pull boxes bonded to a PVC sweep through the open bottom. Type 3 conduits shall be terminated in Types 4 and 5 pull boxes directly through cored holes in the side walls in accordance with Section 647.

682.2.08 CONDUIT, FIBERGLASS

A. MATERIAL

Conduit shall be manufactured from fiberglass reinforced epoxy. The conduit shall be “bullet resistant”, capable of preventing the penetration of a 0.45 caliber slug fired from a distance of 20 ft. (6 m). The conduit shall conform to the following physical and mechanical properties when tested in accordance with the referenced specification. All accessories and fittings, including outerduct couplings and expansion joints, shall meet all the same “bullet resistant” requirements as the conduit. All conduit and fittings shall be black.

<table>
<thead>
<tr>
<th>PHYSICAL AND MECHANICAL PROPERTIES</th>
<th>TEST METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tensile Strength - 11,000 PSI (75800 kPa) Min.</td>
<td>ASTM D 2105</td>
</tr>
<tr>
<td>Dielectric Strength - 500 Volts/Mil.</td>
<td>ASTM D 149</td>
</tr>
<tr>
<td>Water Absorption - 1% Max.</td>
<td>ASTM D 570</td>
</tr>
<tr>
<td>Specific Gravity - 1.9 - 2.0</td>
<td>ASTM D 792</td>
</tr>
<tr>
<td>Glass Content - 68 +/- 2%</td>
<td>API SPEC 15 LR</td>
</tr>
<tr>
<td>Barcol Hardness - 58-52</td>
<td>ASTM D 2583</td>
</tr>
</tbody>
</table>

All conduit shall conform to the following requirements:

a. The conduit shall have the following identification information:

1. 2 in. (51 mm) Conduit

 | Nominal outer diameter: 2.500 in. (tolerance +0.028”/-0.018”) |
 | [63.50 mm (tolerance +0.71/-0.46)] |
 | Minimum inner diameter: 2.000 in. (50.80 mm) |
 | Minimum wall thickness: 0.250 in. (6.35 mm) |
2. 4 in. (102 mm) Conduit

4 in. (102 mm) Conduit shall meet the following requirements:

- Nominal outer diameter: 4.500 in. (tolerance +0.034”/-0.028”)
- Minimum inner diameter: 4.000 in. (101.6 mm)
- Minimum wall thickness: 0.250 in. (6.35 mm)

B. COUPLINGS AND FITTINGS

Coupling shall be by epoxy adhesive interference joint with bell and spigot or stop coupling fittings only. Couplings shall be airtight and watertight. All couplings shall be installed in accordance with the conduit and the coupling manufacturer’s recommendations. Only couplings of the same type of fiberglass as specified above are permitted.

Fixed bends and sweeps shall be used; no flexible bends are permitted. Bends and sweeps shall be compatible with the coupling requirements above. Bends and sweeps shall be of consistent radius and inner diameter, with a minimum radius of 10 times the inner diameter. In no case shall bends exceed a 90 degree direction change.

Where the fiberglass conduit is specified in the Plans and/or by the Engineer to be attached to a bridge or other structure, bridge hanger assemblies, expansion joints, deflection fittings, and conduit support devices are required and shall be designed for application to the specific bridge or structure for which they will be used. The Department shall approve all materials and design of bridge-attached conduit systems prior to any field installation. All bridge hanger assembly components that are in contact with the conduit’s outer surface shall be manufactured of the same fiberglass reinforced epoxy material or shall employ low-friction roller bushings.

C. TERMINATION

Fiberglass conduits shall be terminated in ECBs using factory-installed terminators in the ECB or by grouting and setting in a knockout window as shown in the Standard Details of the Contract Documents. Adhesive sealants recommended by the terminator and conduit manufacturers shall be used.

682.2.09 PULL TAPE

A. MATERIAL

Non-detectable pull tape shall be a polyester tape (Fibertek Part No. WP1250, NEPTCO Part No. WP1250P, or approved equal). The tape shall have the following properties:

- 1250 lb (567 kg) tensile strength
- flat, not round, construction
- printed foot markings
- pre-lubricated for reduced pulling tension at start of cable pull
- low susceptibility to absorption of moisture; moisture resistant

Detectable pull tape shall consist of a single 24 AWG copper wire with polyethylene or PVC jacket woven into a polyester tape (Fibertek Part No. WPT1250, NEPTCO Part No. DP1250P, or approved equal). The tape shall have the following properties:

- 1250 lbs. (567 kg) tensile strength
- flat, not round, construction
- printed foot markings
- pre-lubricated for reduced pulling tension at start of cable pull
- low susceptibility to absorption of moisture; moisture resistant
- corrosion resistant embedded conductor

B. INSTALLATION

Install pull tape, by hand pulling, blowing, or via vacuum method, into each empty conduit and innerduct and empty cell within a multi-cell conduit during conduit installation. Install the pull tape after conduit testing has been completed. Install and secure 5 ft (1.5 m) of slacked pull tape in each empty conduit or cell at each vault. Secure the pull tape by tying it to the duct plug for the conduit in which it is installed.
682.2.10 DUCT PLUGS

Install blank duct plugs in each empty conduit that enters an ECB, pull box, hub, or building entrance. The plug shall be sized to fit the conduit in which it is used and shall provide a watertight and airtight seal by use of mechanical expansion. No sealants or caulks shall be used. The duct plug shall have inner rings to which pull tape can be tied. All metallic components shall be stainless steel.

Install a fiber optic innerduct plug in each conduit that enters an ECB, pull box, hub, or building entrance and has a cable installed in it. The plug shall be sized to fit the conduit and cable with which it is used and shall be a split plug with a bushing assembly for sealing around the cable by mechanical compression. All metallic components shall be stainless steel.

Install a multi-conduit duct plug in each conduit that enters an ECB, pullbox, hub, or building entrance and has one or more innerducts installed in it. The plug shall be sized to fit the outer conduit and the innerducts with which it is used and shall have split holes for each innerduct with a bushing assembly for sealing around the innerducts by mechanical compression. Seal unused innerduct holes with the appropriate plug or solid bushing. All metallic components shall be stainless steel.

Install a multi-cable duct plug in each conduit that enters an ECB, pullbox, hub, or building entrance and has two or more cables installed in it. The plug shall be sized to fit the outer conduit and the cables (with appropriately-sized split bushings) with which it is used and shall have split holes for each cable with an overall bushing assembly for sealing around the cable bushings by mechanical compression. Where the conduit is 4-inch I.D. or greater, use a multi-cable duct plug with a minimum of four cable holes. Seal unused cable holes with the appropriate plug or solid bushing. All metallic components shall be stainless steel.

682.2.11 CONDUIT DETECTION WIRE

A. MATERIAL
Conduit detection wire shall be #10 AWG stranded green-insulated THWN or THHN-THWN conductor.

B. INSTALLATION
Install one conduit detection wire in the trench during conduit installation, directly below the conduit or at the same level as the conduit. All conduit installed by use of directional boring shall include the installation of a conduit detection wire. The conduit detection wire shall be pulled with, but not in, the bored conduit. If more than one conduit is being installed in a single bore, only one conduit detection wire shall be required.

When conduit detection wire installation is required in existing conduit, install one conduit detection wire in the existing conduit or in one of the existing innerducts.

The conduit detection wire shall be continuous and unspliced between pull boxes or vaults and shall enter the pull boxes or vaults at the same location as the conduit with which it is installed. Coil and secure 5 ft (1.5 m) of conduit detection wire in each pull box or vault.

C. TESTING
Perform a continuity or tone test after installation to confirm that a continuous run of conduit detection wire was installed between pull boxes or vaults. For conduit detection wire installed in a trench, test the conduit detection wire after backfilling, compaction, and ECB installation is complete. For conduit detection wire installed in a trench with full-depth conduit backfill, test the conduit detection wire before and after backfilling. The purpose of this test is to document that no damage or separation of the conduit detection wire has occurred during the installation of wire, backfilling of the trench, or ECB installation.

Prepare a test plan, supplying equipment, conducting the test and documenting the results. Submit a test plan at least 15 working days prior to the desired testing date. Testing shall not begin until the Engineer has approved the test plan, and all tests shall be conducted in the presence of the Engineer.

682.2.12 CONDUIT TESTING
Test every conduit after the conduit is installed and before cable or pull tape is installed. Perform testing on all conduit types in this Specification, including but not limited to each cell of multi-cell conduit, each conduit in duct banks, and each innerduct. All testing shall be performed using the procedures and mandrel size recommended by the conduit manufacturer. Testing shall be performed in the presence of the Engineer. Payment for all testing is included in the cost of the conduit.

682.2.13 ELECTRICAL COMMUNICATION BOX

Design electrical communication box and cover in accordance with ASTM C-857-95. Ensure that the walls, floor, and roof be minimum 6 in. thicknesses. Form electrical communication box from 4500 psi concrete in accordance with Section 830. Manufacture and install the electrical communication box in accordance with Details which include the dimensions associated with each type of electrical communication box. Seal all joints and seams in the electrical communication boxes created from manufacture or final assembly with manufacturer-approved sealant.

Form electrical communication box with one (1) knockout window and three (3) conduit terminators for conduit, nonmetal, type 3, 2 in. on each wall of the electrical communication box as shown in the Details. The knockout window shall remain sealed unless used for conduit duct bank termination. Provide 1 in. to 1.5 in. separation between conduit terminators. Install conduit into terminators as shown in Plans and seal with manufacturer-approved sealant.

Install two (2) cable racks, minimum 54 in. in length, on each wall of the electrical communication box as shown in the Details. Install cable racks directly to the wall or use the shortest standoff bracket possible. Include cable support arms, 7 in. to 9 in. in length, with plastic or ceramic insulators with each rack. Install one (1) cable support arm per rack for each cable installed plus one (1) cable support arm per rack as spare. Manufacture all cable racks, cable support arms, and mounting/fastening hardware of hot-dipped galvanized steel.

Install electrical communication box on a 12 in. layer of compacted coarse aggregate. Terminate conduit duct banks as shown in the Details. Prior to grouting, compact backfill for the entire length of trench to within 10 ft. of the electrical communication box. Bundle conduit, as shown on conduit duct bank installation Details, with cable ties, wire, or duct tape. Secure and align individual conduits of conduit duct bank with conduit alignment jigs, ensuring that the conduits enter the electrical communication box level, straight, and perpendicular to the wall. Construct conduit alignment jigs of plywood or use conduit spacers in accordance with Section 682. Allow grout around individual conduits of conduit duct bank to set prior to final backfilling and paving around the electrical communication box. Do not use concrete for any backfill around the electrical communication box or the conduit approaches to the electrical communication box within 10 ft.

Install electrical communication boxes in the shoulder lane whenever possible, unless shown otherwise in the Plans. In the case of narrow shoulder lanes where the electrical communication box extends beyond the edge of pavement, backfill to the top of the electrical communication box. Never install any portion of the electrical communication box in the travel lane.

Electrical communication box covers shall be imprinted with “GEORGIA DOT COMMUNICATIONS”.

682.2.14 ELECTRICAL COMMUNICATION BOX REHABILITATION

Establish the location of the electrical communication box, recognizing that pavement may have been placed over the cover of the electrical communication box.

Open the cover of the electrical communication box which may include the use of power tools to accomplish and the removal of pavement.

Remove existing fiber optic cable coils temporarily ensuring no kinks or abrasions are made to the fiber optic cable.

Clean the interior of the electrical communication box and remove any debris, trash, mud, silt, and water.

Reseal all joints and seams in the electrical communication box with silicone sealant, type A as specified in Section 833.2.06.
Install two (2) cable racks per wall for inside wall widths greater than or equal to 36 in. Install one (1) rack per wall for inside wall widths less than 36 in. but greater or equal to 24 in. Install no racks for inside wall widths less than 24 in. Cable rack height shall be equal to inside height of the electrical communication box minus 6 in. Install cable racks such that the bottom of the cable rack is no greater than 3 in. from the bottom of the electrical communication box. Install cable racks such that the distance between successive racks and the electrical communication box corners is equal to the extent permitted by the presence of knockout windows and/or conduit terminators. Install cable racks directly to the wall or use the shortest standoff bracket possible. Include cable support arms, 7 in. to 9 in. in length, with plastic or ceramic insulators with each rack. Install one (1) cable support arm per rack for each cable previously installed or being installed as part of the project plus one (1) cable support arm per rack as spare. Manufacture all cable racks, cable support arms, and mounting/fastening hardware of hot-dipped galvanized steel.

Re-set the electrical communication box and cover assembly such that the cover is at the elevation of the paved shoulder lane. Install class A concrete HES and 2 in. of 12.5 mm superpave or concrete surface to match existing paved shoulder.

Label any unlabeled fiber optic cables in accordance with labeling requirements set forth in Section 935.

If a suitable unused conduit terminator does not exist and a conduit is being terminated into an existing electrical communication box, neatly core conduit entry hole in electrical communication box wall and seal around conduit with silicone sealant or grout as necessary to prevent soil and/or water intrusion into the electrical communication box.

Add the following to Subsection 682.3.05:

A. Multi-Cell Conduit System
Secure from the manufacturer or supplier of the multi-cell system and provide to the Department complete and comprehensive written installation manuals for the complete system. At the start of the multi-cell installation, have the manufacturer or supplier provide technical assistance, as needed. At any time during the construction process, ensure that the manufacturer or supplier provides technical assistance to the Contractor and/or the Department.

For multi-cell conduit system installation under bridges, only fiberglass or steel multi-cell conduit systems shall be used. Install expansion and deflection joints according to the multi-cell conduit system manufacturer’s and support hanger manufacturer’s recommendations. Steel couplings shall be securely tightened; fiberglass coupling shall be epoxied. Ensure that during the construction process and at the request of the Department, the multi-cell conduit system or support hanger manufacturer provides on-site technical assistance at no additional cost to the Department.

B. Continuous Flexible Conduit
Whenever possible, conduits shall be placed in continuous manufactured lengths without coupling.

Conduit shall be placed in the straightest orientation possible, reducing bends, rises, and waves. Conduits shall be held in place during backfilling when necessary to keep straight. Where field conditions require the trench to change direction and bends are necessary, the bends shall be formed in the with the trench and should be smooth and gentle and shall not have less than a 4 foot radius (as measured to the inside surface of the conduit)

Add the following to Subsection 682.4:

No items shall be measured separately

Multi-cell conduit system, innerduct, conduit duct bank, fiberglass conduit, and conduit nonmetal type 3 will not be measured separately for payment. Work shall include, but not limited to cutting asphalt or concrete, trenching, installing, backfilling trench, restoring asphalt or concrete, drilling existing concrete shoulder, installing #4 rebar, replacement of existing transverse joint material, directional boring, and testing of multi-cell conduit system, innerduct, conduit duct bank, conduit nonmetal type 3, fiberglass conduit, marking tape, pull tape, duct plugs, and conduit detection wire shall be included in the overall cost of the multi-cell conduit system, innerduct, conduit duct bank, fiberglass conduit, and conduit nonmetal type 3.

Conduit detection wire installed in existing conduit will not be measured separately for payment.
Conduit, nonmetal, type 2 – power service will not be measured separately for payment. No separate measurement will be made for type 2 pull boxes, electrical junction boxes, electrical wire, directional bores, transformers, pavement repair, or any other required materials.

Electrical communication box, type ____ will not be measured separately for payment. No separate measurement will be made for, cable racks, cable support arms, compacted backfill material, compacted coarse aggregate, pavement removal, or pavement installation.

Electrical communication box rehabilitation will not be measured separately for payment by the electrical communication box that was rehabilitated as previously defined. No separate measurement will be made for cable racks, cable support arms, pavement removal, or pavement installation.

Add the following to Subsection 682.5:

Item No. 682. Conduit - Nonmetal, Type __. (Size)……………………………per Linear Foot (Meter)
Item No. 682. Conduit - Nonmetal, Type 2 – Power Service, (Size)……………..per Linear Foot (Meter)
Item No. 682. Multi-Cell Conduit System, 4-Way, Fiberglass……………………per Linear Foot (Meter)
Item No. 682. Multi-Cell Conduit System, 4-Way, Rigid Metal ………………….per Linear Foot (Meter)
Item No. 682. Conduit Duct Bank, Type 1…………………………………………per Linear Foot (Meter)
Item No. 682. Conduit Duct Bank, Type 2…………………………………………per Linear Foot (Meter)
Item No. 682. Conduit Duct Bank, Type 3…………………………………………per Linear Foot (Meter)
Item No. 682. Conduit Duct Bank, Type Special ………………………………..per Linear Foot (Meter)
Item No. 682. Conduit, Nonmetal, Type 3, 1”………………………………………per Linear Foot (Meter)
Item No. 682. Conduit, Nonmetal, Type 3, 1¼”……………………………………per Linear Foot (Meter)
Item No. 682. Conduit, Nonmetal, Type 3, 1½”……………………………………per Linear Foot (Meter)
Item No. 682. Conduit, Nonmetal, Type 3, 2”………………………………………per Linear Foot (Meter)
Item No. 682. Conduit, Fiberglass, (size)……………………………………………per Linear Foot (Meter)
Item No. 682. Electrical Communication Box, Type __________________………per Each
Item No. 682. Electrical Communication Box Rehabilitation…………………………per Each
Retain Section 888 and add the following:

888.2.04 Waterproofing Membrane for Embankments

A. Requirements

1. Use waterproofing membrane in embankments at locations and elevations shown on the Plans or as directed by the Engineer.
2. Use waterproofing membranes made of high density polyethylene (HDPE) that have the following minimum average roll values:

<table>
<thead>
<tr>
<th>Property</th>
<th>Minimum Acceptable Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of membrane</td>
<td>60 mils</td>
</tr>
<tr>
<td>Water permeability</td>
<td>500,000 ohms/ft²</td>
</tr>
<tr>
<td>Minimum tensile strength at yield</td>
<td>125 lb per inch</td>
</tr>
<tr>
<td>Minimum tensile strength at break</td>
<td>225 lb per inch</td>
</tr>
<tr>
<td>Minimum tear resistance</td>
<td>40 lb</td>
</tr>
<tr>
<td>Minimum puncture resistance</td>
<td>100 lb</td>
</tr>
<tr>
<td>Maximum yield elongation</td>
<td>13%</td>
</tr>
<tr>
<td>Maximum break elongation</td>
<td>700%</td>
</tr>
<tr>
<td>Stress crack resistance</td>
<td>300 hr.</td>
</tr>
<tr>
<td>Minimum carbon black content</td>
<td>2%</td>
</tr>
</tbody>
</table>

3. Submit a certification from the manufacturer that the physical properties of the membrane meet the Specification according to Subsection 106.05, “Materials Certification.”

B. Fabrication

General Provisions 101 through 150.
C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water permeability</td>
<td>GDT 69</td>
</tr>
<tr>
<td>Tensile strength at yield</td>
<td>ASTM D 6693</td>
</tr>
<tr>
<td>Tensile strength at break</td>
<td>ASTM D 6693</td>
</tr>
<tr>
<td>Tear resistance</td>
<td>ASTM D 1004</td>
</tr>
<tr>
<td>Puncture resistance</td>
<td>ASTM D 4833</td>
</tr>
<tr>
<td>Yield elongation</td>
<td>ASTM D 6693</td>
</tr>
<tr>
<td>Break elongation</td>
<td>ASTM D 6693</td>
</tr>
<tr>
<td>Carbon black content</td>
<td>ASTM D 1603</td>
</tr>
<tr>
<td>Stress crack resistance</td>
<td>ASTM D 5397</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General provisions 101 through 150.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

PROJECT: 0009542
DEKALB COUNTY

Section 935 - Fiber Optic System

Delete Section 935 and substitute the following:

Section 935 – Fiber Optic System

935.1 General Description

This work includes the installation of fiber optic cable and equipment including but not limited to cable, interconnect, patch cords, FDC interconnect cables/pig tails, any cable related hardware, connectors, splices, closures, temporary systems, testing, training, or any other fiber optic product as specified on the Plans, or noted in any other Section of these Specifications.

Provide all equipment and materials of like kind and function to be of the exact same manufacture, model, revision, firmware, etc.

Provide all equipment, materials, and work in accordance with all manufacturers’ recommendations.

935.1.01 Definitions

Not applicable

935.1.02 Related References

A. Georgia Standard Specifications

Section 150 – Traffic Control

Section 639 – Strain Poles for Overhead Sign and Signal Assemblies

Section 647 – Traffic Signal Installation

Section 682 – Electrical Wire, Cable, and Conduit

B. Referenced Documents

Optical Fiber Standards

- EIA/TIA-492AAAA-A, "Detail Specification for 62.5 µm Core Diameter/125 µm Cladding Diameter Class IA Graded Index Multimode Optical Fibers", Current Edition
- Telcordia GR-20-CORE, “Generic Requirements for Optical Fiber and Cable, Current Edition

Fiber Optic Cable and Component Standards

- Telcordia GR-20-CORE, “Generic Requirements for Optical Fiber and Cable, Current Edition
- EIA/TIA-604-XX, “Fiber Optic Connector Intermateability Standards (FOCIS)”, where XX specifies the fiber optic connector type (i.e., ST, SC, LC, etc.), Current Edition
- National Electrical Code Section 770

Fiber Optic Installation Standards and Practices

- BICSI Customer-owned Outside Plant Methods Manual, Current Edition
- OSHA Regulations (Standards-29 CFR) 1910, “Occupational Safety and Health Administration Standards
- ANSI/NFPA-70 National Electrical Code

Fiber Optic Measurement and Testing Standards

- EIA Standard FOP-II, Test Condition 1
- Applicable Flame Tests: UL 1581 and UL 1666 (Non-Plenum Applications)
- Applicable Flame Test UL 910 (NFPA 262-2002) (Plenum Applications)
 - EIA/TIA-526-14-A (OFSTP-14A), “Optical Power Loss Measurements for Installed Multimode Fiber Cable Plant”
Prior to any work, obtain approval from the Engineer for the products and procedures to be used on the Project.

The following chart provides the Contractor with an outline of the submittal requirements for the equipment and components for this pay item. This chart is to be used as a guide and does not relieve the Contractor from submitting additional information to form a complete submittal package.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. Cable (OSP&IP)</td>
<td>935.2.A,B,&C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch Cords & FDC</td>
<td>935.2.D</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interconnect Cables/Pig Tails</td>
<td>935.2.D</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop Cable</td>
<td>935.2.E</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.O. Connectors</td>
<td>935.2.F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splice Closure</td>
<td>935.2.G&H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. Lab Splice</td>
<td>935.2.I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDC</td>
<td>935.2.J</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transceivers</td>
<td>935.2.K</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splice Procedures</td>
<td>935.1.03C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training Plan</td>
<td>935.3.08</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Submit submittal data for all equipment, materials, test procedures, and routine maintenance procedures required for these items within 60 calendar days after the Notice To Proceed and prior to any installation, unless noted otherwise in the Contract Documents.

Submit to the Engineer for approval, six (6) copies of the manufacturer’s descriptive literature (catalog cuts), technical data, operational documentation, service and maintenance documentation and all other materials required within these specifications.

Provide submittal data that is neat, legible, and orderly. Neatly organize each package of submittal data and separate by hardware item. Use the “Materials Certification Package Index and Transmittal Form”, contained in Section 105.02 of the Special Provisions, for each pay item to document and list all material and components that are included in the submittal package. Any submittal data submitted without the Index/Transmittal form or that is incomplete will be rejected.

A. **Cable Certification**

Prior to installing any fiber optic cable on the Project, obtain approval for the cable type, cable manufacturer, fiber content, design and installation procedure from the Engineer. Request approval by submitting catalog cuts and factory specifications for the fiber optic cable.

B. **Aerial and Underground Splice Closures:**

Provide certification from an independent testing laboratory that certifies that the splice closures conform to the specifications and test procedures.
C. Splicing Procedures

Submit for Department approval the procedure to be used for the splicing of all cables on this project. Within the submittal documents include the proposed process, cleave tool and the specific fusion splicer to be used.

D. Fiber Distribution Center (FDC)

With the submittal data for the pre-terminated FDC (subsection 935.2.J), provide two complete samples of each size and type required in the project. Provide a minimum of 20 feet (6 m) of drop cable with each pre-terminated FDC; any type and manufacture of drop cable is permitted in the sample as long as the cable contains at least as many fibers as the pre-terminated FDC size. For each sample, provide factory test documentation as required in 935.3.06.E.

E. Training

Prior to training, submit resume and references of instructor(s) to Engineer for approval. The instructor shall be qualified in his/her respective field as determined by the Engineer. Submit an outline of the training course and a training plan within 120 days of the Contract Notice to Proceed for approval by the Engineer. Explain in the Training Plan in detail the contents of the course and the time schedule of when the training shall be given. Coordinate actual training with installation schedules as approved by the Engineer.

F. Fiber Optic Test Documentation

Provide the date, time and location of any tests required by this specification (see 935.3.06) to the Engineer at least 72 hours before performing the test. Provide two copies of documentation of the test results to the Engineer within 5 working days of completion of the test for review and approval, or else retest the represented fiber optic cable and provide the documentation within 5 working days of the retest. Bind the test documentation and include the following:

1. OTDR Set-Up: Cable & Fiber Identification
 - Cable ID
 - Cable Location - begin and end point
 - End-to-end cable length in kilometers calculated from cable markings
 - Fiber ID, including tube and fiber color
 - Operator Name
 - Date & Time

2. OTDR Test Parameters: Information to be recorded on each trace
 - Wavelength
 - Pulse width
 - Refractory index
 - Range
 - Scale

3. Test Results
 a. OTDR Test
 - Total Fiber Trace distance in kilometers
 - Splice Loss attenuation in dB per km
 - Events > 0.01 dB
• Trace analysis detailing all events exceeding 0.01 dB

The Contractor shall provide OTDR traces meeting Telcordia GR-196-CORE (Issue 2) data format requirements. With advance approval by the Engineer, the Contractor use an alternative format, provided the Contractor provides the Department with a licensed copy of the software at no additional cost to the or Department.

Provide all traces on a diskette to the Engineer.

At a minimum, the data shall include: cable ID, fiber number, buffer tube, FDC port, fiber distance, test wave length, attenuation in dB per km. The data requirements for each project will be provided through the Engineer.

b. Power Meter End – To – End Attenuation Test

This test is to be performed on each fiber link using test procedures described in document EIA/TIA 526 sections 7 & 14A.

• Length, number and type of splices and connectors

• Link attenuation

• The data shall be provided to the Engineer in Excel or compatible spreadsheet form and on a floppy diskette

G. As-Built Documentation

Submit as built documentation of all work provided in accordance with this specification prior to Contract final acceptance. Include in the as-built documents the following documents as a minimum as they are applicable. Supply manuals and wiring diagrams at the time of installation. Deliver as-builts no later than 30 days after completion of installation or as otherwise specified in the Plans or Specifications. Provide complete and accepted as-builts, which shall be reviewed and approved by the Department prior to any final acceptance or payment.

1. Operator’s Manual

Furnish a manual containing detailed operating instructions for each different type of equipment.

2. Maintenance Procedures Manuals

Furnish a manufacturer’s manual containing detailed preventative and corrective maintenance procedures for each different type or model of equipment.

3. System Connection Diagrams

Furnish diagrams showing fiber optic and electric system interconnection cables and terminations. Include a diagram showing the location of all equipment in the new equipment racks or frames in hubs.

4. As Built Drawings

Provide the Department with drawings that detail the final installation route of all cable. Show all routes and locations of the final cable installation in-place and complete. For aerial cable installations show poles, pole attachment heights, spans, colocations, splice closures, maintenance/storage coils, and vertical risers. For underground cable installations show conduit size, quantity and routes, pull boxes and ECBs, closures, and cabinet terminations. Provide as-build drawings showing the final location of new CCTV and VDS support poles, new utility poles, new equipment cabinets, detection systems, CMS, and ramp meter support poles. Provide the cable distance marking documentation required in 935.3.05.G.2.

Except for standard bound materials, bind all 8.5”x11” documentation, including 11” x 17” drawings folded to 8.5”x11”, in logical groupings in loose-leaf binders of either the 3-ring or plastic slide-ring type. Permanently and appropriately label each such bound grouping of documentation.

Furnish at least five (5) copies of all bound documentation.
935.2 Materials

All fiber optic parts, materials, components and equipment furnished and installed on this contract shall be consistent and compliant with the latest version or edition of the standards and industry practices specified in Section 935.1.02.B. If a conflict of difference exists between the requirements contained in the specified standards and practices and the requirements contained in these Specifications, then the Contractor shall use the most stringent material requirement for this contract. The Contractor shall notify the Engineer of any such conflicts or differences prior to procurement of materials and components.

A. Fiber Optic Cable

Ensure that all fiber optic related products conform to this specification. Install, apply, inspect, and use those products in accordance with the manufacturer’s standard operating and installation procedures and this Specification.

Use only fiber optic cable that meets the following requirements:

Ensure that the optical fiber used in both outside and inside plant cable conforms to the requirements specified herein as well as the industry standards and practices listed in Section 935.1.02.

All fiber optic cable on this project shall be from a currently ISO9001 certified manufacturer who is regularly engaged in the production of this material using the processes noted within this Specification. All outside plant fiber optic cable used on each individual project shall be from only one manufacturer and manufacturer production batch.

Use only cable that is new (manufacturered no more than eight months prior to the project Notice to Proceed) and of current design and manufacture.

Ensure that multimode optical fiber used in cables meets EIA/TIA-492AAAA-A, “Detail Specification for 62.5 µm Core Diameter/125 µm Cladding Diameter Class IA Multimode, Graded Index Optical Waveguide Fibers,” Current Edition and conforms to the requirements for multimode optical fiber in the Optical Fiber Specification Table in this Specification.

For hybrid cables, make the single mode fibers the first fibers in the count as specified in EIA/TIA-598-B, “Color Coding of Fiber Optic Cables.”

Ensure that all optical fibers in the cable are usable fibers.

The fiber optic cable type, configuration, and installation method will be detailed on the Plans, Drawings, Details, Specifications and in the pay items. The cable and cable installation shall conform to all requirements within the Plans and Specifications.

B. Outside Plant (OSP) Cable

This section sets forth the general standards for fabrication and design of outside plant fiber optic cable.

1. OSP Cable Construction

a. General Requirements: OSP cable shall be an accepted product of the United States Department of Agriculture Rural Utilities Service (RUS) as meeting the requirements of 7 CFR 1755.900.

 Only use optical fibers that are placed inside a loose buffer tube.

b. Buffer Tubes: Ensure each buffer tube contains 12 fibers for all fiber optic cables unless specified otherwise. The fibers cannot adhere to the inside of the buffer tube.

 Use only buffer tubes filled with a non-hygroscopic, non-nutritive to fungus, electrically non-conductive, homogenous gel. The gel shall be free from dirt and foreign matter and readily removable with conventional non-toxic solvents.
Apply binders with sufficient tension to secure the buffer tubes to the central member without crushing the buffer tubes. Use only binders that are non-hygroscopic, non-wicking (or rendered so by the flooding compound), and dielectric with low shrinkage.

c. Cable Core: Protect the cable core with a water blocking material. The water blocking material shall be non-nutritive to fungus, electrically non-conductive and homogenous.

d. Strength Members: Use a central anti-buckling member consisting of a glass reinforced plastic rod to prevent buckling of the cable.

Use high tensile strength aramid, fiberglass, or a combination of aramid and fiberglass yarns to provide tensile strength. Fillers or rods may be included in the cable core to lend symmetry to the cable cross-section where needed.

e. Color: Distinguish each fiber and buffer from others by means of color coding according to the following:

 1. Blue
 2. Orange
 3. Green
 4. Brown
 5. Slate
 6. White
 7. Red
 8. Black
 9. Yellow
 10. Violet
 11. Rose
 12. Aqua

Ensure these colors meet EIA/TIA-598-B, "Color Coding of Fiber Optic Cable."

For cables containing more than 12 buffer tubes, use the color code shown above for tubes 1 through 12, and use stripes or tracers in conjunction with the standard color code for tubes 13 through 24.

The colors shall be stable during temperature cycling and not subject to fading or smearing onto each other or into the gel filling material. Ensure colors do not cause fibers to stick together.

f. Cable Jacket: Include in the cable at least one ripcord under the sheath for easy sheath removal.

Helically strand the high tensile strength yarns evenly around the cable core.

Sheath all dielectric cables with medium density polyethylene. The minimum nominal jacket thickness shall be 0.06 in (1.5 mm). Apply jacketing material directly over the tensile strength members and water-blocking compound. The polyethylene shall contain carbon black to provide ultraviolet light protection and cannot promote the growth of fungus.

Ensure that the jacket or sheath to be free of holes, splits, and blisters.

Ensure that the cable jacket contains no metal elements and is of a consistent thickness.

g. Marking: Mark cable jackets using the following template, unless otherwise shown in the Plans:

Manufacturer’s Name - Optical Cable - Year - Telephone Handset Symbol – GA DOT - Description

Where the Description conforms to the following depending on cable type:

- Multimode Cable: XXF MM
- Single-Mode Cable: XXF SM
- Hybrid Cable: XXF SM / XXF MM

XX denotes the fiber count

Mark the cable length every meter, every 2 ft if marking the cable in English units. Ensure the actual length of the cable to be within -0/+1% of the length markings.

Use cable marking that is contrasting in color to the cable jacket. The height of the marking shall be approximately 0.10 in (2.5 mm).
2. Additional Requirements for Loose Tube Cable

Use only cable that is all dielectric, loose tube design. Ensure buffer tubes are stranded around a central member using the reverse oscillation, or "SZ", stranding process.

3. Cable Performance

All OSP cable shall meet or exceed the requirements of the Fiber Optic Test Procedure (FOTP) criteria referenced in 7 CFR 1755.900. Upon the request of the Department, provide certification from an independent testing laboratory that certifies that the cable conforms to the specifications and test procedures.

a. Pulling Tension: Ensure that the cable can withstand a maximum pulling tension of 600 lbf (2.7 kN) during installation (short term) and 200 lbf (890 N) long term installed.

b. Temperature Range: Provide only OSP cable with shipping, storage, and operating temperature range of -40 °F to +160 °F (-40 °C to +71 °C). The installation temperature range of the cable shall be -20 °F to +160 °F (-30 °C to +71 °C).

C. Inside Plant (IP) Cable

This section sets forth the general standards for fabrication and design of inside plant fiber optic cable.

1. IP Cable Construction

a. Strength Members: For the strength member, use a high modulus U.S. manufactured aramid yarn. The aramid yarns shall be helically stranded around the buffered fibers. Ensure that non-toxic, non-irritant talc is applied to the yarn to allow the yarns to be easily separated from the fibers and the jacket. For all IP cables used in plenum structures, use only IP cable that meets NEC UL-910 requirements for plenum rated cables.

b. Cable Jacket: Ensure the jacket to be continuous, free from pinholes, splits, blisters, or other imperfections. The jacket shall be smooth, as is consistent with the best commercial practice. The jacket should provide the cable with a tough, flexible, protective coating, able to withstand the stresses expected in installation and service.

 Use orange cable jackets for multi-mode and yellow cable jackets for single mode.

 Design the cable jacket for easy removal without damage to the optical fibers by incorporating a ripcord under each cable jacket. Ensure that a non-toxic, non-irritant talc is applied to the aramid/fiberglass yarns to allow the yarns to be easily separated from the fibers and the jacket.

 Ensure that the nominal thickness of the cable outer jacket is sufficient to provide adequate cable protection while meeting the mechanical, flammability, and environmental test requirements of this document over the life of the cable.

c. Color: Use color coded individual fibers for identification. The color coding shall be in accordance with EIA/TIA-598-B “Optical Fiber Cable Color Coding” as stated in 935.2.B.1.e. Use coloring material that is stable over the temperature range of the cable, is not susceptible to migration, and does not affect the transmission characteristics of the optical fibers. Use color coded buffered fibers that will not adhere to one another. When grouping fibers into individual units, number each unit on the sub-unit jacket for identification. Repeat the number approximately every 6.0 in (150 mm).

d. Marking: Mark the outer cable jacket at least every 3 ft (1 m) with the manufacturer's name or UL file number, date of manufacture, fiber type, flame rating, UL symbol, and sequential length marking (e.g. "62.5/125 MICRON Type OFNR - UL"). Use print color that contrasts to the color of the jacket and is permanent and legible for the life of the cable.

2. Construction by Cable Type

a. Interconnect Cables: Use interconnect cable to connect the distribution panels of a fiber optic cable plant with the actual electronic devices. The cross connect system requires either one or two fiber cable or cordage dependent upon the electronic connector requirement. Construct interconnect cable by surrounding the 900 µm tight buffered fibers with layered U.S. manufactured aramid yarns and a jacket of PVC or Copolymer depending on NEC requirements. Use the aramid yarns as tensile strength members. The cordage shall be allowed in one fiber simplex, two fiber duplex (round) or two fiber ZIP cordage.
b. FDC Interconnect Cable: Use this cable to splice a factory connectorized multifiber pigtails cable on to an OSP cable end, routing that cable within an FDC and its splice cabinet, and connecting to the termination panels of the FDC. Construct FDC interconnect cable of 900 \(\mu \text{m} \) tight buffered fiber (single mode or multi-mode optical fiber) surrounded with U.S. manufactured aramid fibers, and jacketed with flame retardant jacket material. Ensure that the optical fiber is proof tested to 100 kpsi (690 MPa) and that it meets all the optical fiber requirements of this Specification. Ensure that the factory-installed connectorization meets all requirements of this Specification. Match the fiber count and buffer tube configuration of the FDC interconnect cable to be exactly equivalent to the OSP cable being terminated in the FDC, unless additional fibers (using other buffer tube colors) are required for an FDC that is larger than the OP cable. Use an orange exterior jacket for the FDC interconnect cable for multi-mode and a yellow exterior jacket for single-mode. Label FDC interconnect cables exactly as for the OP cable when the FDC interconnect cable must be routed to the exterior of the FDC and its splice cabinet.

c. For cables with less than 8 fibers: Use fibers that are stranded around a U.S. manufactured aramid yarn central member and surrounded by layered U.S. manufactured aramid yarns. Use aramid yarns to serve as the tensile strength member of the cable. Apply a ripcord between the aramid yarns and the outer jacket to facilitate jacket removal. The outer jacket shall be extruded over the aramid yarns for physical and environmental protection.

d. For cables with 8 up to 24 fibers: Use cables that have individual fibers stranded around a glass reinforced plastic (GRP) central member and surrounded by layered U.S. manufactured aramid yarns. The GRP central member provides anti-buckling to ensure consistent attenuation performance across the operating temperature range of the cable. Apply a ripcord between the aramid yarns and the outer jacket to facilitate jacket removal. The outer jacket shall be extruded over the aramid yarns for physical and environmental protection.

e. For cables with 24 to 72 fibers: Group together the buffered fibers in six-fiber sub-units. In each sub-unit, strand the individual fibers around a U.S. manufactured aramid yarn central member and surround the sub-unit by layered aramid yarns. Incorporate a ripcord in the sub-unit design to facilitate access to the individual fibers. The sub-unit jacket shall be extruded over the aramid yarns for additional physical and environmental protection. Strand the sub-units around a GRP central member. The GRP central member provides anti-buckling to assure consistent attenuation performance across the operating temperature range of the cable. Insert a ripcord beneath the outer jacket to facilitate jacket removal. The outer jacket shall be extruded around the units for physical and environmental protection.

f. For cables with more than 72 fibers: Group together the buffered fibers in twelve fiber sub-units. In each sub-unit, strand the individual fibers around a dielectric central member and surround the sub-unit by layered aramid yarns. Incorporate a ripcord in the sub-unit design to facilitate access to the individual fibers. The sub-unit jacket shall be extruded over the aramid yarns for additional physical and environmental protection. The sub-units may be stranded around a dielectric central member. Insert a ripcord beneath the outer jacket to facilitate jacket removal. The outer jacket shall be extruded around the units for physical and environmental protection.

3. Temperature Range

Ensure that the storage temperature range for the cable on the original shipping reel to be -40° F to +160° F (-40 °C to +71 °C). The operating temperature range for riser cables shall be 0 °F to +160 °F (-18 °C to +71 °C). The operating temperature range for plenum cables shall be 32° F to +160° F (0 °C to 71 °C).

4. Crush Resistance Requirements

Ensure that the cable can withstand a minimum compressive load of 0.061 plf (0.89 N/m) applied uniformly over the length of the compressive plate. Use only cable that has been tested in accordance with FOTP-41, “Compressive Loading Resistance of Fiber Optic Cables.” While under the compressive load, the fibers shall not experience an attenuation change of greater than 0.4 dB at 1550 nm for single-mode or greater than 0.6 dB at 1300 nm for multimode. After the compressive load is removed, the fibers shall not experience an attenuation change greater than 0.2 dB at 1550 nm for single-mode or greater than 0.4 dB at 1300 nm for multimode.

5. Impact Resistance Requirements

Use only cable that can withstand a minimum of 20 impact cycles. Use only cable that has been tested in accordance with FOTP-25, “Repeated Impact Testing of Fiber Optic Cables and Cable Assemblies.” The fibers shall not experience an attenuation change greater than 0.2 dB at 1550 nm for single-mode or greater than 0.4 dB at 1300 nm for multimode.

6. Flammability
Use only cables that are UL-listed in accordance with NEC, Article 770. Riser cables (OFNR) shall pass UL-1666. Plenum cables (OFNP) shall pass UL-910.

D. Patch Cords and FDC Interconnect Cables/ Pig Tails

1. **Patch Cords**

Use patch cords consisting of a length of fiber optic cable terminated on both ends. For all IP cables used in plenum structures, use only IP cable that meets NEC UL-910 requirements for plenum rated cables.

 a. **Construction:** Ensure that all factory preconnectorized assemblies adhere to the applicable cable, cordage, and fiber specifications stated in these Specifications.

 All inside plant (IP) patch cords shall meet NEC jacketing requirements.

 Use orange outer jackets for multimode and yellow jackets for singlemode.

 Use connector boots of two (2) colors for all duplex patch cords, zip cord or round. Use white or off white for one leg of the duplex cord (non-printed zip leg) and red for the opposite leg (printed zip leg) of the duplex cord.

 For all assemblies for outside plant (OSP) where loose tube is used, include a fan-out kit installed at each connectorized end.

 Ensure that all connectors conform to Subsection 935.3.04.A.

 No splices of any type are allowed within a patch cord assembly.

 b. **Testing:** Fully test each assembly and place those test results on a test tag for each mated pair of connectors. Attach the tag to one end of each pair within the assembly.

 Individually package each assembly within a plastic bag and clearly mark on the outside of that bag the submitted manufacturer's part number.

2. **Factory Connectorized FDC Interconnect Cables/Pig Tails**

Use FDC interconnect cables/pig tails that consist of a length of fiber optic cable of one single fiber terminated on one end. Use only FDC interconnect cables/pig tails with factory installed connectors in accordance with Subsection 935.2.F. Provide FDC interconnect cables/pig tails with 900 micron tubing or 3 mm fan out tubing as required for the application. Use FDC interconnect cables/pig tails with 900 micron tubing only when fully enclosed within an FDC. Ensure that the other end of the cable is properly prepared for splicing to another cable. The FDC interconnect cable/pig tail shall conform to the same construction and testing requirements as patch cords.

E. Drop Cable Assembly – Outside Plant

Drop cable assembly is defined as a connectorized fiber optic cable (drop cable) and appropriate fan out (if required) used for connectivity between a primary fiber trunk or feeder cable and field devices such as signal controllers, closed circuit television cameras, video detection system cameras, changeable message signs, etc.

1. **General Requirements**

Provide a loose tube design drop cable in the drop cable assembly meeting the requirements for outside plant cable as specified in Subsection 935.2.B. Provide the drop cable assembly type (multimode, single-mode or hybrid) and fiber count specified in the Plans.

2. **Assembly Construction**

Provide a drop cable assembly as specified in the Plans and meeting the following requirements. Use only drop cables that are factory pre-terminated, that use splice-on factory-connectorized pigtails/FDC interconnect cables, or are included in pre-terminated FDCs. For factory pre-terminated drop cable assemblies, label each individual fiber with its drop cable fiber number (“1,” “2,” etc.) on a self-laminating clear overwrapping label on the fan-out tubing within 2 in. (50 mm) of the terminating fiber connector.
a. Pre-terminated Drop Cable Assembly: Install pre-terminated drop cable assemblies with loose tube design fiber optic cable, factory-installed fiber optic connectors in accordance with Subsection 935.2.F on each drop cable fiber, and factory-assembled fan outs with 3 mm fan out tubing. Use metallic crimps between the drop cable strength members and the fan out tubing strength members, and use heat-shrink tubing seals.

b. Field-spliced Drop Cable Assembly: Install field-spliced drop cable assemblies with loose tube design fiber optic cable, fusion spliced factory-connectorized pigtails/FDC interconnect cables, in accordance with Subsection 935.2.D and Subsection 935.2.F on each drop cable fiber.

c. Fan Out - Loose Tube Cable Design: Install field-installed fan outs with 3 mm fan out tubing in accordance with Subsection 935.3.05.J. Additionally, secure the fan out tubing to the main cable sheath in a hard epoxy plug transition that extends a minimum of 2.0 in (50 mm) onto the cable and 2.0 in (50 mm) onto the 3 mm tubing.

F. Fiber Optic Connectors

Furnish and install ST compatible connectors unless otherwise specified, except furnish and install LC compatible connections to optical interfaces on network and field switches. Use ceramic ferrule ultra polish connectors (UPC) for single-mode and multi-mode applications for all connector types. Install connectors as per manufacturer application and recommendations, including proper termination to the outer-tubing (900 micron tubing, 3 mm fan out tubing, etc.) required for the application.

Use UPC connectors rated for an operating temperature of -40 °F to +167 °F (-40 °C to +75 °C).

Use only factory-installed UPC connectors for all applications except where shown in the Plans for specifically permitted applications in accordance with 935.2.E.2. Use factory-installed UPC connectors installed with a thermal-set heat-cured epoxy and machine polished mating face. Do not use field-installed fiber optic connectors.

Where barrel couplers are used in passive termination applications such as FDCs, use only ST compatible ceramic-insert couplers. Use only manufacturer recommended single-mode couplers for single-mode connector applications. Provide dust caps for both sides of couplers at all times until permanent connector installation.

Provide connectors listed below that do not exceed the maximum loss listed for each connector.

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Installation</th>
<th>Max. Loss</th>
<th>Typical Loss</th>
<th>Optical Return Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td>Factory</td>
<td>0.50 dB</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Single-mode</td>
<td>Factory</td>
<td>0.50 dB</td>
<td>0.25 dB</td>
<td>>55 dB</td>
</tr>
</tbody>
</table>

G. Splice Closure - Underground

1. Use

Install closures designed for use under the most severe conditions such as moisture, vibration, impact, cable stress and flex temperature extremes. Splice closures shall pass the factory test procedures and minimum specifications listed below:

2. Physical Requirements

Use a cylindrical closure or rectangular dome type closure with cable entry at one end only and a sealed one-piece high-density polyethylene dome body.

Splice closures shall be suitable for ECB or pull box applications as shown in the Plans.

Ensure that the closure prevents the intrusion of water without the use of encapsulate.

Ensure that the closure’s cable entry end has a flexible thermoplastic rubber end seal with pre-template cable ports.

The closure size shown in the Plans specifies the number of splices to be accommodated by the closure. With the closure, provide all materials to accommodate the number of splices specified by the closure size, including splice tray, storage, and organizing materials.
Provide a closure that is capable of accommodating splice organizer trays that accept mechanical, fusion, or multi-fiber array splices. Use a splice closure that has provisions for storing fiber splices in an orderly manner, mountings for splice organizer assemblies, and space for excess or non-spliced fiber. Use splice organizers that are re-enterable and resealable.

Use only UL rated splice cases. Where high fiber count (144 to 432) splice cases are required, use cases that have an external pressurization port for optional pressurization.

Verify that closure re-entry and subsequent reassemble does not require specialized tools or equipment. Further, these operations cannot require the use of additional parts.

Provide a splice closure with provisions for controlling the fiber bend radius to a minimum of 1.5 in (38 mm).

All closures up to the 48-fiber size as shown in the Plans shall have maximum dimensions of 6.5 in. (165 mm) diameter and 23 in. (580 mm) length and shall provide entry of at least four cables of at least 0.75 in. (19 mm) diameter. These closures shall allow for the storage and express of at least 12 unopened buffer tubes when configured for any number of splices up to 48.

All closures above the 48-fiber size and up to the 144-fiber size as shown in the Plans shall have maximum dimensions of 8.5 in. (216 mm) diameter and 30 in. (760 mm) length and shall provide entry of at least four cables of at least 1.0 in. (25 mm) diameter and at least two additional cables of at least 0.75 in. (19 mm) diameter. These closures shall allow for the storage and express of at least 24 unopened buffer tubes when configured for any number of splices up to 144.

3. Quality Assurance Requirements

Install only underground splice closures that pass the following factory testing:

a. Compression Test: Provide a closure that does not deform more than 10% in its largest cross-sectional dimension when subjected to a uniformly distributed load of 300 lbf (1.3 kN) at a temperature of 0 °F and 100 °F (-18 °C and 38 °C). Perform the test after stabilizing at the required temperature for a minimum of two hours. Place an assembled closure between two flat paralleled surfaces, with the longest closure dimension parallel to the surfaces. Place the weight on the upper surface for a minimum of 15 minutes. Take the measurement with weight in place.

b. Impact Test: Provide an assembled closure capable of withstanding an impact of 21 ft-lb (28 N•m) at temperatures of 10 °F and 100 °F (-12 °C and 38 °C). Perform the test after stabilizing the closure at the required temperature for a minimum of 2 hours. The test fixture shall consist of 20 lb (10 kg) cylindrical steel impacting head with a 2 in (50 mm) spherical radius at the point where it contacts the closure. Drop it from a height of 12 in (0.30 mm). Ensure that the closure does not exhibit any cracks or fractures to the housing that would preclude it from passing the water immersion test. There shall be no permanent deformation to the original diameter or characteristic vertical dimension by more than 5%.

c. Cable Gripping and Sealing Testing: The cable gripping and sealing hardware shall not cause an increase in fiber attenuation in excess of 0.05 dB/fiber at 1550 nm when attached to the cables and the closure assembly. Test by measuring six fibers, one from each buffer tube or channel, or randomly selected in the case of a single fiber bundle. Take measurements from the test fibers, before and after assembly to determine the effects of the cable gripping and sealing hardware on the optical transmission of the fibers.

d. Vibration Test: Provide splice organizers that securely hold the fiber splices and store the excess fiber. Use fiber splice organizers and splice retaining hardware tested per EIA Standard FOP-II, Test Condition I. The individual fibers shall not show an increase in attenuation in excess of 0.1 dB/fiber.

e. Water Immersion Test: Provide a closure capable of preventing a 10 ft (3 m) water head from intruding into the splice compartment for a period of 7 days. Ensure that testing of the splice closure has been accomplished by the placing of the closure into a pressure vessel and filling the vessel with tap water to cover the closure. Apply continuous pressure to the vessel to maintain a hydrostatic head equivalent to 10 ft (3 m) on the closure and cable. Continue this process for 7 days. Remove the closure and open to check for the presence of water. Any intrusion of water in the compartment containing the splices constitutes a failure.

H. Splice Closure - Aerial

I. Use
Design the closure for use in aerial applications and to conform to the requirements below:

2. Physical Requirements

Use a cylindrical closure or rectangular dome type closure with cable entry at one end only and a sealed one-piece high-density polyethylene dome body.

Design the closure for free breathing splice protection without the use of encapsulate.

Provide a closure with fully assembled weather tight closure design.

Ensure that the closure’s cable entry end has a flexible thermoplastic rubber end seal with pre-template cable ports.

The closure shall have corrosion resistant aluminum or stainless steel hardware. Design the aerial closure in such a way as to allow complete splice access after closure placement, without removal of the closure or electrical bonds from the cable. The closure shall be suitable for straight, butt or branch splices. Include provisions for strain relief, both around the cable jacket and to internal cable strength members. The aerial closure design shall eliminate the need for drip collars and sealing collars. Package the closure with all necessary hardware for aerial mounting.

The closure size shown in the Plans specifies the number of splices to be accommodated by the closure. With the closure, provide all materials to accommodate the number of splices specified by the closure size, including splice tray, storage, and organizing materials.

All closures up to the 48-fiber size as shown in the Plans shall have maximum dimensions of 6.5 in. (165 mm) diameter and 23 in. (580 mm) length and shall provide entry of at least four cables of at least 0.75 in. (19 mm) diameter. These closures shall allow for the storage and express of at least eight unopened buffer tubes when configured for any number of splices up to 48.

All closures above the 48-fiber size and up to the 144-fiber size as shown in the Plans shall have maximum dimensions of 8.5 in. (216 mm) diameter and 30 in. (760 mm) length and shall provide entry of at least four cables of at least 1.0 in. (25 mm) diameter and at least two additional cables of at least 0.75 in. (19 mm) diameter. These closures shall allow for the storage and express of at least 12 unopened buffer tubes when configured for any number of splices up to 144.

3. Optical Fiber Organizer

The fiber organizer is a system that holds splice or organizer trays in such a way as to protect and support cable splices within an environmentally protected area. Provide organizer trays capable of storing all common splices; fusion and mechanical, in all configurations; butt, inline and branch (with up to four branch cables). All trays shall be completely re-enterable. Provide only trays able to accept both multi-mode or single mode fibers. The organizer itself shall accept a minimum of four trays, and offer bonding and grounding hardware. The organizer shall offer a simple one piece cable strapping system.

I. Mechanical Lab Splice

Insertion Loss:

Multi-Mode $< 0.30 \text{ dB}$

Single Mode $< 0.30 \text{ dB}$

Operating Temperature:

$-23 ^\circ \text{F to } 77 ^\circ \text{F (-31 } ^\circ \text{C to 25 } ^\circ \text{C)}$

J. Fiber Distribution Center (FDC)

Use rack-mount, wall-mount, or pre-terminated FDCs as specified in the Plans. Use rack-mount, wall-mount, or pre-terminated FDCs in all field cabinets, including all types of ITS and traffic signal cabinets, unless specifically excepted in the Plans.
Use rack-mount and wall-mount FDCs and FDC splice cabinets with enclosures and mounting components of metallic construction. Use FDC interconnect cable for all OP cable terminations in rack-mount and wall-mount FDCs unless otherwise specified in the Plans.

Use rack-mount FDCs that fit standard 19 inch EIA equipment racks or cabinets.

Use rack-mount FDCs of specified sizes 6-fiber through 24-fiber that have front-opening swing-out drawers for access to the fiber splicing trays and the fiber termination couplers. When closed, the swing-out drawer shall provide a dust-tight seal that completely encloses the fiber splicing trays, fiber termination couplers, and the connecting ends of fiber patch cords connected to the couplers.

Use rack-mount FDCs of specified sizes 36-fiber through 96-fiber that have fixed-mounted front-facing fiber termination couplers accessible behind a removable transparent plastic dust cover.

Use rack-mount FDCs of specified sizes 6-fiber through 48-fiber that include fiber splicing trays integral to the FDC enclosure, accessible through the rear of the FDC or through the swing-out drawer. Use rack-mount FDCs of specified sizes 6-fiber through 24-fiber with a maximum horizontal depth of 14 in (0.35 m) and 30-fiber through 48-fiber with a maximum horizontal depth of 24 in (0.61 m) and of the following maximum vertical heights:

- 6-fiber and 12-fiber: 1.75 in (44.5 mm)
- 24-fiber: 3.50 in (88.9 mm)
- 36-fiber and 48-fiber: 7.00 in (178 mm)

Use rack-mount FDCs of specified sizes 60-fiber through 144-fiber that include a separate FDC splice cabinet installed adjacent to the FDC. Alternately, rack-mount FDCs with splice cabinets integral to the overall FDC enclosure but contained in a separated compartment either above or below the FDC termination couplers. Use rack-mount FDCs of specified sizes 60-fiber through 144-fiber with a maximum horizontal depth of 24 in (0.61 m) and of the following maximum vertical height, combined FDC and FDC splice cabinet of 17.50 in (445 mm).

Provide rack-mount and wall-mount FDCs with the appropriate quantity of couplers, panels, splice trays, organizers, factory-connectorized pigtails/FDC interconnect cables, and ancillary materials to terminate the number of fibers as specified by the FDC size, regardless of the cable size to be terminated as shown in the plans. Use only FDC interconnect cables for FDCs 30-fiber and larger. Where factory pre-terminated drop cable assemblies are permitted and to be used, do not provide splice trays.

Use Type A pre-terminated FDCs that are factory manufactured assemblies of fiber optic drop cable with factory-installed fiber connectors and integral ruggedized fiber connector enclosures. Use Type A pre-terminated FDCs of the sizes specified in the Plans. Use fiber optic drop cable in accordance with 935.2.B and 935.2.E. Use fiber optic connectors in accordance with 935.2.F. The size of the pre-terminated FDC is defined by the number of fibers in the drop cable, all of which shall be connectorized. Use ruggedized fiber connector enclosures of thermally stable rigid plastic housings fully potted with a thermally stable epoxy filling that encapsulates the drop cable fan out, fibers and connector bodies. Use permanent labels on the enclosure with contrasting color to identify each connector body by its associated fiber number. Provide a unique serial number permanently attached on each pre-terminated FDC. Provide a non-metallic cable strain-relief boot where the drop cable enters the fiber connector enclosure and that secures the cable and to the enclosure; the strain-relief boot shall fully encircle the cable for a minimum of 2 inches (51 mm) from the enclosure’s outer surface. Use fiber connector enclosures that are no more than 2 inches (51 mm) wide and deep (the maximum dimension of the enclosure plus fiber connector body). Use 4 fiber and 6 fiber enclosures that are no more than 11 inches(280 mm) long and 12 fiber enclosures that are no more than 14 inches (356 mm) long. All fiber connectors shall be arranged on one of the long (vertical) faces of the enclosure. Provide an 0.125 in. (3.175 mm) thick aluminum mounting plate that secures to the fiber connector enclosure. The mounting plate shall have at least four mounting holes near the plate’s corners that permit horizontal or vertical mounting flush to a panel, and are spaced appropriately for vertical mounting to an EIA equipment rack rail using two of the mounting holes.

For FDCs of all types, provide couplers with dust caps in accordance 935.2.F. Use only ST compatible couplers unless otherwise specified.

K. Transceivers

1. External Transceiver

Office of Traffic Operations 14
Provide external transceivers that meet the following requirements:

- Daisy chained, linear multi-drop configuration.
- Asynchronous, full duplex RS 232 communication.
- Meet NEMA TS-1-1989 (R1994, R2000, R2005) environmental standards for power interruption, temperature and humidity, power service transients, non-destruct transients, vibration and shock. Conformance with equivalent environmental standards by other entities may be submitted for consideration.
- External, female ST connectors with T1, R1, T2, R2 ports for fiber connection.
- External female DB-25, DB-9, or terminal block RS 232 connector.
- External indicator LEDs for power, transmit & receive (each channel).
- Multimode transceiver operates at 1300 nm (minimum 14 dB power budget).
- Single mode transceiver operates at 1310 nm (minimum 21 dB power budget).
- Receiver dynamic range that is a minimum of 2 dB greater than the manufacturer’s specified power budget. The transceiver shall fully maintain all operational performance characteristics throughout the full receiver dynamic range, including a 0 dB path loss.
- Anti-streaming communications.
- Single mode transmitter units incorporate laser diode optical emitters.
- Internal, nickel-cadmium trickle charge battery for a minimum of six (6) hour backup operation. The battery shall be designed to have minimized degradation to reliability during extended periods of trickle charge operation. Use corrosion resistant battery contacts.
- Metal housing with maximum dimensions of 8” x 5” x 2” (200 mm x 130 mm x 50 mm). The metal housing shall have flanged mounting brackets to allow for permanent mounting with screws.

Do not use internal card-type units in field devices, such as traffic signal controllers, CCTV system controllers, and changeable message sign controllers.

Provide external transceivers in the control center or communications hub that meet the additional following requirements:

- Permanently rack mounted within a card cage with a self-contained rack power supply
- Card cage shall be provided per project requirements.

2. External Star Transceiver

Provide an RS232 data optical star transceiver meeting all requirements of the external transceiver in Subsection 935.2.K.1 with the following modifications:

The star transceiver shall be designed for multi-drop configuration with three optical data ports and one electrical equipment data connection port, to be applied in a drop-and-repeat optical three-way to “T” installation.

Verify that the star transceiver is fully compatible and operable with the linear drop-and-repeat transceiver specified in Subsection 935.2.K.1.

Do not include internal battery for backup operation.
L. Fiber Optic Snowshoes

Use fiber optic snowshoes that are factory-manufactured fiber optic cable storage brackets designed for aerial installation on messenger wire cable support spans. Provide fiber optic snowshoes constructed with aluminum or plastic bodies that maintain a minimum of an 8 inch (203 mm) cable bending radius and have integral cable lashing strap slots or holes for secure cable attachment to the storage bracket. Ensure that plastic snowshoe components are 100% carbon filled for resistance to UV exposure. Provide a minimum of two stainless steel or hot-dipped galvanized span wire mounting clamps for attachment.

935.2.02 Delivery, Storage, and Handling

Package the cable for shipment on reels. Each package shall contain only one continuous length of cable. Construct the packaging so as to prevent damage to the cable during shipping and handling.

Seal both ends of the cable to prevent the ingress of moisture.

Include with each reel a weatherproof reel tag attached identifying the reel and cable that can be used by the manufacturer to trace the manufacturing history of the cable and the fiber.

Include with each cable a cable data sheet containing the following information:

- Manufacturer name
- Cable part number
- Factory order number
- Cable length
- Factory measured attenuation of each fiber
- Bandwidth specification (where applicable)
- Index of refraction

When the length of an order requires a reel greater than 3 ft (0.9 m) in diameter, apply a protective coating around the cable before shipment. Cover the cable with a thermal wrap. Securely fasten the outer end of the cable to the reel head so as to prevent the cable from becoming loose in transit. Project the inner end of the cable a minimum of 6.5 ft (2.0 m) into a slot in the side of the reel or into a housing on the inner slot of the drum, in such a manner to make it available for testing.

Plainly mark each reel to indicate the direction in which it is to be rolled to prevent loosening of the cable on the reel.

935.3 Construction Requirements

All fiber optic parts, materials, components and equipment installed on this contract shall be consistent and compliant with the latest version or edition of the standards and industry practices specified in Section 935.1.02.B. If a conflict of difference exists between the requirements contained in the specified standards and practices and the requirements contained in these Specifications, then the Contractor shall use the most stringent material requirement for this contract. The Contractor shall notify the Engineer of any such conflicts or differences prior to procurement of materials and components.

935.3.01 Personnel

A. Section deleted

935.3.02 Equipment

Furnish a portable fiber optic light source and power meter test set for testing the fiber optic cable. Provide a test set matched, calibrated and referenced to work as a synchronized test system. Include 850 and 1300 nm light sources by LED and 1300 and 1550 nm light source by laser. Provide a power meter capable of measuring the optical loss from all of the above sources.
Provide a power meter capable of a resolution of at least 0.1 dB and a power range of at least +10 to –60 dB. Provide connectors and adapters for ST and duplex SC connectors. The light sources and power meter shall be capable of 120 VAC line power or rechargeable battery power. Provide a portable battery-operated printer for direct reports of test measurements, and provide PC software for uploading and storing test measurements on a computer. Provide protective padded carrying cases for all test set components, including test cables and adapters. Include complete instruction and training in the use of the test set in the training required in Subsection 935.3.08. This equipment shall remain the property of the Contractor.

935.3.03 Preparation

Not applicable

935.3.04 Fabrication

A. Fiber Optic Connectors

Furnish and install connectors with ceramic ferrules, with the fibers permanently secured within the ferrule with epoxy, heat set or air dried, as specified by the connector manufacturer.

Install connectors according to the manufacturers recommended practice.

935.3.05 Construction

A. OSP and IP Cable Installation

Submit for approval a detailed construction and installation procedure (SOP) covering all aspects of the construction and installation process for each and all specific cable to be used on this project. Secure from the cable manufacturer the construction and installation procedures to be used on the project. The SOP shall be submitted for review by the Engineer. Maintain traffic control that adheres to Section 150 of the Georgia Standard Specifications.

B. Cable Installation Procedures and Standards

1. Safety Precautions

Follow all appropriate OSHA and industry standards related to safety when working in manholes or underground vaults and when handling optical fibers.

2. Cable Handling

Install all fiber optic cable according to the manufacturer’s recommended procedures and these specifications.

3. Pulling Tension

Do not exceed the maximum recommended pulling tension during installation as specified by the cable manufacturer.

4. Allowable Bend Radius

Do not violate the minimum recommended bend radius during installation as specified by the cable manufacturer. Unless the manufacturer’s recommendations are more stringent, use the following guidelines for minimum bend radius:

20 X Cable Diameter Short Term - During Installation
10 X Cable Diameter Long Term - Installed

5. Cable Installation Guidelines

Before the installation begins, carefully inspect the cable reels for imperfections such as nails that might cause damage to the cable as it is unreeled.

Take all necessary precautions to protect reeled cable from vandals or other sources of possible damage while unattended. Any damage to the cable sections may require replacement of the entire section.
Whenever unreeled cable is placed on the pavement or surface above a manhole, provide means of preventing vehicular or pedestrian traffic through the area in accordance with Section 150 of the Specifications.

Use the "figure-eight" cable lay configuration to prevent kinking or twisting when the cable is unreeled or backfed. Do not coil fiber optic cable in a continuous direction except for lengths of 100 ft (30 m) or less. The preferred size for the "figure-eight" is 15 ft (5 m) in length, with each loop 5 ft to 8 ft (1.5 m to 2.4 m) in diameter. When "figure-eighting" cable, exercise care to relieve pressure on the cable at the crossover of the eight. This may be done by placing cardboard shims at the crossover or by forming a second "figure-eight".

Keep the cable continuous throughout the pull. Cable breaks are allowed only at designated splice points.

Where messenger cable is required, as shown in the Plans, lash aerial fiber optic cable to a steel strand wire messenger cable of the size specified in the plans that conforms to Georgia Standard Specification 915.02.

6. Cable End Sealing

Where a cable ends without termination in a fiber optic closure, seal the end of the cable by re-using a cable end cap that is shipped with a cable reel. Use a cap that is size-matched to the cable to be sealed. Clean the end of the cable. Partly fill the cap with a waterproof silicone adhesive sealant and press the cap fully onto the cable end, rotating the cap to fully encapsulate the cable end with the sealant in the cap. Apply a full sealant bead between the end of the cap and the cable jacket.

C. Cable Storage

At designated intervals throughout the cable plant, pull and store excess cable for slack for future terminations or splicing.

1. Cable Storage Requirements - Underground (OSP) & IP

Unless otherwise noted on the plans, the following are the requirements for cable storage for underground and IP applications:

- Pull Box – (Types 4, 4S, 5, 5S, 6, and 7) Apply the following storage requirements for the indicated cable/closure situations.
 - Drop cable with no closure – 10 ft. (3 m)
 - One or more trunk cables with no closure – 110 ft. (34 m) of each cable
 - Two or more trunk cables with one closure – store 55 ft. (17 m) of each trunk cable so that the closure can be removed from the pull box approximately 55 ft. (17 m). If a drop cable is spliced to the trunk cable at this point, store 55 ft. (17 m) of each drop cable.
 - One trunk cable with one closure – 110 ft. (34 m) Install closure in the center of the 110 ft. (34 m) cable loop, so that the closure can be removed from the ECB approximately 55 ft. (17 m). If a drop cable is spliced to the trunk cable at this point, store 55 ft. (17 m) of each drop cable.
 - One trunk cable with one closure and trunk cable ends – 95 ft (30 m). Install closure on the trunk cable at 55 ft (17 m) from the pull box. If a drop cable is spliced to the trunk cable at this point, store 55 ft (17 m) of each drop cable.
 - Trunk cable ends with no closure – 95 ft. (30 m)

Hub Building (interior) – Do not store slack cable inside the hub building.

Hub Building (exterior adjacent ECBs) – 180 ft (55 m)

- Traffic Control Center & Transportation Management Center (OSP splice vault) – 65 ft (20 m)
- Traffic Control Center & Transportation Management Center (IP at equipment room) – cable entrance to distribution panel bay plus 20 ft (6 m)
• Electrical Communication Box (ECB) - (Types 3, 4, 5, and 6) Apply the following storage requirements for the indicated cable/closure situations. More than one situation may occur in a single electrical communication box, in which case apply each appropriate requirement.

 • Trunk cable with no closure – 110 ft (34 m)

 • Trunk cable with one closure – 110 ft (34 m). Measure the storage amount from the top of the ECB manhole opening. Install closure in the center of the 110 ft (34 m) cable loop, so that the closure can be removed from the ECB approximately 55 ft (17 m). If a drop cable(s) is spliced to the trunk cable at this point, store 55 ft (17 m) of each drop cable.

 • Trunk cable with one closure and trunk cable ends – 95 ft (30 m). Install closure at 55 ft (17 m) from the ECB on the trunk cable. If a drop cable(s) is spliced to the trunk cable at this point, store 55 ft (17 m) of each drop cable.

 • Trunk cable ends with no closure – 95 ft (30 m)

2. Minimum Cable Storage Requirements - Aerial Applications

Unless otherwise noted on the plans, the following are the minimum requirements for cable storage for aerial applications:

Install a minimum 150 ft (45 m) storage loop approximately one half the distance between every equipment drop or as shown in the Plans. Where equipment drops are greater than 1000 ft (300 m) apart, install a minimum 150 ft (45 m) storage loop for every 1000 ft (300 m) of uninterrupted cable length.

At aerial splice closures, install 75 ft. (23 m) of drop cable storage and 150 ft. (45 m) of trunk cable storage, unless otherwise noted in the Plans, to allow the fully assembled closure, including the trunk cable and drop cable, to be lowered to ground level for maintenance purposes.

3. Cable Storage

Properly store all cable to minimize susceptibility to damage. Maintain proper bend radius, both short and long term, during cable storage.

a. Communication and Pull Boxes: Store the excess or slack cable in the pull box or communication box in accordance with the Plans details.

b. Hub/TMC/TCC: Properly store the cable in cable troughs and plenum applications which meet NEC requirements.

c. Aerial Installations: Store the excess or slack cable at storage loops in a “bow tie” configuration on the messenger strand using two fiber optic snowshoes (aerial fiber cable storage brackets) that maintain the proper bend radius in the fiber cable. Install one fiber optic snowshoe for drop cable and trunk cable storage at aerial splice closures to maintain the proper bend radius in the fiber optic cable.

D. Cable Splicing

Splice together each individual reel of fiber optic cable that makes up the continuous length of installed cable called for on this Project. Splice cable only at splice points designated on the plans. Make no splices within a patch cord assembly or drop cable.

E. Mid Span/Drop Access

At points where mid span/drop access is required, keep all fibers intact except those that are being accessed for the equipment drop. Use a suitable tool for removing fibers from the buffer tube to prevent damage to the fibers that will remain intact.

F. Connector Termination Procedures

Only use procedures for the termination of the connectors that meet the process set out in that connector manufacturer's standard operating procedure (SOP) for the field installation.

Office of Traffic Operations
G. Cable Marking

1. Materials

Use 2-1/2" (63.5 mm) wide, 4" (100 mm) long, wrap-around type cable markers suitable for underground and aerial use. Use UV stabilized marker material and printing inks to provide an aerial durability of at least five years.

Print text in bold black type on orange or yellow PVC markers, as specified in Section 935.3.05.G.2. Use base material that is minimum 0.015" (0.38 mm) thickness PVC. Pre-print the following text, or alternate text shown in the Plans, legibly on markers used for all cables:

Cable ID: XXXXXXX
GA DOT
Optical Cable

Where XXXXXXX is the appropriate cable ID as defined in the Plans. Print the text specified above twice on every cable marker with the text of the second image reversed and abutting the first image. The end result shall be text which “reads right” when either short edge of the cable marker is held horizontally upright.

2. Installation

Clean the installed cable of all dirt and grease before applying any marker. Follow the marker manufacturer’s recommended procedure for applying cable markers. Mark all cables in or at every communications hub, electrical communications box, pull box, handhole, equipment cabinet, aerial or underground splice closure, pole attachment, aerial storage bracket, and pole conduit riser entrance. At every trunk cable termination, reel end-to-reel end splice, electrical communications box, pull box, handhole, equipment cabinet, aerial splice closure, and aerial storage bracket, record the cable distance markings from the printline for the cable entry and exit, along with the exact location by Station Number or location name. Record the cable distance markings in a tabular format approved by the Engineer or on a documentation form provided by the Department.

Place cable markers in the following locations:

- within 18 in (460 mm) of every cable entry to a pull box, handhole, ECB and hub building
- within 6 in (150 mm) of every cable entry or termination in an equipment cabinet
- within 18 in (460 mm) of every splice closure at cable entry points
- within 6 in (150 mm) of every FDC or splice cabinet in a hub building in which a cable terminates or enters
- every 20 ft (6 m) for the length of a cable in maintenance coils in electrical communications boxes or pull boxes
- within 12 in (0.30 m) of every pole attachment, aerial storage bracket, and pole conduit riser entrance

Use orange markers at all locations, except as noted below:

- Where a trunk cable enters and leaves a closure (mid-span cable entry or end-to-end splice), use orange markers for one leg of the trunk cable and yellow for the other leg, placing corresponding color labels at the closure end of a leg and at the conduit entrance (underground installation) or span attachment (aerial installation).
- Where two drop cables terminate in a closure, use orange markers for one drop cable and yellow markers for the other drop cable, throughout the entire drop cable’s length to its other termination.

H. Fusion Splicing

1. Use

Unless otherwise noted, fusion splice all fiber optic splices.

2. Procedure
Fusion splicing consists of aligning the cores of two clean, cleaved fibers or a group of such fibers and fusing the ends together with an electric arc. Position the fiber ends under a microscope or a high-resolution video monitor and then align them using precision movement micro-positioners. High-voltage electrodes contained in the splicer conduct an arc across the fiber ends as the fibers are moved together, thus fusing the fibers together. Verify maximum core alignment prior to splicing and estimate splice loss after the fusion process by the use of light injection and detection devices or profile alignment algorithms.

Install all splice enclosures according to the manufacturer’s recommended guidelines.

3. Splice Protection

Adequately protect all fusion splices in splice trays or organizers in an enclosure. When splicing inside a building, use a splice center where rack or wall space is available.

Provide the splice with strain relief and protection of the stripped fiber splice in a manner recommended by the splice tray or organizer manufacturer. Use splice types compatible with the tray design.

Protect fusion splices with a heat shrink tubing that protects the splice and extends over the fiber coating. No bare fiber may be exposed.

I. Mechanical Splicing

1. Use

Do not use mechanical splices for any purpose other than a temporary connection to fiber optic test equipment.

2. Procedure

Make all mechanical splices of the strain relief/locking type requiring no adhesive or polishing of the fiber ends. Ensure the fibers are self-aligning upon the closing of the mechanical splice. The splices shall have the capability of splicing multi-mode or single mode fiber, and with any combination of buffer coating (250 µm and 900 µm). The splice shall be of one piece construction. Ensure that there is no stress on the fiber in the alignment area.

Install all splice closures according to the manufacturer’s recommended guidelines.

3. Lab Splice

Use a mechanical fiber optic lab splice when a temporary joining of two fibers is required, such as in the testing of non-terminated fiber. These splices may be used on single mode or multi-mode optical fiber. Ensure the lab splice is re-usable for up to 50 matings. The lab splice shall accommodate optical fibers with cladding diameters between 120 and 145 µm.

J. Splice Closures

Install splice closures according to all manufacturers’ recommendations. Install splice closures where shown in the Plans and in the approximate center of fiber cable storage coils. All splice closures mounted in ECBs or pull boxes shall be securely mounted to cable rack hooks or mounting brackets.

K. Fiber Optic Cable Fan Out

1. Inside Plant

Provide all inside plant cable with a fan out in accordance with the manufacturer’s recommended guidelines. In protected environments such as a splice case, protect the fiber with a minimum 900 µm jacket. In all other instances, protect the fiber with 3 mm fan out tubing. Install only connectors meeting the requirements for connectors set forth in Subsections 935.3.04.A and 935.2.F.

2. Outside Plant
Up-jacket individual 250 or 900 micron fibers to 3 mm using fan out tubing. Include in the fan out tubing aramid yarn strength members and an outer protective jacket. The individual leg length shall be 3 ft +/- 2 in (0.9 m +/- 50 mm).

L. Temporary Fiber Optic Cable

Furnish and install one continuous temporary fiber optic cable system as shown in the Plans. Terminate the cable and patch cords as required in the Plans, splice the cable along cable route at the points indicated in the Plans.

M. External Transceivers

Shelf mount external transceivers in a manner that does not restrict the replacement of other components in the cabinet housing. In Type 170 traffic cabinets mount the transceiver on an aluminum shelf permanently attached to the EIA 19” cabinet rack in the rear of the cabinet.

N. Fiber Distribution Center (FDC)

Do not install mechanical splices or field installed connectors. Equip unused panel slots with blank panels. Provide inter-cabinet and inter-bay bend radius and jumper management on each side of the FDC. Install all hardware according to the manufacturer’s recommended procedures and Department standards. Determine specific hardware sizing from the project documents.

For rack-mount and wall-mount FDCs, array connectors in a vertical pattern with number one being at the top left position.

Prior to manufacture of pre-terminated FDCs, verify the final installed location of all portions of each drop cable route from the splice closure to the equipment cabinet (including but not limited to the cabinet location, all conduit and pullboxes, and the splice closure location) to determine the required length of drop cable, including all splice closure and storage coils, to be factory manufactured with each FDC. In Type A Equipment Cabinets, mount pre-terminated FDCs on the side panel in a vertical position, as shown in the equipment cabinet details. Mount the pre-terminated FDCs with the connectors horizontal or facing downward, and route the drop cable up or down as necessary. Route and secure the drop cable beside or behind the cabinet side panel such that it is fully strain-relieved, does not violate the manufacturer’s recommended bending radius, and does not interfere with the operation of or access to any cabinet equipment or electrical components.

935.3.06 Quality Acceptance

A. Underground Splice Closures

Ensure that an independent testing laboratory has performed all tests described in Subsection 935.2.G. Provide certification from an independent testing laboratory as required in Subsection 935.3.1.

B. Fiber Optic Cable

1. Installation Test

Test the fiber optic cabling installed on this project according to the fiber’s assigned use as shown in the plans and as defined below:

- Terminated Fibers: terminated fibers are defined as fibers that are terminated on both ends, providing an end-to-end link from the hub to a device or between devices

- Spare Fibers: spare fibers are defined as fibers not being connected with this project to a device and that may be terminated at one end and stored at the other end, or stored at both ends. Spare fibers may or may not be spliced through two or more different trunk cables.

Upon completion of the cable installation, splicing, and termination, and a minimum of fourteen days before equipment hookup, test all terminated fibers and spare fibers for continuity, events above 0.10 dB, and total attenuation of the cable. In the event that fiber optic cable installed on this project is connected to existing fiber optic cable, perform installation testing on both terminated fibers and spare fibers of the new cable and existing fibers to which the new fibers are spliced or connected. Submit both printed and electronic (diskette) OTDR traces as specified in Subsection 935.1.03. Submit copies of the cable distance marking documentation as required in 935.3.05.G.2.
2. Test Requirements

a. OTDR Test: For all single mode and multi-mode fiber links, test and document the installation using OTDR testing.

 A certified technician shall conduct the installation test using an optical time domain reflectometer (OTDR) and optical source/power meter. The technician is directed to conduct the test using the standard operating procedure as defined by the manufacturer of the test equipment. The OTDR to be used shall be capable of performing standard OTDR functions, including the ability to display individual loss/gain in dB per km, as well as display all 2-point dB loss cursors to allow isolating and viewing any and all points along a given fiber distance.

 Use a factory patch cord of a length equal to the "dead zone" of the OTDR to connect the OTDR and the cable. Optionally, the Technician can use a factory "fiber box" of 325 ft (100 m) minimum with no splices within the box.

 Conduct the tests at 1300 nm for multimode cable and at 1310/1550 nm for single mode cable.

b. Attenuation Test: For all single mode and multi-mode fiber links, test and document attenuation by a standard power-meter test.

 For every fiber installed or connected to under this Contract, perform end-to-end attenuation test. For the test, use a calibrated optical source and power meter using the standard three-stage procedure. Determine acceptable link attenuation by the cumulative value of standard losses based on length, number and type of splices and connectors.

3. Fiber Optic Cable Acceptance

 Use the following criteria for acceptance of the cable:

 Provide test results demonstrating that the dB/km loss does not exceed +3% of the factory test or 1% of the cable's published production loss. Consider the error rate for the test equipment in the test.

 No event can exceed 0.10 dB. If any event is detected above 0.10 dB, replace or repair that event point.

 The total dB loss of the cable, less events, cannot exceed the manufacturer's production specifications as follows:

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Max. Attenuation dB/km</th>
<th>Test Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlemode</td>
<td>0.30</td>
<td>1550 nm</td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>1310 nm</td>
</tr>
<tr>
<td>Multimode</td>
<td>1.0</td>
<td>1300 nm</td>
</tr>
</tbody>
</table>

 If the total loss exceeds these specifications, replace or repair that cable run and assume all expenses, both labor and materials. Elevated attenuation due to exceeding the pulling tension during installation will require the replacement of the cable run at no expense to the Department for either labor or materials.

 NOTE: The Department may allow the "bi-directional/averaging" process of OTDR testing, particularly when splice losses are being unfavorably affected by "mode field diameter misalignment," "core off-set" or "core misalignment."

C. Fusion Splicing

 Ensure that the maximum splice loss for any fusion splice does not exceed 0.10 dB.

D. Mechanical Splicing

 Ensure that the maximum splice loss for mechanical splices does not exceed 0.70 dB.

E. Fiber Distribution Center (FDC)

 Test all completed and assembled pre-terminated FDCs at the point of manufacture and provide two copies of the manufacturer test documentation. Test each connectorized fiber in the pre-terminated FDC to demonstrate compliance with all requirements for cables and connectors as detailed in other subsections of these specifications. Include in the test documentation the location station number where the FDC is to be installed, the serial number of the pre-terminated FDC, the Office of Traffic Operations.
drop cable footage markings at each end of the drop cable, and the total drop cable distance. Place one copy of the manufacturer test documentation in the equipment cabinet drawer where the pre-terminated FDC is installed, and submit the other copy to the Engineer.

935.3.07 Contractor Warranty and Maintenance

Provide a Manufacturer support (usual and customary warranties) period for all fiber optic cable materials furnished and installed as part of the fiber cable system. Include in warranty and support all contractor or manufacturer activities related to maintenance, removal and replacement of cabling, closures and other fiber optic system materials during the period of support. Begin the Manufacturer warranty support period upon successful completion of the Fiber Optic Quality Acceptance testing as outlined in Subsection of 935.3.06. All Manufacturer warranties shall be continuous throughout the period and state that they are subject to transfer to the Department.

935.3.08 Training

Provide both installation and maintenance training on fiber optic cable to selected Department personnel. Personnel trained by the manufacturer of the fiber optic cable furnished on this project and authorized by said manufacturer shall perform the training. Furnish a training notebook in a labeled 3-ring binder to each trainee.

Provide a location to hold the courses that is an acceptable indoor and comfortable location near the project area. If requesting that the training be conducted away from the project area, pay all costs associated with travel and accommodation of all students.

Provide installation and maintenance training for up to eight (8) people. Include in this training both classroom training and hands-on training. All training shall be conducted in half-day sessions. Two half-day sessions may be held on the same day. The training will consist of classroom instruction and field training applications. The contractor shall provide and schedule training at least 5 working days prior to fiber cable being installed on the project. The total of the installation and maintenance training shall consist of at least forty (40) clock hours of training for each participant. Cover all aspects of inside plant and outside plant fiber optic cable installation, maintenance, and trouble-shooting including the use of all recommended test equipment. Ensure that all equipment, materials, and procedures used in the training comply with the requirements of Section 935.

As a minimum, include in the fiber optic training the following:

THEORY

• Light
 • Light transmission through fiber cable with discussion on effect of cable composition.
 • Theory definitions
• Electromagnetic spectrum
 • Composition of light
 • transmission of differing spectrums of light
• Refraction/reflection (Effects of light within fiber cable and relationship of light against core and cladding materials)
• Attenuation (Effects of fiber cable on transmission speeds of light)
• Signal wavelength selection (single-mode, multi-mode)
 • Selection of cable based on application
 • advantages of each cable
• Signal transmission form
• Analog, digital
• Bandwidth

SAFETY
• Working with optical fibers
 • Handling precautions
 • Working with lasers
 • Chemicals used in preparation, maintenance, splicing

ADVANTAGES/DISADVANTAGES
• Comparison of fiber optic cable to copper cable

COMPARISONS
• Fiber optic cable sizes and characteristics (capacities, weights, single-mode, multi-mode)

FIBER
• Types of propagation
• Multi-mode - characteristics and applications MM fiber spools
• Single-mode - characteristics and applications SM fiber spools
• Fiber cross sections, 250 µm and 900 µm fiber
• Fiber characteristics and specifications
• Fiber manufacturing

CABLE
• Loose tube designs, sample cable
• Tight buffer designs, cable samples
• Selection of cable to environment
• Cable for strip/prep for fan-out kit installation

CONNECTORS/COUPLINGS
• Connector designs, connectors/couplings samples
• Connectors in fiber systems
 • Installation of 900 µm fan-outs on loose tube cable, buffer tube fan-out
 • Installation of 3.0 mm fan-outs on central core cable, 3.00 mm fan-out tubing
 • Installation of Spider fan-out on loose tube cable, spider fan-out.
 • Field installation of MM/SM connectors (attendees terminate ends of cables with connectors)

SPLICING
• Fiber preparation and cleaving
• Factors effecting splice loss
• Splice trays
• Splices
 • Fusion and mechanical
 • Mechanical splice installation, mechanical splice demo
 • Fusion splicing class demonstration

DISTRIBUTION HARDWARE
• Distribution equipment (FDC)
• Wall and rack mount distribution equipment
• Field connecting, pigtails
• Field installation of connectors, demonstrate loose tube cable

INSTALLATION/MAINTENANCE
• Installation of outside plant cable (OSP) and closures
• Installation of inside plant cable (ISP)

TESTING AND TROUBLESHOOTING
• Power meter and light source usage, demonstration and test
• Visual fault locator usage, demonstration and test
• OTDR usage, demonstration and explanation of trace results with samples of multi-mode and single mode fiber
• Interpretation of OTDR reports on single and multi-mode fiber

FIBER IN ITS AND TRAFFIC SIGNAL CLOSED LOOP APPLICATIONS
• Typical architectures course book
• Closed loop traffic interconnect, trunk and drop/point to point connection
• CCTV/VDS trunk and drop/point to point
• Overall GDOT system architectures

935.4 Measurement

Fiber optic system, temporary fiber optic system, testing and training that is complete, in place, accepted and of the kind, size, and type specified is measured as follows.

A. Outside Plant Fiber Optic Cable

Outside Plant fiber optic cable is measured for payment by the actual number of linear feet installed, complete, functional, and accepted. Fiber optic cable shall include but is not limited to all required fiber optic connectors, fiber optic snowshoes, marking and labeling, patch cords and other ancillary items as required for a complete fiber optic installation.
B. Inside Plant Fiber Optic Cable

Inside Plant fiber optic cable is measured for payment by the actual number of linear feet installed, complete, functional, and accepted. Fiber optic cable shall include but is not limited to all required fiber optic connectors, marking and labeling, patch cords and other ancillary items as required for a complete fiber optic installation.

C. Closures

Underground splice closures, aerial splice closures, and FDCs are measured for payment by the actual number of units installed, complete, functional and accepted. Closures shall include but are not limited to all required mounting and fastening hardware, fiber optic connectors, FDC interconnect cables/pigtails, marking and labeling, patch cords and other ancillary items as required for a complete closure installation.

D. Fiber Optic Splice, Fusion

Fiber optic splices, fusion, are measured for payment by the actual number of splices made, complete, and accepted. Fiber optic splices associated with the use of factory-connectorized FDC interconnect cables/pigtails on drop cables, in accordance with Section 935.2, will not be measured separately for payment. Mechanical splicing for temporary applications shall be included in other work and will not be measured separately for payment.

E. Temporary Fiber Optic System

Payment for work on the Temporary Fiber Optic System will be a lump sum project bid price and will be considered full compensation for all installed materials and labor associated with the Temporary Fiber Optic System. Specific items include but are not limited to timber poles, guys, anchors, lashing, messenger cable, conduit directional boring, conduit, fiber optic cable, fusion splicing, hardware attachments, splice enclosures, equipment rentals, and disposal of materials.

F. Transceivers

External drop and repeat transceivers and external star transceivers are measured for payment by the number actually installed, complete, functional, and accepted.

For each unit installed, furnish and install all mounting and interconnection materials, including but not limited to card cages, hardware, fiber and RS-232 jumper cables, RS232/485 converters, and power supply cables at no separate cost to the Department.

G. Testing

Testing is measured as a lump sum for full delivery of testing and acceptance requirements. Measurement of testing includes subsistence necessary to conduct the testing.

H. Training

Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.

935.4.02 Limits

Not applicable

935.5 Payment

Outside and inside fiber optic cable, FDC interconnect cables/pig tails, splice closures, splices, temporary fiber optic system, transceivers, and testing are paid for at the Contract Unit Price for the various items. All other required items including; FDC interconnect cables/pigtails, fan-out kits, fiber optic connectors, fiber optic snowshoes, and other ancillary items for a completed fiber optic system shall be included as part of the below pay items. No separate payment shall be made for these items. Payment is full compensation for furnishing and installing the items complete and in place according to this Specification, with the exception of Training.
Training is paid for on a partial payment basis as follows:

The Department will pay 25% of the total contract bid amount for this item upon approval of the Training Plan. The Department will pay the remaining 75% after completion of all training as described in Subsection 935.3.08. The total sum of all payments cannot exceed the original contract amount for this item. Payment for all items of this Section is as follows:

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 935</th>
<th>Outside Plant Fiber Optic Cable (type, mode, size)</th>
<th>Linear Feet (Linear Meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 935</td>
<td>Inside Plant Fiber Optic Cable (type, mode, size)</td>
<td>Linear Feet (Linear Meter)</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber Optic Closure (type, size)</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber Optic Closure, FDC Pre-Terminated (type, size)</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber Optic Splice, Fusion</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>External Transceiver (mode)</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>External Star Transceiver (mode)</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Temporary Fiber Optic System</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Testing</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Training</td>
<td>Lump Sum</td>
</tr>
</tbody>
</table>

935.5.01 Adjustments

Not applicable
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

PROJECT: 0009542
DEKALB COUNTY

Section 936 - Closed Circuit Television (CCTV)

Delete Section 936 and substitute the following:

Section 936 – Closed Circuit Television (CCTV)

936.1 General Description

This work includes furnishing and installing closed circuit television (CCTV) system, any specified type, which is a CCTV video surveillance field installation, including but not limited to color CCTV cameras, lens, housing, pan/tilt drive, camera system assembly, cabling, mounting hardware, interface panel, camera control receiver, and cabinet wiring. This CCTV system provides operator control from and video imaging to the Department’s NaviGAtor Advanced Transportation Management System (ATMS).

Provide all equipment and materials of like kind and function to be of the exact same manufacture, model, revision, firmware, etc.

Provide all equipment, materials, and work in accordance with all manufacturers’ recommendations, including but not limited to all mounting, wiring and cabling, power supply, surge suppression, and communications equipment and materials.

936.1.01 Definitions

CCTV System, Type B – The Type B CCTV System uses a self-contained camera system assembly with an analog NTSC video output and RS-232 serial data control interface.

Type A Cabinet – As specified in Section 939, the Type A cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in (H) by 24 in (W) by 23 in (D).

Type B Cabinet – As specified in Section 939, the Type B cabinet housing is a standard Model 337 housing with approximate exterior dimensions of 35 in (H) x 20 in (W) x 17 in (D).

Type C Cabinet – As specified in Section 939, the Type C cabinet housing is a standard Model 332 housing with approximate exterior dimensions of 64 in (H) by 24 in (W) by 30 in (D).

Type D Cabinet – As specified in Section 939, the Type D cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in (H) by 24 in (W) by 23 in (D).

Type E Cabinet – As specified in Section 939, the Type E cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in (H) by 24 in (W) by 23 in (D).
936.1.02 **Related References**

A. **Georgia Standard Specifications**

Section 639 - Strain Poles for Overhead Sign and Signal Assemblies

Section 680 - Highway Lighting

Section 682 - Electrical Wire, Cable and Conduit

Section 922 - Electrical Wire and Cable

Section 923 - Electrical Conduit

Section 925 - Traffic Signal Equipment

Section 939 - Communication and Electronic Equipment

B. **Referenced Documents**

American National Standards Institute (ANSI)

American Society of Testing and Materials (ASTM)

Electronic Industries Association (EIA)

FCC Rules Part 15, Sub-part J

Insulated Cable Engineers Association (ICEA)

International Municipal Signal Association (IMSA)

MIL-HDBK-454A

MIL-STD-810F(3) Method 509 Procedure 1 – exterior salt atmospheres

National Electric Code (NEC)

National Electrical Manufacturers Association (NEMA)

NEMA-4

Underwriter’s Laboratory Incorporated (UL)

National Television Standards Committee (NTSC)

936.1.03 **Submittals**

This subsection and the following chart provide the Contractor with an outline of the submittal requirements for the equipment and components for all pay items in this Section 936. This chart is to be used as a guide and does not relieve the Contractor from submitting additional information to form a complete submittal package.
Submit submittal data for all equipment, materials, test procedures, and routine maintenance procedures required for these items within sixty (60) calendar days after the Notice To Proceed and prior to any installation, unless noted otherwise in the Contract Documents.

Submit to the Engineer for approval, six (6) copies of the manufacturer’s descriptive literature (Catalog Cuts), Technical data, operational documentation, service and maintenance documentation and all other materials required within these specifications.

Provide submittal data that is neat, legible, and orderly. Neatly organize each package of submittal data and separate by hardware item. Use the “Materials Certification Package Index and Transmittal Form”, contained in Section 105.02 of the Special Provisions, for each pay item to document and list all material and components that are included in the submittal package. Any submittal data submitted without the Index/Transmittal form or that is incomplete will be rejected.

A. CCTV System, Type B; CCTV System, Type B, Retrofit Assembly; CCTV System, Type B, Retrofit Assembly (Furnish Only)

1. Camera System Assembly

Submit complete physical, performance, and operational materials submittal data for the camera system assembly and all associated components.

2. Camera System Assembly Mount

Submit complete physical, performance, and operational materials submittal data for the camera system assembly mount and all associated components and hardware.

3. Cabinet Interface Assembly

Submit complete physical, performance, and operational materials submittal data for the cabinet interface assembly and all associated components and hardware. Submit complete documentation for the CCTV system manufacturer’s Embedded Protocol as implemented between the camera system assembly and the user control interface, and submit the setup and operations procedure for changeover between the NaviGAtor Standard CCTV Control Protocol and the CCTV system manufacturer’s Embedded Protocol and vice versa. Submit the CCTV Embedded Protocol and control software application on CD-ROM with printed user documentation.

4. Cabling and Connectors

Submit complete physical, performance and operational materials submittal data for all cables, wire and connectors required for a complete and operational CCTV system. Submit cables and connectors as specified here and as recommended by the CCTV system manufacturer. Submit all CCTV system wiring diagrams and documentation as is required for as-built drawings in Subsection 936.3.05.B. Submit cabinet layout diagrams of all CCTV equipment. Submit CCTV manufacturer recommendations for all wiring and cabling, including but not limited to surge suppression and grounding/bonding. Submit CCTV manufacturer recommendations for the longest recommended cable distance between the Camera System Assembly and the CCTV interface equipment in the equipment cabinet; this distance shall be stipulated in consideration of all of the
associated components and incidental materials, including but not limited to the system electronics design, cable materials, surge suppression, and power supply.

5. Submittal Review Demonstration Test Set

Submit demonstration test set(s) for Department evaluation after the Engineer approves the submittal materials for the equipment and materials listed below. The demonstration test sets shall be connected to and operated through the NaviGAtor system by the Engineer. Deliver the test set to the Department at the location specified by the Engineer. Request a delivery and test time a minimum of 30 days in advance. Provide demonstration test sets of the materials, types and quantities as shown below:

- CCTV System, Type B (quantity 2)
- CCTV System, Type B, Retrofit Assembly (quantity 2)

A demonstration test set shall include all materials, components, assemblies, control software and documentation of a CCTV system, Type B, (and/or Retrofit Assembly) and shall be a complete, fully functional CCTV system. The camera system assembly and the camera system assembly mount shall be attached to a desktop stand that securely holds the camera system assembly while the camera is being operated. The cabinet interface assembly may be mounted to the desktop stand or to separate panel. Cables C1, C2, C3, C4, C5, and C6 shall be connectorized and terminated as required in these Special Provisions. Provide TB18 and SS15. Provide a NEMA 5-15 cord that provides power to the cabinet interface assembly and communications equipment. Provide a terminal block or strip for connection of the RS232 communications signal to the communications equipment (e.g., video encoder serial port); label each terminal position for the conductor function. Provide a video decoder, a minimum 10 ft (3 m) coaxial video cable and a minimum 13 in color video monitor for viewing the video output. Serial (PTZ) communications to the CCTV System shall be provided through the serial port on the video encoder.

If the contract shows CCTV Systems to be installed in conjunction with video encoders/decoders and field switches, provide demonstration test sets in accordance with Section 939 for video encoders, video decoders, and field switches simultaneously with the CCTV System demonstration test sets.

Review of the demonstration test set submittal shall be conducted in two parts. The first part of the review shall be performed by the Contractor in the presence of the Engineer and shall include the setup and configuration of the demonstration test set on the NaviGAtor system. The first part of the review shall be conducted during normal Department weekday business hours and shall be conducted for the period of time necessary to the satisfaction of the Engineer. The second part of the review shall be a 60-day period during which the Engineer shall operate and evaluate the demonstration test set with the NaviGAtor system. The second part of the review shall commence only upon the Engineer’s approval of the first part of the review. Retrieve the demonstration test set upon completion of the second part of the review as notified by the Engineer.

For the first part of the demonstration test set review, the Contractor shall furnish and operate a serial data protocol analyzer to monitor and record the bi-directional RS232 communications session between the NaviGAtor system and the CCTV system. The protocol analyzer shall record all communications messages and shall time-stamp and record each byte of communications. Time-stamp resolution shall be no coarser than 0.10 millisecond. Provide recordings of all communications in the form of an MS-DOS-formatted ASCII text file. The protocol analyzer shall not be provided for the second part of the demonstration test set review, and the Contractor shall remove it at the end of the first part of the review.

B. Acceptance Testing

Submit acceptance test procedures and a desired acceptance test schedule.

C. Warranties and Guarantees

Submit materials submittal data providing complete example documentation on all manufacturers’ warranties or guarantees on all CCTV system equipment and hardware components furnished, as required in Subsection 936.3.07.

D. Training

Prior to training, submit resume and references of instructor(s). Obtain approval from the Engineer that the instructor is qualified in his/her respective field. Submit the Training Plan within 120 days of the notice to proceed. Include in the training plan an outline of the training course. Obtain approval of the Training Plan from the Engineer. The Training Plan shall explain in detail the contents of the course and the time schedule of when the training shall be given. Coordinate actual training with installation schedules as approved by the Engineer.
936.2 Materials

936.2.01 CCTV System, Type B

Ensure that the individual components and assemblies of the CCTV System, Type B, conform to the requirements specified in the following sections. Ensure that all equipment, materials, components and assemblies of the CCTV System Type B conform to the CCTV manufacturer’s requirements and recommendations.

A. Camera System Assembly

Follow these minimum requirements for a dome-enclosed camera system assembly including the camera, lens, pan/tilt drive, and control electronics.

Provide a downward-looking circular dome-shaped enclosure assembly. The enclosure shall have a maximum diameter of 14 in (356 mm) at its widest point and a maximum height of 22 in (559 mm) from the top of the housing assembly to the bottom point of the dome. The upper housing shall be constructed of a non-metallic UV-stabilized material of a light tan, gray, or white color, or constructed of an aluminum material with a heat-cured paint coating of an equivalent color. The lower housing shall be constructed of a UV-stabilized optically-correct acrylic material. The maximum weight of the complete and fully functional camera system assembly, including the camera, lens, pan/tilt drive, control electronics, environmental control components, housing assembly, and hub adapter shall be 25 lbs (11.4 kg).

Use an enclosure assembly that secures to the mounting bracket arm with a 1-1/2 in (37.5 mm) threaded pipe nipple. Hub adapters for the threaded pipe nipple on either the enclosure or the mounting arm, or both, are permitted.

All fastening and mounting hardware on or within the enclosure assembly shall be stainless steel.

Use a pressurized enclosure assembly that uses extra dry grade nitrogen. Provide a pressure relief valve and a Schrader valve for filling and evacuating the enclosure. An additional pressure relief screw is allowed. All mounting and wiring connections shall be pressure-tight. Ensure an operating pressure range of 3-7 psi.

Electrical power for the complete camera system assembly shall be per the manufacturer’s recommendations and between 12V to 120V DC or single-phase AC utilizing a two-wire (not counting ground) supply from the cabinet interface assembly in the equipment cabinet. Do not use a dual-voltage power supply. Maximum electrical load with all subsystems operational, including the heater, shall be no more than 130 VA.

Use an enclosure assembly with a heater and a circulating blower fan for environmental (temperature and defogging) control. Maximum electrical load for the heater shall be no more than 80 VA.

Use a camera unit with an integrated camera sensor and zoom lens assembly and an analog NTSC-compliant composite video output with a signal-to-noise ratio of 45dB or greater. The camera shall use an ¼-inch interline transfer CCD image sensor, with a minimum of 768 horizontal by 492 vertical active picture elements. All elements shall remain operational. The camera shall have a minimum resolution of 460 horizontal TV lines by 350 vertical TV lines. The camera shall include on/off selectable automatic gain control and manual/automatic selectable white balance. The camera shall include an electronic shutter mode with user-selectable speeds of a minimum range from 1/60 second to 1/10,000 second. The camera unit shall provide an on/off selectable day/night function where the image sensing and output automatically switch between color and black-and-white imaging; fixed color or black-and-white imaging shall be user-controllable. The camera sensitivity shall be no less than 3.0 lux in color mode (1/60 second) and 0.5 lux in black-and-white mode (1/60 second, IR cut removed).

Provide a camera unit with an integrated zoom lens of a minimum of 22X optical zoom and a minimum of 4X digital zoom. The camera shall not employ any digital zoom functionality unless the lens is at the full limit of optical zoom and the zoom command continues to be applied, in which case the camera unit shall automatically switch from optical to digital zoom. The optical focal length shall be approximately 4 mm to 80 mm. The camera unit shall include on/off selectable automatic focus and manual/automatic selectable iris control.

Use a pan/tilt drive for the camera unit that is fully-contained within the enclosure assembly. The drive shall be capable of 360 degree panning and at least 0 degree horizontal to 90 degree vertical looking downward tilting. The camera unit and pan/tilt drive shall provide automatic 180-degree image output flip at the bottom of the tilt travel. The camera unit and pan/tilt drive shall provide a minimum of eight privacy blackout zones, each zone being individually programmable to be on/off by the user. The panning speed, when a pan-left or pan-right command is applied by the user, shall be between 10 and
18 degrees per second. The tilting speed, when a tilt-up or tilt-down command is applied by the user, shall be between 4 and 10 degrees per second.

Provide a system control interface to the camera system assembly that physically and logically supplies the user commands to and monitoring from the camera system assembly, including but not limited to pan, tilt, zoom, focus, position reporting, and configuration. The system control interface shall physically connect the camera system assembly to the cabinet interface assembly through cables C1 and C3 as specified below. Do not use a system control interface through cable C2. Provide a system control interface as RS422 or RS485 serial data communications of any messaging format that is in compliance with all of the physical and operational requirements specified for a CCTV System, Type B. Provide the capability to set the communications address used by the Standard Protocol (subsection 936.2.01.C) through the system control interface or through the user control interface in the cabinet; do not require the opening/disassembly of the camera system enclosure to set the communications address. Store all user configurable settings in non-volatile memory that is retained indefinitely upon loss of power.

Provide integral surge suppression features in the camera system assembly, within the dome enclosure, for all ungrounded conductors of the power, communications, and video signal lines. This surge suppression is secondary to the surge suppression in the equipment cabinet. Surge suppression technology shall as a minimum be low capacitance implementations of components such as gas tube, metal oxide varistor (MOV), isolation transformer, silicon avalanche/zener/transorb diode, positive temperature coefficient (PTC) resettable fuse, opto-isolator, or equivalent, or a hybrid of these components.

B. Camera System Assembly Mount

Provide a camera system assembly mount that includes a mounting bracket arm, camera enclosure mount and disconnect, mounting straps, and incidental fastening hardware. All fastening and mounting hardware shall be stainless steel.

The mounting bracket arm shall be suitable for pole-mounted applications using mounting straps or bolts. The bracket shall be fabricated to exactly mate with the camera enclosure mount/disconnect/pipe nipple and any needed pole-mount adapter with no drilling or welding required. The bracket shall be fabricated from aluminum alloy with an exterior polyurethane coating, stainless steel, or mild steel with a heat-cured paint coating. All bracket coatings shall be beige, tan, gray or off-white in color and corrosion resistant in accordance with MIL-STD-810F(3) Method 509 Procedure 1 for exterior salt atmospheres.

Use a mounting bracket arm that locates the vertical centerline of the camera enclosure from 14 in (356 mm) to 24 in (610 mm) from the exterior surface of the support pole. The mounting bracket arm shall provide for cable entrance through the base of the bracket directly from the support pole and from the exterior through a raintight opening on the underside of the bracket and adjacent to the support pole. Provide non-metallic cable protection grommets for both cable entrances.

Use a mounting bracket arm that fully encloses the cable connectors J1 and J2 and the manufacturer’s connector on the camera enclosure for cable C3. Provide a mounting bracket arm with a minimum interior cross-sectional area of 5 square in (32 square cm.) Provide a raintight access opening (minimum 2 in by 12 in (5 cm by 30 cm) to cable connectors J1 and J2 on the underside of the bracket with captive attachment hardware and access cover retaining lanyard. Provide a raintight access to the camera enclosure connector for cable C3 with captive attachment hardware and access cover retaining lanyard.

Include a camera enclosure mount and disconnect on the mounting bracket arm that secures to the camera enclosure with a 1-1/2 in (37.5 mm) threaded pipe nipple. Hub adapters for the threaded pipe nipple on either the enclosure or the mounting arm, or both, are permitted. When installed and fastened, the completed mounting mechanism assembly shall rigidly connect the camera enclosure to the mounting bracket arm with no movement relative between the enclosure and the arm. Provide a disconnect means for dismounting and remounting the camera enclosure from the mounting bracket arm with the use of threaded fasteners or locking pinned/slotted/keyed attachment mechanism and without the need to unthread the 1-1/2 in (37.5 mm) pipe nipple. The disconnecting means shall be compatible with the camera system manufacturer cable C3 and connector.

Unless otherwise shown in the Plans, mount the bracket arm to the support pole using a minimum of two 1/2 in (12.5 mm) or greater stainless steel mounting straps.

C. Cabinet Interface Assembly

Use a cabinet interface assembly that provides electrical service for the camera system assembly and provides the user control interface connection to the NaviGAtor system and/or user personnel. Install the cabinet interface assembly in the
equipment cabinet. All fastening and mounting hardware shall be stainless steel. The cabinet interface panel assembly includes the following:

- **CCTV Interface Enclosure**
- **Camera System Assembly Power Supply with surge suppression**
- terminal blocks and video cable surge suppression for camera system assembly cabling
- user control interface to the NaviGAtor system and/or user personnel with surge suppression

Use the CCTV Interface Enclosure to hold the Camera System Assembly Power Supply and the user control interface unit for the camera electrical service and system control interface data path as shown in detail drawing 936.1a and 936.1b. The CCTV Interface Enclosure shall be rack mountable on a standard 19” rack and located in cabinet rack as shown in detail drawing 936.2a and 936.2b. The CCTV Interface Enclosure height shall not exceed 3 Rack Units, and it shall not exceed a depth of 15 inches. The CCTV Interface Enclosure shall provide the connector ports as defined below; unless otherwise specified, all connector ports shall be pluggable polarity-keyed terminal blocks with touch-safe design (Phoenix Contact Combicon blocks or approved equivalent) and rated for the voltage and current of the application. All connector ports shall be labeled as specified here and shall be located on the rear of the CCTV Interface Enclosure. The CCTV Interface Enclosure shall be labeled with the manufacturer model and part number of the camera system assembly with which the enclosure is supplied.

Provide a Camera System Assembly Power Supply in the CCTV Interface Enclosure that supports all electrical service needs for all components and subsystems of the camera system assembly and CCTV Interface Enclosure. Connect the line and neutral inputs of the CCTV Interface Enclosure power connector port labeled “CP Power” to the equipment cabinet’s 120VAC electrical supply on terminal block TB2 as shown in the CCTV system detail drawings, and use standard conductor insulation colors for 120VAC electrical service (black, white, and green). Provide a copper or copper alloy grounding lug on the CCTV Interface Enclosure and bond all internal components to the grounding lug; connect the grounding lug to the cabinet ground busbar. Connect the power supply output of the CCTV Interface Enclosure, labeled “CP1”, to the camera system assembly directly to the terminals of TB18, connecting to cable C1. Use only stranded copper wiring, with a minimum #12 AWG for the line and neutral conductors of the 120VAC circuit to TB2, and a minimum wire size recommended by the CCTV system manufacturer for the power supply circuit to TB18 but not less than #18 AWG. Ground the input and output sections of the power supply in accordance with the CCTV system manufacturer’s recommendations. The power supply shall not have any fusing for any circuit except for socket/holder mounted fusing. The power supply shall include a switch located on the front of the CCTV Interface Enclosure to disconnect power from the camera system assembly. The power supply and user control interface unit shall be sized so that they can fit inside the CCTV Interface Enclosure.

Provide a transient voltage surge suppressor for the power conductors to the camera system assembly. Use a surge suppressor that is independent of and external to the Camera System Assembly Power Supply. Use a surge suppressor rated for the voltage, current, and polarity of the Camera System Assembly with MOV/diode/thermal fusing hybrid technology and a -40C to +75C operating temperature.

Provide terminal block TB18 for the termination of cable C1 from the camera system assembly and the termination of wiring from the power supply and the user control interface unit. Mount TB18 on the equipment cabinet side panel as shown in the CCTV system detail drawings, not in the CCTV Interface Enclosure. Use a 14-position dual-screen barrier type terminal block with 7/16 in (11.11 mm) spacing using nickel-plated brass 6-32 philslot screw (Cinch 141 or approved equivalent) and quick-clamp type wire terminals (Cinch QC-1 or approved equivalent). Use a terminal block with voltage and current ratings greater than the voltage and current ratings of the wires, which are terminated on the block. Provide an EMI/RFI shield over the terminal block if recommended by the CCTV system manufacturer. Do not use compression-type, tubular clamp, or spade lug terminals. Provide a connector port on the CCTV Interface Enclosure for connection to TB18; label this port “CP2.”

Provide surge suppressor SS15 for the protection and termination of the coaxial video cables C2 and C4. Mount SS15 on the equipment cabinet side panel as shown in the CCTV system detail drawings, not in the CCTV Interface Enclosure. Use a shielded gas-tube and diode hybrid technology or equivalent with 6-volt line-to-ground clamping, 20kA peak surge current, -40C to +75C operating temperature, and BNC coaxial connectors. The maximum dimensions of SS15 are 4 in L x 2 in H x 1.5 in W (102 mm L x 51 mm H x 38 mm W.) Use a minimum #16 AWG stranded copper insulated green wire to ground SS15 directly to the cabinet ground busbar.

Provide a user control interface on the CCTV Interface Enclosure to provide for control and monitoring communications between the camera system assembly and the NaviGAtor system user. The user control interface port shall be a DB9
The NaviGAtor Standard CCTV Control Protocol (hereinafter called the “CCTV Standard Protocol”) is specified below and shall connect to the user control interface unit through an RS-232 serial data interface directly from the NaviGAtor system. Connect the user control interface inside the CCTV Interface Enclosure to the CCTV Standard Protocol with cable C5 through the connector port labeled “CP3”. Provide the CCTV system manufacturer’s proprietary embedded protocol (hereinafter called the “CCTV Embedded Protocol”) as a Microsoft Windows-based PC software application with user interface. Provide the CCTV Embedded Protocol and control software application on CD-ROM with printed user documentation. The CCTV Embedded Protocol control software shall be capable of fully operating the camera system assembly and user control interface unit, including but not limited to control, monitoring, and configuration. Operate the control software through a cable connection between the user control interface unit and an RS-232 serial data interface on a Windows-based PC. Provide the control software with a properly configured RS-232 cable (minimum length 6 ft) with a female DB-9 connector on the cable end attached to the computer and a pre-configured connector or termination on the end attached to the user control interface unit. Provide the control software with an unrestricted, non-cancelable user license for the Department’s use with any NaviGAtor equipment at any location. Furnish three copies each of the software, license, appropriate RS-232 cable, and user documentation per project.

Changeover between CCTV Standard Protocol and CCTV Embedded Protocol control and monitoring communications with the camera system assembly shall occur only through the user control interface unit. There shall be no requirement to physically access the camera system assembly or to reconfigure any wiring between the cabinet interface assembly and the camera system assembly. Use of different interface ports, or use of the same port, on the user control interface unit for the two protocols is permitted provided that the CCTV Embedded Protocol port is connectorized. Configuration changes to the user control interface unit to switch operation between the two protocols is not permitted, including but not limited to dipswitch or jumper settings.

Connect the user control interface unit, using cable C6, to TB18 for connection through C1 to the camera system assembly. Use a single one, two or three pair multi-pair cable of stranded copper wiring, minimum #18 AWG, twisted and/or shielded as recommended by the CCTV system manufacturer, and label this cable C6. Ground or bond any C6 cable or pair shielding and any unused conductors in accordance with the CCTV system manufacturer’s recommendations. Do not connect unused conductors of C1 to the user control interface unit unless recommended by the CCTV system manufacturer. Connect C6 directly to the terminating port on the user control interface unit; do not use any port adapters, gender changers, couplers, or similar components. Provide an automatically-resetting surge suppressor for each connected ungrounded conductor between the user control interface unit and TB18. Use a surge suppressor with low capacitance gas-tube and diode hybrid technology or equivalent with a 10kA peak surge current (8x20 waveform) and -40°C to +75°C operating temperature.

Connect the user control interface unit to the Video Encoder port with cable C5. Use a single multi-conductor or multi-pair cable with minimum stranded copper #18 AWG, with twisted pairs and/or shielded/bonded as recommended by the CCTV system manufacturer, and label this cable C5. Ground or bond any C5 cable or pair shielding and any unused conductors in accordance with the CCTV system manufacturer’s recommendations. Cable C5 shall be pre-connectorized on one or both ends as required for the user control interface and the Video Encoder port configurations and as required by the CCTV system manufacturer. Connect C5 directly to the terminating ports on either end; do not use any port adapters, gender changers, couplers, or similar components.

D. **CCTV Standard Protocol**

1. **General**

 Use the NaviGAtor Standard CCTV Control Protocol (hereinafter called the “CCTV standard protocol” or “standard protocol”) for CCTV system control communications between the user control interface unit and the NaviGAtor central system. Implement the standard protocol as specified in this subsection for all CCTV equipment installed on this project. The CCTV standard protocol governs all control communications between the NaviGAtor central system (hereinafter called the “host”) and the CCTV system specified in this Subsection 936.2.01 (hereinafter called the “remote”). Do not implement any other control communications except as required and specified in this Subsection 936.2.01.C.
2. Interface

The remote shall communicate using the CCTV standard protocol over an RS-232 serial interface. Data is transmitted using 1 start bit, 8 data bits, and 1 stop bit (no parity) at a baud rate of 9600.

Each remote shall be identified by a unique integer address between 1 and 233. This address is set during installation and shall not be altered using the standard protocol. The address is included in messages to identify the intended recipient of commands from the host and responses from the remote.

3. Message Sequence

All communication between the host and the remote is initiated by the host. The remote shall not transmit except in response to a properly formatted message from the host addressed to the remote's assigned address. The remote shall respond to such messages with an ACK (a single ASCII character 0x06) within 500 milliseconds ("ACK timeout"). The remote shall be ready to receive and process another command in as little as 150 milliseconds after the ACK is transmitted ("Inter-command spacing"). Figure 1 below depicts this sequence.

Some messages from the host require a subsequent response message from the remote. In this case, the remote’s ACK shall be followed immediately by a response message. When the host receives the properly formatted response, it will transmit an ACK back to the remote. This sequence is depicted below in Figure 2. The timing constraints presented above apply. Additionally, the host will wait a maximum of 500 milliseconds for each byte in the response message ("Inter-byte timeout").

4. Message Format
Command and response messages shall be formatted as shown below in Table 1.

<table>
<thead>
<tr>
<th>Size</th>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 byte</td>
<td>0xF8</td>
<td>Message header</td>
</tr>
<tr>
<td>1 byte</td>
<td>Address</td>
<td>Controller address (0x01 to 0xDF)</td>
</tr>
<tr>
<td>2+ bytes</td>
<td>Message Data</td>
<td>(see Command and Response Message sections below)</td>
</tr>
<tr>
<td>1 byte</td>
<td>Checksum</td>
<td>0x80 to 0x8F (see below)</td>
</tr>
</tbody>
</table>

Messages start with a single-byte header followed by a single-byte address. Two or more message data bytes follow the address. The message is terminated with a single-byte checksum.

Checksum Calculations

The message checksum byte is defined as the least significant nibble of the exclusive-or of all previous bytes in the message (excluding the 0xF8 header) added to 0x80. The resulting byte will be between 0x80 and 0x8F inclusive.

Checksum Example:
- The bytes of a “Pan Left” command addressed to controller 1 would be:
 0xF8 0x01 0x50 0x4C 0x??
- The bitwise exclusive-or of the bytes between the 0xF8 header and the checksum comes out to 0x1D.
 0x01 ^ 0x50 ^ 0x4C = 0x1D
- Adding the least significant nibble to 0x80, we get 0x8D for the checksum byte.
 0x80 | (0x0F & 0x1D) = 0x8D
- The resulting 5-byte command would be
 0xF8 0x01 0x50 0x4C 0x8D

5. Command Messages

The tables below present the message data contained within command messages sent by the host to the remote. In most cases (exceptions will be noted), the “Data” column contains the ASCII characters of the message data to be sent. For example, the Pan Left command data is “PL”, an ASCII ‘P’ (0x50) followed by an ASCII ‘L’ (0x4C).

An “ACK” in the “Response” column indicates no response message is expected from the remote beyond the ACK itself as shown above in Figure 1. An “ACK + * Response” indicates the ACK from the remote is to be followed by the specified response message as shown above in Figure 2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Data</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan Left</td>
<td>“PL”</td>
<td>ACK</td>
</tr>
<tr>
<td>Pan Right</td>
<td>“PR”</td>
<td>ACK</td>
</tr>
<tr>
<td>Pan Stop</td>
<td>“PS”</td>
<td>ACK</td>
</tr>
<tr>
<td>Tilt Up</td>
<td>“TU”</td>
<td>ACK</td>
</tr>
<tr>
<td>Tilt Down</td>
<td>“TD”</td>
<td>ACK</td>
</tr>
<tr>
<td>Tilt Stop</td>
<td>“TS”</td>
<td>ACK</td>
</tr>
</tbody>
</table>
Position Encoding

The message data for the “Pan/Tilt Goto Command” above begins with an ASCII ‘p’ followed by the azimuth ($A_2A_1A_0$) and elevation ($E_2E_1E_0$) positions. The positions are 12-bit values encoded four-bits each in to the least significant nibbles of the...
three bytes whose most significant nibbles are always 0x30. The subscript-2 indicates the byte containing the most significant bytes of the position and subscript-0 indicates the least significant.

Position Encoding Example: Encoding an azimuth position value of decimal 2748 or 0xABC, we break it up into three nibbles and add 0x30 to each so \(A_2 = 0x3A, \ A_1 = 0x3B,\) and \(A_0 = 0x3C.\)

The same encoding scheme is used for the zoom and focus positions in the “Zoom/Focus Goto Command”.

6. Response Messages

The table below presents the message data contained within response messages sent by the remote to the host.

Table 6 – Response Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Data</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan/Tilt Position</td>
<td>“PA2A1A0E2E1E0”</td>
<td>using the same data encoding as Pan/Tilt Goto Command described earlier. (note: while the command uses a lower-case ‘p’, the response uses an upper-case ‘P’)</td>
</tr>
<tr>
<td></td>
<td>(see Position Encoding above)</td>
<td></td>
</tr>
<tr>
<td>Zoom/Focus Position</td>
<td>“VZ2Z1Z0F2F1F0”</td>
<td>using the same data encoding as Zoom/Focus Goto Command described earlier. (note: while the command uses a lower-case ‘v’, the response uses an upper-case ‘V’)</td>
</tr>
<tr>
<td></td>
<td>(see Position Encoding above)</td>
<td></td>
</tr>
<tr>
<td>Latch Response</td>
<td>“LD1AD0”</td>
<td>The bits of (D_1,) the second byte in the data, indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Iris Auto(0) or Manual(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Camera Power Off(0) or On(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: Lens Speed Slow(0) or Fast(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: Comm. Error No(0) or Yes(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4: (always 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5: (always 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6: (always 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7: (always 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The bits of (D_0,) the fourth byte in the data, indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Aux-1 Off(0) or On(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Aux-1 Off(0) or On(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: Aux-1 Off(0) or On(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: (always 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4: (always 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5: (always 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6: (always 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7: (always 0)</td>
</tr>
<tr>
<td>Preset Response</td>
<td>“HD0”</td>
<td>(D_0) is a single ASCII character indicating:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘0’–‘9’:at the indicated preset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘A’:active, going to a preset</td>
</tr>
</tbody>
</table>
While the remote is going to a position as a result of a “Pan/Tilt Goto”, “Zoom/Focus Goto”, or “Preset Goto” command, “Preset Responses” will return ‘A’ in the D0 byte. If the remote is unable to get to the position in the “Goto” command (i.e. the pan/tilt assembly reaches the mechanical stops), the “Latch Response” will return ‘E’ in the D0 byte.

E. Cabling and Connectors

Provide cabling and connectors between the camera system assembly and the cabinet interface assembly as shown in the CCTV system detail drawings and in the Plans.

Provide coaxial video signal cables C2 and C4, with labels attached at both ends of each cable. Video signal cable C2 shall be double-shielded with tinned copper braid, #20 AWG solid copper center conductor, and polyethylene outer jacket approved for outdoor use (Belden 8281 or approved equivalent.) Video signal cable C4 shall be high-flexibility double-shielded with tinned copper braid, #22 AWG stranded copper center conductor, and PVC outer jacket (Belden 8281F or approved equivalent.) Use BNC connectors with gold-plated center pins on the video signal cables; use only connectors recommended by the cable manufacturer.

Provide control cable C1 with labels attached at both ends of the cable. Control cable C1 shall be a UL-listed six twisted-pair power limited tray cable with #18 AWG 19-strand tinned copper conductors with individual foil or braid shield on each pair and UV-resistant PVC or polyethylene outer jacket rated for 300 V, -20C to 105C operating range and suitable for aerial, outdoor, and underground conduit use. Terminate cable C1 in the equipment cabinet on TB18 as shown in the CCTV system detail drawings and as recommended by the CCTV system manufacturer. Ground or bond any pair shielding and any unused conductors in accordance with the CCTV system manufacturer’s recommendations.

Provide camera system assembly connector cable C3 to connect cables C1 and C2, through connectors J1 and J2 respectively, with the camera system assembly connector as provided by the CCTV system manufacturer. Cable C3 shall be manufactured and configured to mate with connectors J1 and J2 in accordance with the conductor assignments shown in the CCTV system detail drawings and the CCTV system manufacturer’s recommendations. Use stranded copper conductors, or a solid copper conductor for a coaxial cable, with minimum 75 degree C individual conductor and outer jacket insulation ratings on all materials. Cable C3 shall be configured with the minimum length necessary for connection within the mounting bracket arm to J1, J2 and the camera system assembly connector, while providing sufficient slack for a technician to disconnect and reconnect the cable at the camera system assembly connector. Cable C3 shall mate to the camera system assembly connector with a positive locking mechanism to prevent vibration from loosening the connection. The camera system assembly connector shall use gold-plated pins and sockets. Connector J1 on cable C3 shall be configured with male conductor pins. Connector J2 on cable C3 shall be a coaxial cable BNC connector as specified for cables C2 and C4 above. All connectors on cable C3 shall be strain-relieved. Label the cable as C3 and with the camera system manufacturer’s name and model number.

Terminate the aerial end of cable C1 with connector J1, which shall connect to mating connector J1 on C3. For J1 use a strain-relieved CPC 17-14 free-hanging plug and receptacle connector set (AMP 206043 / 206044 or compatible and approved equivalent) with gold-over-nickel spring-detent two-piece pins and sockets, with female conductor sockets terminated on cable C1. Do not use one-piece “formed” pins and sockets.

Terminate the aerial end of cable C2 as connector J2 with a BNC connector as specified for cables C2 and C4 above. Connect cable C2 to cable C3 through a BNC coupler with gold-plated center socket.

At the CCTV system manufacturer’s option and recommendation, submit for approval a single-jacketed composite cable that contains conductors and sub-cables with the equivalent function of cables C1 and C2. The composite cable shall have an UV-resistant PVC or polyethylene outer jacket rated for 300 V, -20C to 105C operating range and suitable for aerial, outdoor, and underground conduit use. The composite cable shall contain as a minimum: two (2) shielded-twisted pairs of #22AWG stranded conductors with drain wires; three (3) #16AWG stranded THHN-THWN conductors; and one (1) coaxial sub-cable exactly equivalent to cable C1 specified herein. Label the composite cable as C1/C2. Terminate cable C1/C2 in the equipment cabinet and in the mounting bracket arm by splitting out the separate conductors and sub-cables from the outer jacket; strain-relief with tie-wraps at the outer jacket opening. Terminate separated conductors in cable C1/C2 exactly as required for individual cables C1 and C2 at connectors J1 and J2, on TB18, and at SS15, following the exact pin-outs as shown in the CCTV system detail drawings. Ground or bond any pair shielding and any unused conductors in accordance with the CCTV system manufacturer’s recommendations.
936.2.02 CCTV System, Type B, Retrofit Assembly

Furnish a complete CCTV System, Type B, Retrofit Assembly to be installed at existing CCTV sites with existing support poles, equipment cabinets, power service, and communications systems. Ensure that the individual components and assemblies of the CCTV System, Type B, conform to all requirements specified in Subsection 936.2.01. The retrofit assembly includes all equipment and materials specified in Subsection 936.2.01 including but not limited to the camera system assembly, mount, cabinet interface assembly, communications and protocols, and cabling and connectors. Provide all new materials, including all surge suppressors and wiring to/from existing cabinet equipment such as C4, C5, SS15 and mounting plate, TB18 and mounting plate, 120VAC wiring to the cabinet interface assembly, and ground wiring to the cabinet interface assembly.

Determine and furnish the necessary CCTV System, Type B, cable lengths for all cables at each site shown in the Plans, including but not limited to cables C1 and C2 in the pole and all cables and wiring within the cabinet, as required by the equipment mounting locations. Determine and furnish the required C5 connector at the communications device end with proper pinout. Use the exact mating connector for the communications device port; do not use any port adapters, gender changers, couplers, or similar components.

936.2.03 CCTV System, Type B, Retrofit Assembly (Furnish Only)

Furnish a complete CCTV System, Type B, Retrofit Assembly (Furnish Only) to be delivered to the Department. Ensure that the individual components and assemblies of the CCTV System, Type B, conform to all requirements specified in Subsection 936.2.01. The retrofit assembly (furnish only) includes all equipment and materials specified in Subsection 936.2.01 including but not limited to the camera system assembly, mount, cabinet interface assembly, communications and protocols, and cabling and connectors. Provide all new materials, including all surge suppressors and wiring to/from existing cabinet equipment such as C4, C5, SS15 and mounting plate, TB18 and mounting plate, 120VAC wiring to the cabinet interface assembly, and ground wiring to the cabinet interface assembly. Ensure compliance with all fabrication and assembling requirements of Subsection 936.3.05, including but not limited to fastening hardware, wiring and mounting labeling, and wiring and cabling dressing, bundling, and strain relief.

Unless otherwise shown in the Plans, provide a cable length of 85 ft (26m) for C1 and fully terminate one end with connector J1. Provide a cable length of 85 ft (26m) for C2 and fully terminate both ends with male BNC connectors. Provide a cable length of 4 ft (1.2m) for cables C4, C5, C6, camera system power from TB18 to the camera interface assembly, 120VAC wiring to the cabinet interface assembly, and ground wiring to the cabinet interface assembly. Terminate both ends of cable C4 with male BNC connectors. Strip bare and tin the communications device end of cable C5. All other cable ends shall be terminated with the appropriate mating connector of the cabinet interface assembly; conductor ends intended for terminal blocks shall be stripped bare and tinned.

936.2.04 Delivery, Storage, and Handling

A. CCTV System, Type B, Retrofit Assembly (Furnish Only)

Provide all materials in protective packaging suitable for shipping and storage. Label all boxes with contents, including manufacturer name, model, serial numbers, and project number. Package each CCTV system in individual boxes as units of one complete CCTV System, Type B, Retrofit Assembly; multiple boxes for one assembly is acceptable, but multiple assemblies in the same box is not. Deliver assemblies to the Department at the location specified by the Engineer. Deliver at one time the full quantity of complete assemblies as shown in the Plans; multiple deliveries are not permitted.

936.3 Construction Requirements

Ensure that all construction for the equipment, materials, components and assemblies of the CCTV System Type B conform to the CCTV manufacturer’s requirements and recommendations.

936.3.01 Personnel

Not applicable
936.3.02 Equipment
Not applicable

936.3.03 Preparation
Not applicable

936.3.04 Fabrication
Not applicable

936.3.05 Construction
A. General Requirements

Request that the Department establish the utility service(s) required for a CCTV installation as described in Section 939.

B. CCTV System, Type B (all)

1. Installation Requirements

Mount the camera system assembly and the mounting bracket arm at the cardinal direction and height as shown in the Plans.

Install cables C1 and C2 between the camera system assembly and the equipment cabinet inside new hollow metal or concrete support poles unless otherwise specified. Where devices are installed on existing wood poles, install cabling on the wood poles in rigid metal conduit risers of minimum 2 in (50.8 mm) diameter. Use weather heads on all nipple and conduit openings. Neatly install and route cabling to minimize movement in the wind and chafing against the pole, device or bracket. Form a drip loop at the weather head and route cabling to prevent water entry into the weatherhead or mounting bracket arm. Install the mounting bracket arm no more than 8 in (204 mm) above the weatherhead, and install a drip loop that is no more than 6 in (152 mm) below the weatherhead at the loop’s lowest point.

Install the cabinet interface assembly components in the equipment cabinet as shown in the CCTV system detail drawings. Neatly arrange and dress all wiring, firmly lace or bundle it, and mechanically secure the wiring without the use of adhesive fasteners. Route and secure all wiring and cabling to avoid sharp edges and to avoid conflicts with other equipment or cabling. Route all CCTV cables separate from any 120VAC power wiring or surge suppressor ground wiring. Neatly coil and dress between 3 ft (1 m) and 5 ft (1.5 m) of cables C1 and C2 in the bottom of the cabinet. Dress and route grounding wires separately from all other cabinet wiring and with the minimum length possible between the suppressor and the ground bussbar. Do not splice any cable, shield or conductor used for video, control, communications signaling, power supply, or grounding.

Fasten all components of the cabinet interface assembly to be mounted on the equipment cabinet side panel or on the CCTV Interface Enclosure with stainless steel hex-head or phillips-head machine screws. Install the screws into tapped and threaded holes in the panels. Fasten stud-mounted components to a mounting bracket providing complete access to the studs and mounting nuts. All fastener heads and nuts (when used) shall be fully accessible within the equipment cabinet, and any component shall be removable without requiring removal of other components, panels, or mounting rails. Do not use self-tapping or self-threading fasteners. Label TB18, each terminal position on TB18, and SS15 on the equipment cabinet side panel with silk-screened lettering on the panel.

For CCTV System, Type B, Retrofit Assembly, unless otherwise shown in the Plans, remove and dispose of all existing CCTV equipment including camera enclosures and mounting arms, pole-mount hardware, all cables from cabinet to camera, and all CCTV-specific wiring devices inside the cabinet including surge suppressors. Where shown in the Plans to salvage and return any existing CCTV equipment, remove and deliver the identified equipment to the location specified by the Engineer in the same condition as prior to the project. Repair or replace any equipment damaged by the Contractor’s operations. Do not remove or disturb any pole equipment, hardware or wiring, or existing cabinet equipment and wiring including those materials for other devices, cabinet power service, and communications systems. Mount new CCTV equipment and materials in the existing cabinet in locations as close as possible to the same locations required in new cabinet installations.
2. CCTV System Configuration

Program and configure the CCTV system in accordance with the procedure below. Provide all required documentation in writing with all data recorded in the format of the NaviGAtor Standard CCTV Control Protocol. Perform the CCTV system configuration in accordance with the acceptance procedures in subsection 936.3.06. It should be noted that configuration requirements specified herein are independent of the video encoder. CCTV System Configuration is not required for CCTV System, Type B, Retrofit Assembly (Furnish Only).

Configure each CCTV system with the communications address specified by the Department, prior to any acceptance testing at a given CCTV system site. Configure the communications address as “001” unless otherwise shown in the Plans or directed by the Engineer.

GDOT’s “ATMS Surveillance Camera Control Integration and Calibration Procedure” is as follows:

- Record the position status setting for the full pan left and pan right stops. The pan left and pan right stops are defined as the camera positions when the pole initially comes into view from either direction at maximum zoom.
- Record the position status setting and angle (degrees from horizon) for maximum tilt up and maximum tilt straight down (90 degrees down from horizontal).
- Record the position status settings for each end of maximum focus range.
- Record the position status settings for maximum zoom out and zoom in.
- Provide to the Department the following information from each field installation site:
 - Location (as shown in Plans)
 - Height of camera (ft) above travel lanes
 - Azimuth (compass heading in degrees at camera’s right stop as defined above)
 - Azimuth (compass heading in degrees at camera’s left stop as defined above)
 - Device ID as shown on the Plans (example: CAM001)
 - CCTV system communications address (example: 001)
 - IP address, port/socket of serial port on Encoder
 - Video switch input port (when connected)
 - Comments

3. As-Built Drawings

Furnish as-built CCTV system wiring diagrams, identified by location. Include all wiring, cabling, conductor function, connector type and connector pinouts. Included but not limited in the documentation requirements are cables C1, C3, C5, C6, the CCTV embedded protocol control software cable, and all connectors and terminations on the cables, the camera system assembly, TB18, the user control interface unit and power supply of the cabinet interface assembly, and the communications equipment. Place all documentation in a weatherproof sleeve and place in the cabinet drawer. As-built drawings are not required for CCTV System, Type B, Retrofit Assembly (Furnish Only).

936.3.06 Quality Acceptance

A. General

Acceptance testing of CCTV System, Type B, and CCTV System, Type B, Retrofit Assembly consists of three phases: 1) field installation testing; 2) CCTV system site testing; and 3) burn-in period. After the Engineer’s granting of burn-in period
completion, obtain CCTV system acceptance. Acceptance testing of CCTV System, Type B, Retrofit Assembly (Furnish Only) consists of bench acceptance testing.

Perform acceptance testing for all equipment, hardware and work provided under this Contract, including each CCTV video surveillance field installation assembly and all associated communications hardware at a control center or communications hub. Perform all testing in the presence of the Engineer. Notify the Engineer of a desired acceptance test schedule no less than fourteen calendar days prior to beginning the testing except for testing using the NaviGAtor software and existing NaviGAtor control center and communications equipment. For acceptance testing using the NaviGAtor software and existing NaviGAtor control center and communications equipment, coordinate this testing with the Engineer no less than 30 days prior to the start of this testing.

Except as provided herein regarding the Department’s NaviGAtor software, develop, provide all equipment for, and perform all acceptance testing for all CCTV system equipment, hardware and work. Develop detailed and thorough test procedures with full test plan descriptions, test and measurement equipment listings, and test results data sheets. As part of the submittal data requirements, submit these test plans to the Engineer for approval. The Engineer will notify the Contractor of the approval or disapproval of the test procedures; only test procedures approved by the Engineer can be used. Provide all necessary testing and measurement equipment. Have a complete copy of all materials and equipment submissions and all documentary items on hand at all acceptance testing sessions.

Make the acceptance testing plan a detailed and thorough procedure for both the field installation test and the CCTV system site test. Demonstrate that the CCTV system equipment, hardware and work meet all requirements of the Contract. These requirements include but are not limited to all design, construction, materials, equipment, assembly, documentation of manufacturer’s certification of assembly and configuration, environmental, performance, communications, video and data communications signal strength and clarity, compatibility with the NaviGAtor software, and documentary requirements of the Contract.

Prior to the beginning of any acceptance testing at a given CCTV system site, complete all configuration and documentation associated with GDOT’s “ATMS Surveillance Camera Control Integration and Calibration Procedure,” described in Subsection 936.3.05.B. Be prepared to demonstrate such work.

B. Field Installation Test

Perform the Field Installation Test as an onsite test of the complete field installation assembly less the communications components; no acceptance testing at a given site can begin until all work associated with that site is complete, not including the communications components. For the field equipment installation test, use a PC system, CCTV Embedded Protocol control software, and a 13 in or larger color video monitor to demonstrate full operation of the CCTV site. Demonstrate operation to include pan, tilt, focus, zoom, iris, position feedback, and communications address configuration. Measure the video signal strength at the video connector of the communications equipment.

C. CCTV System Site Test

For the CCTV System Site Test, demonstrate proper CCTV system performance at the TMC or other control center determined by the Department. Perform the CCTV System Site Test only after successful completion of the field installation acceptance test. Demonstrate the complete video image, camera/lens control, and communications operation from each CCTV site to the TMC. Use the NaviGAtor software and existing NaviGAtor control center and communications system to demonstrate the compatibility of the CCTV equipment and installation in its permanent NaviGAtor configuration. Verify data communications (pan, tilt, focus, zoom, iris, position feedback) from the TMC as defined in the Department-approved test procedures.

D. Burn-in Period

1. General Requirements

Provide a 30-day burn-in period for all work and equipment included in the Contract. The burn-in period shall consist of the field operation of the CCTV system in a manner that is in full accordance with the CCTV system requirements of the Plans and Specifications. An acceptance test procedure is not required for the system burn-in.

Conduct only one (1) burn-in period on the entire Contract. Commence with the burn-in period only after meeting all of the following requirements:
• All work required in all Contract documents for CCTV (may be combined with construction contract) (except this burn-in period) has been completed and inspected by the Engineer.

• Successfully complete all Acceptance Testing.

Commence with the burn-in period upon written authorization by the Department to commence. Terminate the burn-in period 30 consecutive days thereafter unless an equipment malfunction occurs. Stop the burn-in period for the length of time any equipment is defective. After repairing the equipment so that it functions properly, resume the burn-in period at the point it was stopped.

Successful completion and acceptance of the burn-in period will be granted on the 30th day unless any equipment has malfunctioned during the 15th through 30th day of the burn-in period. If any equipment has failed during the 15th through 30th day, final acceptance will be withheld until all the equipment is functioning properly for 15 days after repair.

When a specific piece of equipment has malfunctioned more than three times during the 30 day burn-in period, replace that equipment with a new unit and repeat the 30 day burn-in period.

2. Contractor Responsibilities

During the burn-in period, maintain all work under this Contract in accordance with the Specifications. Restore any work or equipment to proper operating condition within 12 hours after notification.

3. Department Responsibilities

Department responsibilities during the burn-in period will be as follows:

• Expeditious notification of Contractor upon failure or malfunction of equipment

• In the event that the Contractor does not provide the services enumerated above under his Contract responsibilities, the Department or its authorized agents may in the interest of public safety take emergency action to provide for adequate traffic control. Pay any costs incurred as a result of these emergency actions. Such action by the Department will not void any guaranties or warranties or other obligations set forth in the Contract.

4. Burn-In Period Acceptance

The Department will make burn-in period acceptance after satisfactory completion of the required burn-in period and on the basis of a comprehensive field inspection of the complete CCTV system in accordance with the Specifications. Upon burn-in period acceptance but prior to Final Acceptance of the entire Contract, maintain the complete CCTV system in accordance with the requirements of Subsection 936.3.07.

E. Bench Acceptance Test

Perform the bench acceptance test as an onsite test of the complete retrofit assembly for all assemblies furnished as shown in the Plans. Furnish a benchtop stand and associated hardware for the camera system assembly mount that securely holds the camera system assembly while the camera is being operated. For the bench acceptance test, use a PC system, CCTV Embedded Protocol control software, and a 13 in or larger color video monitor to demonstrate full operation of the CCTV site. Demonstrate operation to include pan, tilt, focus, zoom, iris, position feedback, and communications address configuration. Measure the video signal strength at the video connector of the communications equipment end of cable C4. At the successful completion of the bench acceptance test, repack all materials in the shipping packaging required in Subsection 936.2.04.

936.3.07 Contractor Warranty and Maintenance

Provide a manufacturer's support (usual and customary warranties) period for all equipment and materials furnished and installed as part of the pay item for CCTV system equipment and materials. Include warranties or guarantees for system camera assembly and mount, cabinet interface assembly, and cabling/connector. Begin warranty upon successful completion of the CCTV System Site Test or Bench Acceptance Test.
Transfer Manufacturer’s and Contractor’s warranties or guarantees to the agency or user responsible for the CCTV system maintenance. The warranties and guarantees shall be continuous throughout their duration, and state that they are subject to such transfer.

936.3.08 Training

Provide installation, operations, and maintenance training on the CCTV equipment at a site in the project area. Personnel trained by the various equipment manufacturers and authorized by said manufacturers shall perform the training. Include in the cost of training all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training. Furnish a training notebook in a labeled 3-ring binder to each trainee.

Provide installation, operations and maintenance training for up to twelve (12) people. Include in this training both classroom training and hands-on training. Limit in-shop and in-field training to group sizes of four (4) people at a time. Conduct all training in half-day sessions. Two half-day sessions may be held on the same day. The total of the training shall consist of at least six (6) clock hours of training for each participant. Provide a course content of, at a minimum, the following:

- Installation of all CCTV equipment
- Operations of all CCTV equipment
- Explanation of video quality
- Maintenance of all CCTV components
- Use of the CCTV embedded protocol control software
- Measurement of video signals
- Discussion of all warrantee clauses
- Hands-on use of CCTV equipment in signal shop environment for each trainee
- In-field maintenance training

CCTV training shall be provided in conjunction with the digital video transport system training specified in Section 939. The total of the CCTV and video transport system training shall consist of at least eight (8) clock hours of training for each participant. Meet all video transport system training requirements of Section 939.

936.4 Measurement

936.4.01 CCTV System, Type B

CCTV systems, Type B, are measured for payment by the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for a CCTV system, Type B:

- camera system assembly including the camera, lens, pan/tilt drive, control electronics and environmental enclosure.
- pole-mounting hardware.
- cabinet equipment, including but not limited to the cabinet interface assembly and all associated wiring, conductors, terminal blocks, and surge suppression.
- all weather heads, vertical conduit risers and conduit hardware on the CCTV support pole for power service, grounding, communications and control.
- all cables, connectors, hardware, interfaces, supplies, and any other items necessary for the proper operation and function of any CCTV system component with any other CCTV system component.
936.4.02 CCTV System, Type B, Retrofit Assembly

CCTV Systems, Type B, Retrofit Assembly are measured for payment by the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for a CCTV System, Type B, Retrofit Assembly:

- removal and disposal, or removal, salvage and delivery, of all existing CCTV equipment.
- camera system assembly including the camera, lens, pan/tilt drive, control electronics and environmental enclosure.
- pole-mounting hardware.
- cabinet equipment, including but not limited to the cabinet interface assembly and all associated wiring, conductors, terminal blocks, and surge suppression.
- any weather heads, vertical conduit risers and/or conduit hardware on the CCTV support pole for grounding, communications and control cabling included in or affected by the installation of the retrofit assembly.
- all cables, connectors, hardware, interfaces, supplies, and any other items necessary for the proper operation and function of any CCTV system component with any other CCTV system component.

936.4.03 CCTV System, Type B, Retrofit Assembly (Furnish Only)

CCTV Systems, Type B, Retrofit Assembly (Furnish Only) are measured for payment by the number actually furnished, delivered, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for a CCTV System, Type B, Retrofit Assembly (Furnish Only):

- camera system assembly including the camera, lens, pan/tilt drive, control electronics and environmental enclosure.
- pole-mounting hardware including round pole adapter, attachment hardware, and mounting straps.
- cabinet equipment, including but not limited to the cabinet interface assembly and all associated wiring, conductors, terminal blocks, surge suppression, and fastening hardware.
- packaging for shipping and storage.
- all cables, connectors, hardware, interfaces, supplies, and any other items necessary for the proper operation and function of any CCTV system component with any other CCTV system component.

936.4.04 Testing

Testing is measured as a lump sum for full delivery of testing and acceptance requirements.

936.4.05 Training

Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.

936.4.06 Limits

Not applicable

936.5 Payment

936.5.01 CCTV System

CCTV systems of the Type specified in the Plans are paid for at the Contract Unit Price. Payment is full compensation for furnishing and installing or delivering the CCTV system.
Payment for CCTV systems is made under:

<table>
<thead>
<tr>
<th>Item No. 936</th>
<th>CCTV System, Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>936.5.02</td>
<td>Testing</td>
</tr>
</tbody>
</table>

The Department will pay for testing performed as prescribed by this Item, measured as provided under Measurement at the Lump Sum Contract bid price.

Payment for testing is made under:

<table>
<thead>
<tr>
<th>Item No. 936</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>936.5.03</td>
<td>Training</td>
</tr>
</tbody>
</table>

The Department will pay twenty-five (25%) of the total contract bid amount for training upon approval of the Training Plan. The Department will pay the remaining seventy-five (75%) after completion of all training as described in Subsection 936.3.08. The total sum of all payments cannot exceed the original contract amount for this item.

Payment for training is made under:

<table>
<thead>
<tr>
<th>Item No. 936</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>936.5.04</td>
<td>Adjustments</td>
</tr>
</tbody>
</table>

Not applicable
CCTV System Detail Drawings
Detail Drawing 936.1a
System Block Diagram, CCTV System, Type B
(Ethernet over Fiber)
CCTV System Detail Drawings
Detail Drawing 936.1b
System Block Diagram, CCTV System, Type B
(Ethernet over VPN)
CCTV System Detail Drawings
Detail Drawing 936.2a
Type D Equipment Cabinet Assembly with Type B CCTV Equipment

Notes:
1. All dimension and scale are approximate.
2. FDC (Fiber Distribution Center) required and paid for in Section 935
3. Support Panels shall be mounted inside the cabinet rack cage.
Notes:
1. All dimension and scale are approximate.
2. Support Panels shall be mounted inside the cabinet rack cage.

CCTV System Detail Drawings
Detail Drawing 936.2b
Type E Equipment Cabinet Assembly with Type B CCTV Equipment.
Note:
1. All linear dimensions ±0.005" tolerance.
2. Drawing not to scale
3. Mounting Panel shall be 0.125" 5052 Aluminum

CCTV System Detail Drawings
Detail Drawing 936.3
CCTV Field Termination Mounting Panel,
CCTV System Type B
CCTV System Detail Drawings

Wiring Diagram, CCTV System, Type B

Note:
1. Use C1 to J1 conductor and pin termination assignments as shown. Use camera system assembly power supply function and TB18 termination as shown. Use C1 pairs 2-6 and TB18 positions 4-14 for function assignments, including chassis, pair shield, or data ground, as per CCTV system manufacturer. Use only TB18 position 3 for power ground when required by CCTV system manufacturer. Do not use J1 pins 2 and 4.
2. Label 1018, each terminal position on TB18, and SS15 on the equipment cabinet side panel with silk screened lettering on the panel.
Delete Section 937 and substitute the following:

Section 937 – Video Detection System

937.1 General Description

This Work includes the procurement and installation of a vehicle detection system as shown in the plans. Ensure the vehicle detection system is capable of vehicle presence detection and traffic data collection meeting the general and specific requirements of this special provision. Ensure the firmware and software furnished and installed as part of an Intelligent Transportation System (ITS) project are the most current and approved releases or versions. Provide all equipment, materials, and work in accordance with all manufacturers’ recommendations. All equipment, cables, and hardware must be part of an engineered system that is designed by the manufacturer to fully interoperate with all other system components.

Provide a vehicle detection system which produces vehicle presence, volume, speed, and occupancy data for each detected lane. Provide a vehicle detection system utilizing one of the following technologies as shown in the plans:

A. Video Detection

Install a video detection system which provides presence detection, vehicle counts, roadway occupancy, classification, and speed information to the Department’s NaviGAtor Intelligent Transportation System. The video detection system includes, but is not limited to, camera image sensor(s), including the detector housing, mounting hardware, an application programming interface (API) and protocol for system communications, a video detection system processor, system management software, cabling between the detector and the cabinet, surge suppressors, terminations, and related equipment. The video detection system processors communicate through an Ethernet interface and TCP/IP (transmission control protocol/Internet protocol) connection to multiple Transportation Management Center (TMC) computers. The video detection system is typically used for gathering near real-time information about the flow of traffic on freeways, highways, or other designated roadway types.

B. Microwave Detection

Install a microwave radar detection system which provides presence detection, vehicle counts, classification, occupancy, and speed information to the Department’s NaviGAtor Intelligent Transportation System (ITS). The microwave radar detection system includes, but is not limited to, microwave/ radar detectors, including detector housing, mounting hardware, an application programming interface (API) and protocol for system communications, system management software, cabling between the microwave detector(s) and the cabinet, surge suppressors, terminations, and related equipment. Microwave detection systems are typically used for gathering near real-time information about the flow of traffic on freeways, highways, or other designated roadway types.
C. **Intersection Video Detection (I-VDS)**

Install an Intersection Video Detection System (I-VDS) for use with traffic signal/ramp meter controllers in a traffic signal or ramp meter cabinet with card rack vehicle detector input files. The I-VDS system to be supplied uses one or more video cameras to collect and analyze video signals for detecting vehicle presence and passage, generating volume, occupancy, and speed data. The I-VDS includes, but is not limited to, video camera sensors, including the camera sensor housing and mounting hardware, intersection video detection system processor modules, system management software, output expansion modules which mount in the traffic signal controller cabinet input files, programming monitors, programming devices for system configuration through software, cabling between cameras sensors and the cabinet, surge suppressors, terminations, and related equipment.

937.1.02 Definitions

General Provisions 101 through 150.

937.1.03 Related References

A. **Standard Specifications**

Section 150 – Traffic Control

Section 639 – Strain Poles for Overhead Sign and Signal Assemblies

Section 647 – Traffic Signal Installation

Section 922 – Electrical Wire and Cable

Section 925 – Traffic Signal Equipment

Section 939 – Communication and Electronics Equipment

Section 940 – NaviGAtor Advanced Transportation Management System Integration

B. **Referenced Documents**

American National Standards Institute (ANSI)

American Society of Testing and Materials (ASTM)

EIA-170A

Electronic Industries Association (EIA) - 170A

FCC Part 15, Subpart J, Class A device requirements

Georgia DOT SOP 17 & 42

Highway Capacity Manual (current edition)

Manual on Uniform Traffic Control Devices (current edition)

National Electric Code (NEC) 210-19a., FPN No. 4

National Electrical Manufacturers Association (NEMA) TS1-1989 (R1994, R2000, R2005), Section 2.1.5.2, Section 2.1.12

NEMA TS2-2003 Type 2, Type 170 and Type 179 Standards

NEMA TS2-2003

NEMA 250 Type 4 enclosure standards

Underwriter’s Laboratory Incorporated (UL) Submittals
937.1.04 Submittals

The following charts provide the Contractor with an outline of the submittal requirements for the equipment and components for the following pay items. This chart is to be used as a guide and does not relieve the Contractor from submitting additional information to form a complete submittal package. Provide submittal data for all equipment, materials, test procedures, and routine maintenance procedures required for these items as required in these Special Provisions.

Video Detection System Submittal Requirements

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Camera Sensor</td>
<td>937.2.01A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Video Detection System Processor (All Types)</td>
<td>937.2.01A.2b</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cabinet Eqpt</td>
<td>937.3.01.A.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Microwave Detection Submittal Requirements

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>937.2.02.A.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
</tr>
<tr>
<td>Housing</td>
<td>937.2.02.A.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
</tr>
<tr>
<td>Mounting Assembly</td>
<td>937.2.02.A.3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>60 Days</td>
</tr>
</tbody>
</table>
For Video Detection Systems (VDS) and Microwave Detection, submit to the Engineer for approval, two (2) hard copies of the manufacturer’s descriptive literature (catalog cuts), technical data, operational documentation, service and maintenance documentation and all other materials required within these specifications and also an electronic copy, which includes all the aforementioned documents, shall be placed on a CD as pdf documents and delivered to the Engineer.

For Intersection Video Detection (I-VDS), submit to the Engineer for approval, eight (8) hard copies of the manufacturer’s descriptive literature (catalog cuts), technical data, operational documentation, service and maintenance documentation and all other materials required within these specifications and also an electronic copy, which includes all the aforementioned documents, shall be placed on a CD as pdf documents and delivered to the Engineer.

Products appearing on the Qualified Products List (QPL) are exempt from normal submittal requirements. These products have been evaluated by the Office of Traffic Operations and have proven their capability of meeting the appropriate Georgia Department of Transportation Specification. Any of these products may be used without submitting catalogue cuts, sampling or pre-testing. The Contractor shall submit a letter to the Field Engineer, stating which QPL items they will use. The Field Engineer and/or department designee must ascertain that the construction item is the same material identified on the appropriate QPL and will acknowledge receipt of these items in the project diary or as required by the Construction manual.

Provide as-built documentation of all detector installations after the completion of field tests.

937.2 Materials

937.2.01 Video Detection System

Use a video camera sensor that is compatible with the video detection system processor and meets the following technical and functional requirements:
A. Technical Requirements

1. Video Camera Sensor
 a. Lens: Lens must be housed in an environmentally sealed enclosure, watertight, protected from dust, and
 must comply with the most current NEMA 4 standards. Video sensor must have a motorized lens with variable
 focus and zoom control. Focal length must allow ±50 percent adjustment of the viewed detection scene.
 b. Input power: Ensure the vehicle detection system operates using a nominal input voltage at the field
 cabinet of 120 volts (AC). Ensure that the system’s power supply will operate with an input voltage
 ranging from 89 to 135 volts (AC). For any device requiring a source input other than the standard
 120 VAC, supply the appropriate means of conversion.
 c. Video camera sensor enclosure: Install the video camera sensor in a light colored enclosure to limit
 solar heating. Meet NEMA 250 type 4 enclosure standards. An adjustable sun shield that diverts
 water from the field of view shall also be included. Include a provision for waterproofing the
 connection of power, control, video signal cables, and wiring on the camera enclosure.
 d. Weight: 10 lbs maximum including mount, shield, and camera.
 e. Mounting: Ensure that the video camera sensor assembly, enclosure, and sun shield can be mounted
 using manufacturer’s recommended hardware. The video camera sensor horizon shall be adjustable
 without removing the camera, mounting bracket and enclosure, or sun shield.

2. Video Detection System Processor
 a. Mounting
 Ensure the video detection system processor is rack mountable in a standard 19-inch rack assembly
 space conforming to Standard CEA-310, 2005, latest version/addendum, attaches to both sides of the
 rack, is not more than 10 inches (254 mm) deep, and is not more than 7 inches (178 mm) high. The
 video detection system processor shall be designed for mounting in an enclosed cabinet and/or Hub
 building without blower fans and mounting without insulation from other electronic devices such as
 power supplies, communications equipment, etc. The video detection system shall meet NEMA TS-
 2 temperature requirements.
 b. Electrical and Power Requirements
 Power the video detection system processor by 120 VAC, 60 Hz, single phase, and draw a maximum
 of 1.0 A. Size power conductors from the power source for the video detection system processor
 input so that no more than a 3% voltage drop is experienced (NEC 210-19 a., FPN No. 4). The video
 detection system processor shall have transient protection that meets the requirements of NEMA
 Power to the video detection system processor shall be from the cabinet equipment outlet.
 1) Video Detection System Processor, Type A
 a) Provide at least two (2) video inputs on the video detection system processor such that signals from up to two (2) video camera sensors or other synchronous or non-
 synchronous video sources can be processed in real time. Use BNC connectors on
 the back of the video detection system processor for all video inputs. Use a BNC
 connector on the front or back of the video detection system processor for video
 output.
 2) Video Detection System Processor, Type B
 a) Provide at least four (4) video inputs on the video detection system processor such that
 signals from up to four (4) video camera sensors or other synchronous or non-
 synchronous video sources can be processed in real time. Use BNC connectors on the
back of the video detection system processor for all video inputs. Use a BNC connector on the front or back of the video detection system processor for video output.

c. Environmental Requirements

1) Video Detection System Processor, Type A

Provide a video detection system processor that operates reliably in a typical roadside traffic cabinet environment. Provide internal cabinet equipment and a video detection system processor that meet the environmental requirements of NEMA TS1-1989 (R1994, R2000, R2005).

2) Video Detection System Processor, Type A

a) Operating ambient temperature range: -30°F to 140°F (-34°C to 60°C). Additionally, include a heater to prevent the formation of ice and condensation in cold weather. Do not allow the heater to interfere with the operation of the video camera sensor electronics, or cause interference with the video signal.

b) Humidity range: 5-95% humidity per NEMA TS1-1989 (R1994, R2000, R2005), Section 2.1.5.2.

c) Vibration: Do not allow vibration to impair performance when the camera is mounted on 96 ft (29 m) or shorter pole. Provide a video camera sensor and enclosure that maintains its functional capability and physical integrity when subjected to a vibration of 5 to 30 Hz up to 0.5 gravity applied to each of three mutually perpendicular axes (NEMA TS1-1989(R1994, R2000, R2005), Section 2.1.12).

d) Shock: Ensure the video camera sensor & enclosure can withstand a 10G±1G shock. Neither permanent physical deformation nor inoperability of the video camera sensor and enclosure can be sustained as a result from this shock level.

e) Acoustic Noise: Provide a video camera sensor and enclosure that can withstand 150 dB for 30 minutes continuously, with no reduction in function or accuracy.

B. Functional Requirements for Vehicle Detection Systems

In order to be approved for use in GDOT projects, a detection product must be able to provide certain data elements at or better than a minimal defined accuracy level. This section defines the minimally required functional aspects of the system as well as the required accuracy levels. It also outlines the testing process that will be used to determine whether a proposed video detection system product meets these specifications.

1. Ensure that Video Detection Systems proposed for use in the Navigator system provides vehicle presence, speeds, vehicle counts and roadway occupancies on a lane-by-lane basis. Verify that the system can emulate the output of a pair of 6 ft. by 6 ft. in-pavement loops spaced 16 ft apart. Ensure that the Video Detection System is capable of providing the above data for seven (7) lanes plus two shoulders with one video camera sensor. Verify that the system responds with the accumulated traffic data as collected since the last request.

2. Verify that the detection system is IP-addressable and that all communication addresses are user programmable. Ensure the setup program assigns an IP address to the detection processor. Ensure that communications to the system are either in serial format using an Electronic Industries Alliance (EIA) standard EIE-232 communication or an Internet Protocol (IP) interface as approved by GDOT’s Information Technology group. Ensure the system supports Point-to-Point Protocol (PPP), Point to Multi-Point Protocol (PMPP) and Ethernet Protocols.

3. Verify that the traffic data collected by the Video Detection System is stored within internal non-volatile memory within the video detection system processor. Perform software updates through an Ethernet, serial, or USB port. Verify that data can be retrieved from the system either locally or via requests from computers at the central Transportation Management Center (TMC) over the communications network. Verify that the system configuration data and system software is also stored within internal non-volatile
memory within the video detection system processor. Perform software updates through an Ethernet, serial, or USB port.

4. Ensure the video detection system processor front panel includes a visual display of the status of each video input. Indicators shall display, at a minimum, the status of video detection system processor communications, the status of the video detection system processor, the status of communications, and whether or not each video camera sensor is actively detecting. Include an Embedded HTTP Server in the video detection system processor. The Embedded HTTP Server shall allow a remote user with a standard web browser to gain remote access, collect data, control, and configure the VDS.

5. Ensure the Video Detection System includes computer software, which enables the user to program, calibrate, operate and view current status of all system features using a laptop computer, or network-connected workstation at the central TMC. Ensure the system allows the user to view live video from the image sensor with the programmed detectors overlaying the image. Ensure individual vehicle actuations can be viewed while observing the live video.

6. Ensure the Video Detection System configuration data can be uploaded and saved to a laptop or TMC workstation computer for later re-loading to the video detection processor if necessary.

7. Ensure that the system offers an open Application Programming Interface (API) and software development kit (SDK) for GDOT developers and their consultants to integrate the Video Detection System with Navigator Central Software or other third-party software and systems. Furnish needed software licenses for the system.

8. Furnish software that is compatible with the Department’s Navigator traffic management system software and that any software associated with the Video Detection System does not adversely affect the operation of the overall Navigator system.

9. Ensure the system user can use a laptop to reprogram, calibrate, adjust or alter any previously defined detector configurations in the field and also reprogram any detector configurations over the network or from a TMC workstation. Ensure no periodic adjustments or fine-tuning is required except in the case of physical roadway changes such as lane-shifts, new construction or closures. Initial configuration of the detection system shall be done with a programming device that is either a keyboard/keypad or stationary track ball pointing devices. Connect the programming device to the front of the processor module through a USB, DB9, or PS/2 connector. Provide a programming device that is PC compatible.

10. Provide software that can communicate concurrently between multiple users and multiple video detection processors on the same network without any interruption or conflict with the normal polling cycle.

C. **Accuracy Requirements for Video Detection Systems**

Provide a Video Detection System that meets the below minimum accuracy requirements for both daytime and night time conditions:

1. For volume (vehicle counts): 95% (no more than 5% missed actuations).

2. For speed measurement: 95% (no more than 5% error in speed calculation)

3. For occupancy measurement: 95% (no more than +/- 5% missed actuations)

4. For presence detection: 95% (no more than +/- 5% error in missed actuations)

D. **Testing**

Vendors are required to submit an independent test evaluation reports from a third party which verifies the accuracies stated within their specifications.

Independent third-party verification (ITPV) is defined as the evaluation of the conceptual, functional, and technical requirements of a product being reviewed by one or more independent third parties qualified by their education, training, and experience in the same discipline, to judge the worthiness of the products’ likelihood of achieving the intended objectives and anticipated outcomes.
Develop and submit plans for pre-installation and post-installation testing to the Engineer for consideration and approval. Ensure the plans test all functional requirements outlined in Section 937.2.01B and the accuracy requirements stipulated in Section 937.2.01C. Provide the Engineer with Application Protocol Interface (API) documentation and Software Development Kit (SDK) for the video detection system.

GDOT project engineer will provide this documentation to GDOT Information Technology (I.T.) staff or GDOT’s designated software consultant for review and determination that the proposed Video Detection System includes an API that is acceptable for integration with the Navigator Intelligent Transportation System. GDOT will have 30 days from receipt of the API and SDK to make this determination. GDOT is not required to write the full Detection System interface to Navigator at this point in the testing process.

1. Pre-installation test requirements: Include at a minimum the following procedures in the test plan to demonstrate the Video Detection System provides all the functional requirements in Section 937.2.01B and meets the accuracy requirement stipulated in Section 937.2.01C. Installation of detection systems will not begin until the pre-installation test requirements have been successfully completed.
 a. Install a test video detection system at a location determined by GDOT. Install a new video sensor for the test. Install a test video detection system that includes all components of the system including a video sensor, a video detection processor and software.
 b. Connect the Video Detection System processor to the GDOT communications network via a GDOT-provided field switch. Assign an IP address to the processor per GDOT’s direction.
 c. From the nearest Hub building, configure the Video Detection System processor to gather the data according to the requirements as specified in Section 937.2.01B.9. Verify that the configuration data is stored in non-volatile memory.
 d. Demonstrate that each required data element is gathered by the system at the user-specified interval. Use 20-seconds as the interval for demonstration testing. Prove the accuracy of the detection system meets requirements in Section 937.2.01C by:
 1) Driving a vehicle of known speed and length through the detection zone and observing and recording the speed and length calculated by the system. Repeat this measurement at least ten times.
 2) Record fifteen minutes of traffic video from the image sensor at the same time the detection system is collecting data. Manually count the recorded traffic video and verify the count data calculated by the detection system meets the required accuracy requirements.
 3) Perform the above accuracy tests in both night and day conditions.
 4) Upon GDOT acceptance of pre installation test results, begin the installation of VDS as specified in the plans.
 5) If any part of the pre installation test fails, the contractor has up to two subsequent attempts to correct the problem to the satisfaction of the Engineer. All these subsequent tests must be completed within a two week period from the date of initial failure.

2. Post-installation test procedures: Utilize the following test procedures after the video detection system has been installed in its entirety as shown on the Plans. Commence no post-installation testing until all video detection systems in the project have been configured/calibrated to gather speed, volume and occupancy and programmed to communicate on the GDOT network. At this stage of testing, GDOT will be required to have in place the necessary interfaces to the Video Detection System.
 a. Inspect all vehicle detection system field components to ensure proper installation and cable termination.
 b. Verify that field construction has been completed as specified in the plans.
 c. Inspect the quality and tightness of ground and surge protector connections.
 d. Check power supply voltage and outputs and ensure device connections are as specified in the Plans.
 e. Verify that the installation of cables and connections between all detectors and field cabinets are as specified in the Plans.
f. Demonstrate that each Video Detection System is fully operational and gathering the required data types at the specified interval. Perform this test from the hub building through which the detection system is connected.
g. Upon satisfactory completion of step f, GDOT will add the new video detection system(s) into the central NaviGAtor system
h. Begin a 30-day burn test and ensure the system remains fully operational during the 30 day period as stipulated in Section 647.3.06.C.

937.2.02 Microwave Detection System

A. Technical Requirements

Provide a microwave detection system that meets the following minimum requirements:

1. Microwave Detector
 • A frequency band of 10.525 GHz or approved spectral band must be used.
 • The transmitter power cannot exceed 10 milli-watts
 • Ensure compliance with the limits for a Class A digital device pursuant to Part 15 of the FCC rules
 • A noise level less than 55 dBA when measured one meter away from the device is required
 • Ensure the microwave detector operates on 12-24 VDC power provided. A power supply shall be included.

 Ensure the detector uses one interface connector that provides power to the unit, contact closure wire pairs for each detection zone, and Ethernet communication lines for operations, programming, testing, or modem interface
 • A coverage range between 10 and 200 feet is required.
 • A diagnostic self-test of all detector functions shall be included.
 • Data communications via Ethernet communications supporting TCP/IP Protocol must be provided.

Provide a microwave radar detector that operates under the following environmental conditions:
 • Ambient temperature range of –29°F to 165°F (-37°C to 74°C)
 • Relative humidity from 5 to 95 percent, non-condensing
 • A power surge of ± 1kV surge (rise time = 1.2 µsec, hold = 50 µsec) should be applied in differential mode to all lines, power and output, as defined by IEC/EN 61000-4-5 standards
 • Ensure the microwave detector is resistant to vibration in accordance with NEMA TS-1 (Section 2.1.12) or approved equivalent
 • Ensure the microwave detector is resistant to shock in accordance with NEMA TS-1 (Section 2.1.13) or approved equivalent

2. Housing

Provide a microwave radar detector housing that meets the following requirements:
 • Ensure compliance with the requirements of a NEMA type 3R enclosure
 • The outside dimensions, including fittings, do not exceed 1,000 cubic inches (LxWxH).
 • The total weight (including detector) does not exceed 8 pounds.

3. Mounting Assembly

Provide a microwave radar detector mounting assembly that meets the following requirements:
 • The mounting assembly shall be all painted steel, stainless steel, or aluminum construction
 • A minimum load of 20 pounds shall be supported.
4. **Power Supply**

Provide a power supply recommended by the microwave radar detector manufacturer that meets the following minimum requirements:

- A nominal output of 24VDC regulated with the ability to operate a minimum of 2 radar detectors simultaneously over an ambient temperature range of –29°F to 165°F (-34°C to 74°C) must be provided.
- A nominal input voltage of 120 VAC must be provided by the equipment cabinet power source.
- The power supply shall be mounted to cabinet side panel, or as approved by the Engineer.

B. Functional Requirements for Microwave Detection Systems

In order to be approved for use in GDOT projects, a microwave detection system must be able to provide certain data elements at or better than a minimal defined accuracy level. This section defines the minimally required functional aspects of the microwave detection system as well as the required accuracy levels. It also outlines the testing process that will be used to determine whether a proposed microwave detection system product meets these specifications.

1. Ensure that Microwave Detection Systems proposed for use in the Navigator system provides vehicle presence, classification, speeds, vehicle counts and roadway occupancies on a lane-by-lane basis at a user definable reporting period between 20 to 600 seconds.

2. Verify that the system can emulate the output of a pair of 6 ft. by 6 ft. in-pavement loops spaced 16 ft apart. Ensure that the Microwave Detection System is capable of providing the above data for seven (7) lanes plus two shoulders with one microwave detector. Verify that the system responds with the accumulated traffic data as collected since the last request.

3. Verify that the detection system is IP-addressable and that all communication addresses are user programmable. Ensure the setup program assigns an IP address to the detection processor. Ensure that communications to the system are either in serial format using an Electronic Industries Alliance (EIA) standard EIE-232 communication or an Internet Protocol (IP) interface. Data communications are to be through Ethernet communications supporting TCP/IP Protocol. Ensure the system supports Point-to-Point Protocol (PPP), Point to Multi-Point Protocol (PMPP) and Ethernet Protocols. A diagnostic self-test of all detector functions should be included.

4. Verify that the traffic data collected by the Microwave Detection System is stored within internal non-volatile memory. Verify that data can be retrieved from the system either locally or via requests from computers at the central Transportation Management Center (TMC) over the communications network. Verify that the system configuration data and system software is also stored within internal non-volatile memory.

5. Ensure the Microwave Detection System includes computer software for the user to program, calibrate, operate and view current status of all system features using a laptop computer or network-connected workstation at the central TMC. Initial configuration of the detection system shall be done with a programming device that is either a keyboard/keypad or stationary track ball pointing devices. Connect the programming device to the front of the processor module through a USB, DB9 or PS/2 connector. Provide a programming device that is PC compatible. Ensure the system allows the user to view live actuations from the microwave detector with the programmed detectors overlaying a representation of the roadway.

6. Ensure the Microwave Detection System configuration data can be uploaded and saved to a laptop or TMC workstation computer for later re-loading to the video detection processor if necessary.

7. Ensure that the system offers an open Application Programming Interface (API) and software development kit (SDK) for GDOT developers and their consultants to integrate the Microwave Detection System with Navigator Central Software or other third-party software and systems. Furnish needed software licenses for the system.

8. Furnish software that is compatible with the Department’s Navigator traffic management system software and that any software associated with the Microwave Detection System does not adversely affect the operation of the overall Navigator system.
9. Ensure the system user can use a laptop or TMC workstation to reprogram, calibrate, adjust or alter any previously defined detector configurations. Ensure no periodic adjustments or fine-tuning is required except in the case of physical roadway changes such as lane-shifts, new construction or closures. Initial configuration of the detection system shall be done with a programming device that is either a keyboard/keypad or stationary track ball pointing devices. Connect the programming device to the front of the processor module through a USB, DB9 or PS/2 connector. Provide a programming device that is PC compatible. Provide software that can communicate concurrently between multiple users and multiple video detection processors on the same network without any interruption or conflict with the normal polling cycle.

C. Accuracy Requirements for Microwave Detection Systems
Provide a Microwave Detection System that meets the below minimum accuracy requirements for both daytime and night time conditions:

1. For volume (vehicle counts): 95% (no more than +/- 5% missed actuations).
2. For speed measurement: 95% (no more than +/- 5% error in speed calculation)
3. For occupancy measurement: 95% (no more than +/- 5% missed actuations)
4. For vehicle classification: 95% (no more than +/- 5% error in classification calculation)
5. For presence detection: 95% (no more than +/- 5% missed actuations)

D. Testing
Vendors are required to submit an independent test evaluation report from a third party which verifies the accuracies stated within their specifications.

Independent third-party verification (ITPV) is defined as the evaluation of the conceptual, functional, and technical requirements of a product being reviewed by one or more independent third parties qualified by their education, training, and experience in the same discipline, to judge the worthiness of the products’ likelihood of achieving the intended objectives and anticipated outcomes.

Develop and submit plans for pre-installation and post-installation testing to the Engineer for consideration and approval. Ensure the plans test all functional requirements outlined in Section 937.2.02B and the accuracy requirements stipulated in Section 937.2.02C. Provide the Engineer with Application Protocol Interface (API) documentation and Software Development Kit (SDK) for the video detection system.

1. Pre-installation test requirements: Include at a minimum the following procedures in the test plan to demonstrate the Microwave Detection System provides all the functional requirements in Section 937.2.02B and meets the accuracy requirement stipulated in Section 937.2.02C. Installation of detection systems will not begin until the pre-installation test requirements have been successfully completed.
 a. Install a test microwave detection system at a location determined by GDOT. Install a new microwave detector for the test. Install a test video detection system that includes all components of the system including a microwave detector, microwave detector processor and software.
 b. Connect the Microwave Detection System processor to the GDOT communications network via a GDOT-provided field switch. Assign an IP address to the processor per GDOT’s direction.
 c. From the nearest hub building, configure the Microwave Detection System processor to gather the data required in Section 937.2.02B.9. Verify that the configuration data is stored in non-volatile memory. Initial configuration of the detection system shall be done with a programming device that is either a keyboard/keypad or stationary track ball pointing devices. Connect the programming device to the front of the processor module through a USB, DB9 or PS/2 connector. Provide a programming device that is PC compatible.
 d. Demonstrate each required data element is gathered by the system at the user-specified interval. Use 20-seconds as the interval for this phase of testing.

Prove the accuracy of the detection system meets requirements in Section 937.2.02C by:

576
1) Driving a vehicle of known speed through the detection zone and observing and recording the speed calculated by the system. Repeat this measurement at least five times.

2) Perform the above accuracy tests in both rainy and dry conditions.

3) Upon GDOT acceptance of pre installation test results, begin the installation of microwave detection system as specified in the plans.

4) If any part of the pre installation test fails, the contractor has up to two subsequent attempts to correct the problem to the satisfaction of the Engineer. All these subsequent tests must be completed within a two week period from the date of initial failure.

2. Post-installation test procedures: Utilize the following test procedures after the microwave detection system has been installed in its entirety as shown on the Plans. Commence no post-installation testing until all microwave detection systems in the project have been configured/calibrated to gather speed, volume, classification, and occupancy and programmed to communicate on the GDOT network. At this stage of testing, GDOT will be required to have in place the necessary interfaces to the Microwave Detection System.

 a. Inspect all microwave detection system field components to ensure proper installation and cable termination.

 b. Verify that field construction has been completed as specified in the plans.

 c. Inspect the quality and tightness of ground and surge protector connections.

 d. Check power supply voltage and outputs and ensure device connections are as specified in the Plans.

 e. Verify that the installation of cables and connections between all detectors and field cabinets are as specified in the Plans

 f. Demonstrate that each Microwave Detection System is fully operational and gathering the required data types at the specified interval. Perform this test from the hub building through which the detection system is connected.

 g. Upon satisfactory completion of step f, GDOT will add the new microwave detection system(s) into the central NaviGAtor system

 h. Begin a 30-day burn test and ensure the system remains fully operational during the 30 day period as stipulated in Section 647.3.06.C.

937.2.03 Intersection Video Detection (I-VDS)

A. Technical Requirements

1. **Video Camera Sensor**

 Send a video signal from the video camera sensor to the processor, using high resolution, video camera sensors as the primary video source for real-time vehicle detection. Use optical filters and/or electronic circuitry in the video camera sensor to compensate for blooming at night caused by headlights and minor vibration caused by wind. Include a heater at the front of the enclosure to prevent the formation of ice and condensation in cold weather. Ensure that the heater does not interfere with the operation of the video camera sensor electronics, or cause interference with the video signal, where applicable. As a minimum, meet the following requirements for each video camera sensor assembly installation:

 a. Use a 1/4” to 1” interline or frame transfer charge coupled device (CCD). Do not use complimentary metal-oxide semiconductor (CMOS) image sensors.

 b. Use Active pixel elements that are 768 Horizontal, 494 Vertical (minimum)

 c. The video standard should be compliant with NTSC Standard, RS-170A Compliant (available as EIA-170A specification)
d. Use an 8-48 mm variable focal length lens that is adjustable from outside the camera enclosure, where applicable. Provide an Electric Lens Adjustment Device and associated wiring to adjust the variable focal length lens.

e. A resolution of 380 Horizontal TVL, 350 Vertical TVL minimum is required.

f. Ensure the Automatic gain control (AGC) is a 20 dB minimum. Do not allow AGC to be applied until the automatic iris control has fully opened the aperture.

g. For Electromagnetic interference, ensure compliance with FCC Part 15, Subpart J, Class A device requirements, which apply to the video camera sensor and associated connected equipment in their installed condition.

h. Power the video camera sensors with 115 VAC+/-10%, 60 Hz nominal +/-3 Hz. Size the power conductors from the power source to the camera input so that no more than a 3% voltage drop is experienced (NEC 210-19 a., FPN No. 4). Include a provision at the rear of the camera enclosure for a waterproof connection of power and video signal cables. Provide power from the cabinet power source through a surge suppressor and then to the video camera sensor.

i. The Video camera sensor enclosure shall be installed in a light colored enclosure to limit solar heating. Meet NEMA 250 Type 4 enclosure standards for the enclosure and seal the enclosure to prevent sand, dirt, dust, salt and water from entering. Affix a sun shield visor to the front of the enclosure which is sufficiently adjustable to divert water away from the video camera sensor lens and also prevent direct sunlight from entering theiris when mounted in its installed location.

j. Provide outdoor-rated power, coaxial video, and lens adjustment (where applicable) wiring from the sensor enclosure to the cabinet in accordance with the manufacturer’s recommendations. However, if the sensor junction box is used, seal the wiring connection at the housing from water or dust entry into the housing. For the standard video camera sensor mounting as shown in the details, provide approximately 4 ft (1.22 m) long wiring to enter the bottom of the junction box and terminate inside. Provide a male BNC connector with gold-plated body and center pin at the junction box end of the coaxial video cable. When providing a lens adjustment harness, ensure that the connector on the harness properly mates to the lens adjustment control unit.

k. The maximum weight of the video camera sensor shall be 10 lbs (4.5 kg) (maximum with mount, shield, and camera).

l. The size of the video camera sensor is (HxWxL): 5” x 5” x 18” [130 mm x 130 mm x 460 mm] (maximum, including camera enclosure)

2. Programming Monitor, Type A

As a minimum, provide a 9” high resolution video monitor with a minimum of 750 TVL, (1) input, (1) output BNC connection, IVp-p, input impedance high (loop through) 75 ohms terminated. Provide 6-ft factory manufactured high flex coaxial video cables with BNC connectors with each programming monitor. If more than one video input is received provide the ability to monitor all inputs on the monitor by using a video selector switching device.

3. Programming Device

Configure the detection system with a Programming Device that is either a keyboard/keypad or stationary track ball pointing device. Connect the Programming Device to the front of the processor module through a USB, DB9, PS/2 connector. Provide a Programming Device that is PC compatible.

4. Processor Module

Provide a processor module, which performs video image processing, that completely fits within the loop detector slots of the traffic signal/ramp meter controller cabinet input file and that provides a standard relay closure detector input to the controller. Provide four detector outputs through the processor module which communicate through the edge card connector. Use a module that is not wider than two standard input file slots. Include detection indicators on the front panel of the processor module for each of the four channels of detection provided through that module to indicate detector output in real time when the system is operational. Include a BNC connector with gold plated center pin or an RCA jack on the front panel for video output to the Programming Monitor, and include a USB, DB9
or PS/2 connector on the front panel to connect the Programming Device. Send the video signal over coaxial cable from the video camera sensor to the Processor Module using one of the two following methods:

a. Connect the coaxial cable from the video camera sensor to the surge suppressor and from the surge suppressor connect the coaxial jumper cable with a 90 degree elbow gold-plated BNC connector to BNC connector on the front panel of the Processor Module; or

b. Connect the coaxial cable from the video camera sensor to the surge suppressor and connect the coaxial jumper cable from the surge suppressor to the loop detector panel using a spade lug connection such that the video signal communicates from the loop detector panel to the Processor Module through the cabinet input file.

Provide power to the processor modules through the input file. The processor modules are defined as follows:

• Processor Module, Type A - provide one (1) video camera sensor input
• Processor Module, Type B – provide two (2) video camera sensor inputs
• Processor Module, Type C – provide four (4) video camera sensor inputs

5. Output Expansion Modules, Types A and B

Provide detector outputs, in addition to detector outputs provided through the processor module, through an output expansion module that mounts in the traffic signal/ramp meter controller cabinet input file and that provides a standard relay closure detector input to the controller. Provide 2 outputs through the edge card connector of each module. Connect the expansion module to the processor module with a cable that has standard modular connectors. Use a module that is not wider than 1 detector card per two additional detector outputs or that is not wider than 2 detector cards per four additional detector outputs. Include detection indicators on the front panel of the output expansion module for each channel of detection provided through that module to indicate detector output in real time when the system is operational.

The Type B output expansion module provides 4 outputs through the edge card connector of each module. The procedure for connecting the expansion module to the processor module is the same as shown above.

Provide power to the expansion module through the input file.

6. Environmental

a. Video Detection System Processor

Provide a video detection system processor that operates reliably in a typical roadside traffic cabinet environment. Provide internal cabinet equipment and a video detection system processor that meet the environmental requirements of NEMA TS1-1989 (R1994, R2000, R2005).

b. Video Camera Sensor

1) Provide video camera sensors that operate reliably in a roadside environment. Provide video camera sensors that meet the environmental requirements of NEMA TS1-1989 (R1994, R2000, R2005), Section 2.1.5.2. Provide video camera sensors that operate from -31 °F to 120 °F (-35 °C to +50 °C) from 5% to 95% relative humidity. An operating ambient temperature range from -30°F to 140°F (-34°C to 60°C) is required. Additionally, include a heater to prevent the formation of ice and condensation in cold weather. Do not allow the heater to interfere with the operation of the video camera sensor electronics, or cause interference with the video signal.

2) Vibration: Ensure that vibration does not impair performance when the camera is mounted on 50’ (15 m) or shorter pole. Do not allow vibration to impair performance when the camera is mounted on 96 ft (29 m) or shorter pole. Provide a video camera sensor and enclosure that maintains its functional capability and physical integrity when subjected to a vibration of 5 to 30 Hz up to 0.5 gravity applied to each of three mutually perpendicular axes (NEMA TS1-1989(R1994, R2000, R2005), Section 2.1.12).

3) Processor and Expansion Modules: Provide processor and expansion modules that operate reliably in a typical roadside traffic cabinet environment. Provide equipment that meets the environmental requirements of NEMA TS1-1989 (R1994, R2000, R2005) and NEMA TS2-2003...
standards and the environmental requirements for Type 170 controllers. Provide equipment that operates from -29 °F to 140 °F (−34 °C to +60 °C) from 0% to 95% relative humidity, non-condensing.

4) Shock: Ensure the video camera sensor & enclosure can withstand a 10G±1G shock. Neither permanent physical deformation nor inoperability of the video camera sensor and enclosure can be sustained as a result from this shock level.

5) Acoustic Noise: Provide a video camera sensor and enclosure that can withstand 150 dB for 30 minutes continuously, with no reduction in function or accuracy.

7. Electrical and Power Requirements
 a. Video Detection System Processor

 Power the video detection system processor by 120 VAC, 60 Hz, single phase, and draw a maximum of 1.0 A. Size power conductors from the power source for the video detection system processor input so that no more than a 3% voltage drop is experienced (NEC 210-19 a., FPN No. 4). The video detection system processor shall have transient protection that meets the requirements of NEMA TS1-1989 (R1994, R2000, R2005) and NEMA TS2-2003 standards. Power to the video detection system processor shall be from the card rack.

 b. Video Camera Sensor

 Use a video camera sensor that is compatible with the video detection system processor and meets the following input power requirements: 115 VAC, 60 Hz. The I-VDS PDA shall obtain power from the 15 amp equipment breaker in the traffic signal/ramp metering cabinet PDA panel. Size power conductors from the power source to the camera input so that no more than a 3% voltage drop is experienced (NEC 210-19 a., FPN No. 4). Include a provision at the rear of the camera enclosure for the waterproofing of the connection of power and video signal cables.

8. Documentation

 Provide the following documentation in the documentation pouch of each traffic signal/ramp meter cabinet:

 • One operation manual with programming instructions
 • One maintenance manual with schematics
 • Three legible wiring prints showing all I-VDS components and connections with the cabinet

B. Functional Requirements for I-VDS

1. General Requirements

 In order to be approved for use in GDOT projects, Intersection Video Detection Systems (I-VDS) must be able to provide certain data elements at or better than a minimal defined accuracy level. This section defines the minimally required functional aspects of the system as well as the required accuracy levels. It also outlines the testing process that will be used to determine whether a proposed video detection system product meets these specifications.

 a. Ensure that I-VDS detect vehicle presence and passage, speeds, vehicle counts, classification, and roadway occupancies on a lane-by-lane basis. Verify that the system can emulate the output of a pair of 6 ft. by 6 ft. in-pavement loops spaced 16 ft apart. Ensure the I-VDS are capable of providing the above data for 24 detection zones with one video camera sensor. Verify that the system responds with the accumulated traffic data as collected since the last request.

 b. Verify that the traffic data collected by the I-VDS is stored within internal non-volatile memory. Verify that data can be retrieved from the system locally. The port connector shall be on the front of the detection system processor for easy access. Ensure that the detection system processor software is stored in non-volatile memory within the video detection system processor. Perform software updates through a serial, Ethernet, or USB port.

 c. Ensure the system user can use a laptop to reprogram, calibrate, adjust or alter any previously defined detector configurations. Ensure no periodic adjustments or fine-tuning is required except in the case of...
physical roadway changes such as lane-shifts, new construction or closures. Initial configuration of the
detection system shall be done with a programming device that is either a keyboard/keypad or
stationary track ball pointing devices. Connect the programming device to the front of the processor
module through a USB, DB9 or PS/2 connector. Provide a programming device that is PC compatible.

d. The detection system processor front panel shall include a visual display of the status of each video
input and the status of the video detection system processor in general. Indicators shall display, at a
minimum, the status of the processor the status of communications, and whether or not each video
camera sensor is actively detecting.

2. System Hardware: Provide a detection system that does not require any equipment external to the traffic
signal/ramp meter controller cabinet input file (excluding the video camera sensor, video camera sensor power
connection, circuit breakers and surge suppression for video or data). Mount the processor and expansion modules in
the traffic signal/ramp meter controller cabinet input files, using the edge card connector to obtain power and
provide contact closure outputs. Rewiring of the backplane or any other cabinet panel for the system is not permitted
except for power and grounding for the interface panel, wiring from the video camera sensor to the loop detector
panel for the video signal and wiring to obtain power for the video camera sensor.

Provide a system capable of providing a minimum of eight detector outputs per video camera sensor. Provide all
detector outputs through edge card connectors of the processor module and output expansion module(s). Rewiring
external to the edge connectors is not permitted for obtaining a minimum of eight outputs for one video camera
sensor.

3. System Software System Processing Software: On the processor module that mounts in the traffic signal/ramp
meter controller cabinet input file, include the software that processes the video camera sensor signals and converts
the signals into detector outputs. Detect either approaching or receding vehicles in multiple lanes within the field of
view (FOV) of each video camera sensor. Provide the capability of detecting vehicles in up to 24 detection zones
per video camera sensor with the detection system. Allow the detection zones to be combined to form an output
using the AND, OR and NOT logical functions.

a. Detection Compensation: Provide the capability for the processor to compensate for camera movement
attributable to temperature effects, wind shifting, pole sway, pole expansion, or vibration.

b. System Configuration Software: On the processor module, include the configuration software to program
the detection system, including the detection zones. Perform programming by accessing the software
through a Programming Monitor and a Programming Device.

4. Programming Requirements

Employ menus for the Configuration Software. Provide the capability through the Configuration Software for the
user to define detection zones through interactive graphics by placing lines and/or boxes in an image on a
Programming Monitor. Provide the capability for the user to redefine previously defined detection zones.

5. Detection Zone Placement and Manipulation:

Allow up to 24 detector zones to be defined through the software for each video camera sensor. Provide the
capability to place vehicle detection zones anywhere within the field of view of the video camera sensors through
the Configuration Software. Use detection zones that are lines or boxes drawn in each visible lane or area of desired
detection. Provide the capability to use one detection zone to replace multiple inductive loop detectors. Detection
zones may overlap if necessary. Provide the ability for the user to assign logical functions such as AND, OR and
NOT to one detector or a group of detectors.

On the Programming Monitor, display the detection zones superimposed on the video camera sensor’s images.
Provide the capability to create detection zones of varying size and shape to allow best coverage of the viewable
roadway lanes and ramps. Provide the capability to save the detection zone format on the processor module card
once drawn for a particular video camera sensor image. Provide the capability for the user to view the currently
active detector zone format of the processor module via a Programming Monitor.

a. Detection Zone Editing: Provide the capability to edit existing detector configurations using a
Programming Monitor with the Programming Device used to perform the programming functions.
b. Confirmation: When viewing vehicle actuations in real time on the Programming Monitor, indicate the passage or presence of each vehicle detected by each detection zone by changing the color or intensity of that particular zone.

c. Detection During Reconfiguration: Provide the capability for the detection system to continue detecting vehicles on all existing zones during reconfiguration, except on the zone that is being reconfigured.

d. I-VDSn: I-VDSn refers to all of the specific I-VDS components necessary for operation and detection on one approach leg of an intersection. The “n” denotes the approach’s through-movement controller phase in the nomenclature of a typical 8-phase dual-ring intersection operation (e.g., I-VDS2, I-VDS4, I-VDS6, I-VDS8) when four video camera sensors are installed. If more than four video camera sensors are installed, the “n” denotes the controller phase being detected in the nomenclature of a typical 8-phase dual ring intersection operation. I-VDSn is also used as a prefix to identify the individual I-VDS components of the “n” approach as follows:

- **I-VDSnVCS:** the video camera sensor for approach “n”
- **I-VDSnCC:** the coaxial cable from the video camera to the controller cabinet for approach “n”
- **I-VDSnPC:** the video camera sensor power cable from the video camera to the controller cabinet for approach “n”
- **I-VDSnCSS:** the coaxial cable surge suppressor in the controller cabinet for approach “n”
- **I-VDSnCI:** the coaxial jumper cable from the coaxial surge suppressor in the controller cabinet to the processor module or detector panel for approach “n”
- **I-VDSnPn/snPM:** the processor module for approach “pn” and “sn”, where “pn” is the primary approach and “sn” is the secondary approach, where a Processor Module, Type B is installed.

- Occupancy: individual lane occupancy measured in percent of time

e. Ramp Meter Controller Cabinet Input File: A Ramp Meter Controller Cabinet Input File is a chassis within a traffic signal cabinet rack that has slots where a detector card provides detector output to the traffic signal controller through its edge card connectors. The backplane connector pin output of the edge connectors conforms to Georgia traffic signal controller cabinet standards for the cabinet type specified in the plans.

f. I-VDSnn: I-VDSnn refers to all of the specific I-VDS components necessary for operation and detection related to ramp metering installations based on direction, type of detection and lane assignments. The first “n” denotes the approach direction (north, south, east or west) and the second “n” denotes the type of detection, P=Passage Detection Zones, D=Demand Detection Zones, Q=Queuing Detection Zones, ML=Mainline Detection Zones, the third “n” denotes the lane assignment (lane 1=L01, lane 2=L02, lane 3=L03, lane 4=L04), the (e.g., I-VDSnPL01, I-VDSsDL02, I-VDSeQL03, I-VDSwMLAL04). The typical ramp metering layout is shown below:
Lane numbering shall begin at the median for mainline travel lanes. Lane numbering for ramp meter lanes shall begin with the lane adjacent to the mainline travel lanes.

I-VDS is also used as a prefix to identify the individual I-VDS components as follows:

- I-VDSnnnVCS: the video camera sensor for “nnn” direction, type of detection and lane assignment
- I-VDSnnnCC: the coaxial cable from the video camera to the controller cabinet for approach “nnn” direction, type of detection and lane assignment
- I-VDSnnnPC: the video camera sensor power cable from the video camera to the controller cabinet for approach “nnn” direction, type of detection and lane assignment
- I-VDSnnnCSS: the coaxial cable surge suppressor in the controller cabinet for approach “nnn” direction, type of detection and lane assignment
- I-VDSnnnCJ: the coaxial jumper cable from the coaxial surge suppressor in the controller cabinet to the processor module or detector panel for approach “nnn” direction, type of detection and lane assignment
- I-VDSnnnPM: the processor module for approach “nnn” direction, type of detection and lane assignment

C. **Accuracy Requirements for I-VDS**

Provide I-VDS that meet the minimum accuracy requirements for both daytime and night time conditions:

1. For volume (vehicle counts): 95% (no more than 5% missed actuations).
2. For speed measurement: 95% (no more than +/- 5% error in speed calculation)
3. For occupancy measurement: 95% (no more than +/- 5% error in occupancy calculation)
4. For presence detection: 96% (no more than +/- 4% missed actuations)
5. For passage detection: 95% (no more than +/- 5% missed actuations)
D. Testing

Vendors are required to submit an independent test evaluation report from a third party which verifies the accuracies stated within their specifications.

Independent third-party verification (ITPV) is defined as the evaluation of the conceptual, functional, and technical requirements of a product being reviewed by one or more independent third parties qualified by their education, training, and experience in the same discipline, to judge the worthiness of the products’ likelihood of achieving the intended objectives and anticipated outcomes.

Develop and submit plans for pre-installation and post-installation testing to the Engineer for consideration and approval. Ensure the plans test all functional requirements outlined in Section 937.2.03B and the accuracy requirements stipulated in Section 937.2.03C. Provide the Engineer with Application Protocol Interface (API) documentation and Software Development Kit (SDK) for the video detection system.

1. Pre-installation test requirements: Include at a minimum the following procedures in the test plan to demonstrate the I-VDS provides all the functional requirements in Section 937.2.03B and meets the accuracy requirement stipulated in Section 937.2.03C. Install no detection systems specified in the Plans until the pre-installation testing has been successfully completed.
 a. Install a test video detection system at a location determined by GDOT. Install a new video sensor for the test. Install a test detection system that includes all components of the system including a video sensor, a video detection processor and software.
 b. Configure the test system with at least 24 detection zones, including presence, passage, volume, speed, and occupancy.
 c. Demonstrate that each required data element is gathered by the system at the user-specified interval. Prove the accuracy of the detection system meets requirements in Section 937.2.03C by:
 1) Driving a vehicle of known speed and length through the detection zone and observing and recording the speed and length calculated by the system. Repeat this measurement at least ten times.
 2) Drive a vehicle into a presence detection zone and ensure the system recognizes the presence of the vehicle.
 3) Drive a vehicle into a passage detection zone and ensure the system recognizes the passage of the vehicle.
 4) Perform the above accuracy tests in both night and day conditions.
 5) Upon GDOT acceptance of pre-installation test results, begin the installation of I-VDS as specified in the plans.
 6) If any part of the pre-installation test fails, the contractor has up to two subsequent attempts to correct the problem to the satisfaction of the Engineer. All subsequent attempts must be completed within two weeks of the initial failure.

2. Post-installation test procedures: Utilize the following test procedures after the detection system has been installed in its entirety as shown on the Plans and as required by manufacturers’ recommendations. Commence no post-installation testing until all video detection systems in the project have been configured/calibrated with the detection zones as shown in the plans.
 a. Inspect all I-VDS field components to ensure proper installation and cable termination.
 b. Verify that field construction has been completed as specified in the plans.
 c. Inspect the installation of grounding and the surge protection systems.
 d. Check power supply voltage and outputs and ensure device connections are as specified in the Plans.
e. Verify that the installation of cables and connections between all detectors and field cabinets are as specified in the Plans

f. Demonstrate each I-VDS is fully operational and gathering the required data types for each detection zone.

g. Begin a 30-day burn test and ensure the system remains fully operational during the 30 day period as stipulated in Section 647.3.06.C.

937.3 Construction/Installation Requirements

937.3.01 Quality Control

A. Training

Provide a minimum of at least eight (8) hours of configuration and maintenance training. The persons to be trained will be determined by the Engineer. Configuration training should last a minimum of three (3) hours and must include instructions for programming, hands on training in programming detection zones, adjusting, and calibrating the detection system. One hands on unit shall be provided per attendee during training. Maintenance training should last a minimum of five (5) hours and must include instructions on troubleshooting, maintenance, and operation for all detection system components. Each class will have a maximum of eight (8) people. The contractor must provide a training notebook to each trainee and an electronic copy of the training notebook to the Engineer.

The contractor must provide a location for holding the courses and pay all costs associated with travel and accommodation of the trainees if training is conducted away from the project area.

Notify the Engineer 20 days before training and agree on a time and place to conduct the training. If agreement cannot be reached, the Engineer will determine the time

B. Warranty

Provide complete detection system equipment and software with a minimum (2) year warranty which begins once GDOT has provided notification that all devices have successfully passed the 30-day burn.

When the Department detects a failure of any component of the system during the warranty period, the Department will notify the Contractor, Distributor, and/or Manufacturer in writing of the problem.

Correct the problem within seven calendar days after receiving the notification or else pay liquidated damages in the amount of $600 per calendar day until the problem is corrected. Repair or replace the defective device(s) and ensure that all vehicle detection affected by the problem is brought within original accuracy parameters. The problem will be considered resolved when the Department has verified accuracy.

Ensure the Manufacturer/Contractor/Distributor will repair any faulty equipment during this period at no cost to the Department for parts, labor, or shipping to and from the factory.

Both a hardcopy and electronic copy of the warranty, including its date of inception and contact information for a manufacturer representative must be provided to the Engineer.

C. Support

During the warranty period, supply any firmware or software upgrades associated with the detection system to the Department at no charge. In addition, provide phone consultation as needed at no cost during the warranty period for operating questions or problems that arise.

If the Department desires, it may enter into a separate agreement with the suppliers for technical support and software upgrades. Make available such a program to the Department after the original warranty period.
937.3.02 Video Detection System Installation Requirements

A. General Installation Requirements:

Install all video camera sensors, video detection system processors, and associated enclosures and equipment at the locations specified in the Plans. Install all rack-mounted equipment with one rack unit space between adjacent equipment.

Installation must comply with manufacturer’s recommendation. All equipment, cables, and hardware must be part of an engineered system that is designed by the manufacturer to fully interoperate with all other system components. Connectors installed outside the cabinets and enclosures must be corrosion resistant, weather proof, and watertight. Exposed cables must be UV and weather resistant. Label cables with permanent cable labels at each end.

Install VPU with a Model 2070 controller assembly. Install VDS power supply or transformer on a standard DIN rail using standard mounting hardware and power conductors wired to terminal blocks in the controller cabinet.

Wire each VDS sensor assembly to the controller cabinet with a wiring harness that includes all power, control wiring, and coaxial video cable. Attach harness with standard Mil spec type and rated plugs. Cable type and wire characteristics must comply with manufacturer’s recommendations for the VDS to cabinet distance for the project.

Wiring and cables must be continuous (without splices) between the VDS sensor and controller cabinet. Coil a minimum of 2 (.61m) feet of slack in the bottom of the controller cabinet. For setup and diagnostic access, terminate serial data communication output conductors at TB-0. Tape ends of unused and spare conductors to prevent accidental contact to other circuits. Label conductors inside the cabinet for the functions depicted in the approved detailed diagrams.

Furnish an as-built cabinet wiring diagram, identified by location, for each VDS cabinet. Include all wiring, cabling, connections, and camera mounting height. Place all documentation in a weatherproof holder in the cabinet.

1. Camera Sensor Operating Locations

Adjust the video camera sensor lens to match the width of the road and minimize vehicle occlusion. Mount the camera on the specified pole or structure for that location as shown on the plans.

2. Cabinet Types

- Type A Cabinet – The Type A cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in. (1.2 m) (H) x 24 in. (0.61 m) (W) x 23 in. (0.58 m) (D).

- Type B Cabinet - The Type B cabinet housing is a standard Model 337 housing with approximate exterior dimensions of 35 in. (0.89 m) (H) x 20 in. (0.5 m) (W) x 17 in. (0.43 m) (D).

- Type C Cabinet - The Type C cabinet housing is a standard Model 332 housing with approximate exterior dimensions of 64 in. (1.6 m) (H) x 24 in. (0.61 m) (W) x 30 in. (0.76 m) (D).

- Type D Cabinet – The Type D cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in. (1.2 m) (H) x 24 in. (0.61 m) (W) x 23 in. (0.58 m) (D). The difference between a Type D and Type A cabinet is the difference in interior cabinet configuration as shown in the Detail Drawings in this section.

- Type F Cabinet - The Type F cabinet housing shall be a standard ITS Cabinet Housing #3 with approximate exterior dimensions of 67 in. (1.7 m) (H) x 44 in. (1.2 m) (W) x 26 in. (0.66 m) (D).

The cabinet type to be used will be shown in the plans.

3. Cabinet Equipment

a. Wiring, Conductors and Terminal Blocks: Use stranded copper for all conductors, including those in jacketed cables, except for earth ground conductors, which may be solid copper. Neatly arrange all wiring, firmly lace or bundle it, and mechanically secure the wiring without the use of adhesive fasteners. Route and secure all wiring and cabling to avoid sharp edges and to avoid conflicts with other equipment or cabling. Route camera control wiring, and 120 VAC power wiring separately.
Terminate all wiring on a terminal block, strip, bussbar, or device clamp or lug; do not splice any wiring. Use a minimum #12 AWG for all conductors of 120 VAC circuits.

Label coaxial cables for VDS cameras between SS1 -SS22 and the VDS video input “CX” where the “X” indicates the surge suppressor identifier (e.g., cable C9 connected to SS17, cable C10 connected to SS18.)

Number all terminal blocks, terminal strips, circuit breakers and bussbar breakers and have each item and each terminal position numbered and named according to function as shown in the “quoted labels” in the Detail Drawings. Label terminal blocks, terminal strips, circuit breakers and bussbars with silk screened lettering on the mounting panel.

b. Surge Suppression: Protect all copper wiring and cabling entering the cabinet housing, except for the earth ground conductor, by surge suppression devices as specified. Terminate all wiring between cabinet devices and the transient surge suppressors, except for the video signal coaxial feed, on terminal strips. Use a minimum #16 AWG grounding of each surge suppression device, or larger if recommended by the surge suppression device manufacturer. Use insulated green wire and connect the ground wire directly to the ground bussbar. Do not “daisy chain” with the grounding wires of other devices including other surge suppressors. Dress and route grounding wires separately from all other cabinet wiring. Install grounding wires with the absolute minimum length possible between the suppressor and the ground bussbar. Label all surge suppressors with silk-screened lettering on the mounting panel.

Use minimum #18 AWG insulated black wiring between the surge suppression device sockets and the terminal blocks for the protected circuits.

Furnish and install a surge suppressor (SS17 through SS22 as required) for each video signal coaxial line. For each cabinet housing, include surgesuppressor SS16 for the VDS camera power lines installed on TB2.

c. Component Installation: Fasten all components of the cabinet assembly to be mounted on cabinet side panels with hex-head or phillips-head machine screws. Install the screws into tapped and threaded holes in the panels. These components include but are not limited to terminal blocks, bussbars, panel and socket mounted surge suppressors, accessory and equipment outlets, and DC power supply chassis. Fasten all other cabinet components with hex-head or phillips-head machine screws insulated with nuts (with locking washer or insert) or into tapped and threaded holes. All fastener heads and nuts (when used) shall be fully accessible within a complete cabinet assembly, and any component shall be removable without requiring removal of other components, panels, or mounting rails. Do not use self-tapping or self-threading fasteners.

d. Mounting Bracket Assembly: Mount the video camera sensor on a mounting bracket assembly as shown in the details such that its height and position provide a clear view of the approach or lanes in ramp metering operations. Mount the video camera sensor securely such that it is stable and steady. The mounting bracket assembly includes a video camera sensor mounting bracket, nipple pipe, cable-mount nipple clamp, and all associated hardware and materials. Mount the video camera sensor on a mounting bracket assembly which meets the following requirements unless otherwise specified in the plans:

1) Use stainless steel fastening hardware with lock washers on threaded fasteners
2) Use a video camera sensor enclosure mounting bracket that is non-rusting and is made from die cast aluminum, extruded aluminum, powder-coated galvanized steel or hot dipped galvanized steel. Provide a mounting bracket that permits vertical and horizontal adjustment of the video camera sensor. Provide a mounting bracket that securely fastens to the video camera sensor enclosure and mounts to the nipple pipe by threading onto the pipe or as a slip-fit, using a set-screw fastener in either above method.
3) Use a 1 ½” (38 mm) aluminum nipple pipe that is threaded on both ends.
4) Fasten the nipple pipe to the mast arm using a cable mount nipple clamp with minimum 2 5/16” (58 mm) U bolts. Use aircraft grade galvanized steel cables with stainless steel

587
fastening hardware and that make at least two wraps around the mast arm. Do not use banding straps.

e. Video camera sensor junction box: If approved for use, provide a wiring junction box with mounting hardware for termination/connection of the sensor housing wiring with the field cabling from the traffic signal/ramp meter controller cabinet as shown in the details. Provide a cast aluminum or 0.125” (3.175 mm) sheet aluminum box with maximum inside dimensions of 8” H x 8” W x 4” D (200 mm H x 200 mm W x 100 mm D). Do not use steel- or plastic-bodied junction boxes. Provide a box that is NEMA 4 rated dust-tight, rain tight, and watertight and has a hinged and neoprene-gasketed door with stainless steel hinge pins and threaded fasteners for closing. Provide a 1 ½” (38 mm) slip hole with rubber grommet with poke-through diaphragm for cable entry in the bottom of the box; no other holes in the box body shall be permitted except as required for the mounting U-bolts as shown in the details. Provide a 3-position fully-enclosed compact terminal strip rated for minimum 15 A current and #14 AWG conductors. Internal connectors shall be nickel-plated threaded fasteners for securing the conductors. The terminal strip shall be fully enclosed and covered with no exposed current-carrying metal surfaces. Label the three positions on the terminal strip as “AC+”, “AC-”, and “GR” with fastener secured or epoxy-cement permanent labels; do not use adhesive or self-stick labels. Provide a female-female BNC coupler with gold-plated body and center pin sockets, electrically isolated from the junction box by fastening to a non-conductive bracket mounted to the junction box side.

f. Documentation: Provide the following documentation in the documentation pouch of each traffic signal/ramp meter cabinet:

• One operation manual with programming instructions
• One maintenance manual with schematics
• Three legible wiring prints showing all I-VDS components and connections with the cabinet

g. Type D Cabinet Equipment

Install cabinet equipment as shown in Detail Drawing 937.1

h. Cables, Conduit, and Power Service

Furnish and install electrical cables used for video, control, communications signaling and power supply as shown in the Detail Drawings. Do not splice any cable, shield or conductor used for video, control, communications signaling, or power supply. Identify all conductors of all cables by color and number. Identify the conductor function in as-built documentation included in the cabinet documentation. Terminate cable used for video signaling in BNC connectors. After terminating and dressing the cables in the cabinet, neatly coil and store a minimum of 2 ft (.61 m) of cable slack in the bottom of the cabinet. Cut unused conductors to a length that can reach any appropriate terminal. Bend back unused conductors over their outer jackets and individually tape them.

Provide electrical cables for video, communications signaling and power supply between the cabinet and the device as required below and install them as shown in the Detail Drawings.

Beginning at individual video camera sensors, carry video signals from the camera to the pole-mounted junction/splice cabinet via coaxial cable to the video detection system processor located in the field cabinet. Transmit the vehicle traffic data from the video detection system processor to a traffic control center via the Ethernet network system.

Install cabling inside new hollow metal or concrete support poles unless otherwise specified. Use weather heads on all nipple and conduit openings. Neatly install and route cabling to minimize movement in the wind and chafing against the pole, device or bracket. Form a drip loop at the weather head and route cabling to minimize water entry into the cable connector. Use a 24” diameter drip loop where cables enter a weatherhead.
i. As-Built Drawings

Furnish an as-built cabinet wiring diagram, identified by location, for each VDS cabinet. Include all wiring, cabling, connections, and camera mounting height. Place all documentation in a weatherproof holder in the cabinet.

937.3.03 Microwave Detection System Installation Requirements

A. General Installation Requirements

Install all detectors and associated equipment at the locations specified in the Plans. Installation must comply with manufacturer’s recommendation. All equipment, cables, and hardware must be part of an engineered system that is designed by the manufacturer to fully interoperate with all other system components.

1. Detector

Install the microwave radar detector on poles as shown in the plans using supplied materials and brackets. Install the microwave radar detector to achieve the field of coverage shown in the Plans. Make field adjustments to the locations shown in the Plans only with the Engineer’s approval. Set up the detection zones using a laptop computer and software provided by and the property of the Contractor.

2. Cabinet Equipment

a. Wiring, Conductors, and Terminal Blocks: Use stranded copper for all conductors, including those in jacketed cables, except for earth ground conductors, which may be solid copper. Neatly arrange all wiring, firmly lace or bundle it, and mechanically secure the wiring without the use of adhesive fasteners. Route and secure all wiring and cabling to avoid sharp edges and to avoid conflicts with other equipment or cabling. Route microwave radar detector control wiring and 120VAC power wiring separately. Terminate all wiring on a terminal block, strip, bussbar, or device clamp or lug; do not splice any wiring. Use a minimum #12 AWG for all conductors of 120VAC circuits. Install all wiring as shown in the Detail Drawings.

Number all terminal blocks, terminal strips, circuit breakers and bussbar breakers and have each item and each terminal position numbered and named according to function as shown in the “quoted labels” in the Detail Drawings. Label terminal blocks, terminal strips, circuit breakers and bussbars with silk-screened lettering on the mounting panel.

b. Surge Suppression: Protect all copper wiring and cabling entering the cabinet housing, except for the earth ground conductor, by surge suppression devices as specified. Terminate all wiring between cabinet devices and the transient surge suppressors and between the microwave radar detection unit and the surge protectors on terminal strips. Use a minimum #16 AWG grounding for each surge suppression device, or larger if recommended by the surge suppression device manufacturer. Use insulated green wire and connect the ground wire directly to the ground bussbar. Do not “daisy chain” with the grounding wires of other devices including other surge suppressors. Dress and route grounding wires separately from all other cabinet wiring. Install grounding wires with the absolute minimum length possible between the suppressor and the ground bussbar. Label all surge suppressors with silk-screened lettering on the mounting panel.

Use minimum #18 AWG insulated black wiring between the surge suppression device sockets and the terminal blocks for the protected circuits.

Furnish two (2) transient surge suppressors for the microwave radar detection units (SS24 and SS25).

c. Component Installation: Fasten all components of the cabinet assembly to be mounted on cabinet side panels with hex-head or phillips-head machine screws. Install the screws into tapped and threaded holes in the panels. The components include but are not limited to terminal blocks, bussbars, panel and socket mounted surge suppressors, Ethernet switches, circuit breakers, and accessory and equipment outlets. Fasten all other cabinet components with hex-head or phillips-head machine screws installed with nuts (with locking washer or insert) or into tapped and threaded holes. Fasten stud-mounted components to a mounting bracket providing complete access to the studs and mounting nuts. All fastener heads and nuts (when used) shall be fully accessible within a complete cabinet assembly, and
any component shall be removable without requiring removal of other components, panels, or mounting rails. Do not use self-tapping or self-threading fasteners.

d. As-Built Drawings: Furnish an as-built cabinet wiring diagram, identified by location, for each cabinet. Include all wiring, cabling, and connections. Place all documentation in a weatherproof holder in the cabinet.

3. Cables, Conduit and Power Service

Furnish and install electrical cables used for control, communications signaling and power supply as required below and as shown in the Detail Drawings. Do not splice any cable, shield or conductor used for control, communications signaling, or power supply. Identify all conductors of all cables by color and number. Identify the conductor function in as-built documentation included in the cabinet documentation. After termination and dressing the cables in the cabinet, neatly coil and store a minimum of 2 ft (.61m) of cable slack in the bottom of the cabinet. Cut unused conductors to a length that can reach any appropriate terminal. Bend back unused conductors over their outer jackets and individually tape them.

Install cabling inside new hollow metal or concrete support poles unless otherwise specified. Where devices are installed on existing wood poles, install cabling on the wood poles in rigid metal conduit risers of minimum 2 in (5.08 cm) diameter. Use weather heads on all nipple and conduit openings. Neatly install and route cabling to minimize movement in the wind and chafing against the pole, device or bracket. Form a drip loop at the weather head and route cabling to minimize water entry into the cable connector. Use a 24” diameter drip loop where cables enter a weatherhead.

4. As-Built Drawings

Furnish as-built drawings, including but not limited to microwave radar detection locations, microwave radar detection mounting heights, and component lists with brand, model and serial numbers. Place one copy of the as-built drawings in the cabinet documentation pouch and submit another copy to the Engineer.

937.3.04 Intersection Video Detection System Installation Requirements

A. General Installation Requirements

Install all video camera sensors, processor modules, output expansion modules, and associated equipment at the locations specified in the Plans. Mount the processor and output expansion modules within the traffic signal/ramp meter controller cabinet input files. No physical changes are permitted to the traffic signal/ramp meter controller cabinet input files. Make all necessary adjustments and modifications to the detection system prior to obtaining recommendation for system acceptance from the TMC and/or District Engineer. Installation must comply with manufacturer’s recommendation.

Provide all programming equipment, documentation and incidentals needed for the installation, configuration and calibration of all detection system materials. This requirement includes but is not limited to equipment documentation, programming monitors, programming devices, and lens adjustment devices. Provide programming equipment during all installation and testing work.

All programming equipment shall be returned to the Engineer as a property of the State.

Perform all programming and configuration to all I-VDS and traffic signal controller and cabinet equipment for the full and complete operation of the detection system.

1. Video Camera Sensor

Install a video camera sensor with mounting bracket assembly as shown in the Plans or in accordance with the manufacturer’s recommendations. Install the video camera sensor in the vertical and horizontal positions as specified to provide the field of view and detection zones shown in the Plans. Make field adjustments to the positions specified in the Plans only with the Engineer’s approval.
2. Programming Monitor

After all I-VDS programming is completed and accepted, deliver the programming monitor, associated materials such as the user manual and the packing container, and the video cables, to the Engineer at the project location or the Engineer’s offices. Do not leave the monitor in the traffic signal/ramp meter cabinet.

3. Programming Device

After all I-VDS programming is completed and accepted, place the programming device with connector cord in a zipper- or snap-type re-sealable plastic bag in the cabinet documentation pouch.

4. Processor Module

Install the processor module in the cabinet input file and fully program and configure the module as shown in the Plans and in accordance with the manufacturer’s recommendations. Ensure proper operation, including accurate detection, as programmed. Provide all equipment and materials necessary for programming and configuration, including a video display monitor.

5. Expansion Module

Install the expansion module in the cabinet input file and fully program and configure the module as shown in the Plans and in accordance with the manufacturer’s recommendations. Ensure proper operation, including accurate detection, as programmed.

6. Field Cabling

Field cabling consists of separate video coaxial cable and the camera sensor power cable and/or composite cable from the controller cabinet in accordance with manufacturer’s recommendation. Field cable installation shall be continuous from the camera to the control cabinet. Do not splice any field cabling. Other methods may be approved by the Engineer.

Install the field cabling for each video camera sensor as shown in the Plans, or junction box if used, in accordance with the manufacturer’s recommendations, and in accordance with the requirements for signal cable in Section 647 Traffic Signal Installation. Ensure that cable installation is complete from the video camera sensor junction box to the coax and power termination panels in the controller cabinet.

Label all field cabling within three inches of termination using clear overwrapping self-laminating cable labels and the appropriate cable label identification as defined in Section 937.3.03.A.7a-c and shown in the details. Label field cabling in the camera sensor, in the controller cabinet, and in all pull boxes and pole bases. After terminating and dressing the video camera sensor coaxial and power cables in the controller cabinet, neatly coil and store a minimum of 2ft (.61 m) of cable slack in the bottom of the cabinet. Provide a label for each cable for 2ft (.61 m) of cable slack.

Use a video coaxial field cable (labeled as “I-VDSnCC”) that is double-shielded with tinned copper braid, #20 AWG solid copper center conductor, and polyethylene outer jacket approved for outdoor use. Terminate both ends of the coaxial cable per manufacturers requirements, if BNC connectors are used terminate with gold-plated body and center pin and as recommended by the cable manufacturer.

Use a camera sensor power field cable (labeled as “I-VDSnPC”) that is a 6-conductor cable with #16 AWG stranded copper conductors. Use a cable that is ozone and UV resistant, suitable for wet use, with a 600 V and 105 degree rating, is UL listed for indoor and outdoor use, and with 120 VAC standard black/white/green solid colored conductor insulation.

7. Cabinet Equipment

Install cabinet equipment as shown in the details and as required to provide the controller operation as shown on the Plans. Cabinet equipment shall include as a minimum an I-VDS power termination panel, an I-VDS coax termination panel, one or more coaxial cable surge suppressors, one or more coaxial jumper cables, power surge suppressor and all associated wiring and incidental materials.

General: Provide an I-VDS power and coax termination panel assembly and all associated materials in the controller cabinet for installation, including power distribution termination, power surge suppressor, video camera field
cabling termination, video jumper cables, and surge protection in accordance with the manufacturer’s recommendation.

Coaxial cable surge suppressors: Use either common-ground or balanced-differential video signal surge suppressors in accordance with the I-VDS manufacturer’s recommendations. Use surge suppressors that have solid-state, hybrid clamping technology, and have equipment-side and field-side BNC connectors on the top of the suppressor enclosure as shown in the details.

Coaxial Jumper Cable: Use a video coaxial jumper cable (labeled as “I-VDSnJC”) to connect the equipment (protected) terminal of the video signal surge suppressor directly to the processor module as applicable. Use a video coaxial jumper cable that is a high-flex cable or as recommended by the cable manufacturer, with double-shield tinned copper braid, #20-22 AWG stranded copper center conductor and polyethylene outer jacket. As applicable, terminate both ends or one end of the coaxial cable with BNC connectors with gold-plated body and center pin and as recommended by the cable manufacturer. Use coaxial jumper cables of the length necessary to route as shown in the details with no mechanical strain on the end connectors and no excess cable loops to be stored. Label coaxial jumper cables within three inches of end connectors using clear overwrapping self-laminating cable labels and the appropriate cable label identification (“I-VDSnJC”) for the video camera sensor and processor module as shown in the Plans.

Exercise extreme caution when installing I-VDS equipment and materials at traffic signal/ramp meter installations. Repair any damage to existing traffic/ramp meter control equipment and materials which occurred during I-VDS installation to the Engineer’s satisfaction at the Contractor’s sole expense.

In 336S cabinets, locate the I-VDS power termination panel on the equipment rail in the lower left portion of the rear of the cabinet as shown in the details. Adjust the panel as far toward the cabinet sidewall as possible while still providing access to the circuit breaker. Notify the Engineer immediately if there is any conflict with existing cabinet equipment in this position. Ensure that there is no conflict with door-mounted components when the door is closed.

In 332 and 334 cabinets, locate the I-VDS coax termination panel in the lower open section of the front of the cabinet equipment rack as shown in the details. Notify the Engineer immediately if there is any conflict with existing cabinet equipment in this position. Ensure that there is no conflict with door-mounted components when the door is closed. Dress, label, and secure all coaxial cabling to and from the coax termination panel such that the panel can be hinged open a minimum of 90 degrees without binding or stressing any coaxial cable.

8. As-Built Drawings
Furnish as-built drawings, including but not limited to video camera sensor locations, video camera sensor mounting heights, details on the field cabling route through the intersection, and component lists with brand, model and serial numbers. Place one copy of the as-built drawings in the cabinet documentation pouch and submit another copy to the Engineer.

937.4 Measurement

937.4.01 Video Detection System

A. Video Camera Sensor Assembly
Video camera sensor assemblies paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for a video camera sensor assembly.

1. Camera, environmental enclosure, and mounting assembly with all associated hardware.
2. Cabinet equipment, including but not limited to wiring, conductors, terminal blocks, surge suppression, field switch and the sliding drawer.
3. All weather heads, vertical conduit risers, and conduit hardware on the VDS support pole for power service, grounding, communications, and control. If VDS and CCTV are mounted on the same pole, install common weather heads, conduit risers, and conduit hardware under Section 936 of the Specifications.
4. All hardware and materials necessary to provide electrical power service to the VDS field location as shown in the Plans, including but not limited to vertical sections of conduit, conduit hardware, wire, circuit
breakers, disconnect closures, and grounding. The Department will pay for horizontal sections of conduit separately.

5. All cables, connectors, hardware, interfaces, supplies, and any other items necessary for the proper operation and function of any VDS system component to carry video signals to the video detection system processor.

B. **Video Detection System Processor, Type A**

Video detection system processors paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install a video detection system processor to include, at a minimum, the following:

Video detection system processor equipment with two video inputs.

System software provided within the video detection system processor

C. **Video Detection System Processor, Type B**

Video detection system processors paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install a video detection system processor to include, at a minimum, the following:

Video detection system processor equipment with four video inputs.

System software provided within the video detection system processor

D. **Testing**

Testing is measured as a lump sum for full delivery of testing and acceptance requirements.

E. **Training**

Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.

937.4.02 **Microwave Radar Detection**

A. **Microwave Radar Detector Assembly**

Microwave radar detection assemblies paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for a microwave video detection assembly:

- Microwave radar detector
- Housing
- Field cabling and cabinet equipment
- Power supply
- Mounting bracket(s)
- All weatherheads, vertical conduit risers, and conduit hardware on the support pole for power and detector signal as shown in the plans
- Configuration

B. **Testing**

Testing is measured as a lump sum for full delivery of testing and acceptance requirements.

C. **Training**

Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.
937.4.03 Intersection Video Detection System

A. Intersection Video Detection System Assembly

Intersection Video Detection System Assemblies paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for an Intersection Video Detection System Assembly:

1. Intersection Video Detection Assembly, Type A
 a. Video Camera Sensor:
 1) Camera, environmental enclosure, variable focal length lens, mounting bracket assembly, with all associated hardware and incidental materials
 2) Electric Lens Adjustment Device; if more than one video camera sensor is installed at an intersection, provide one Electric Lens Adjustment Device for that intersection
 3) Field cabling and cabinet equipment, including but not limited to power and video cabling from the video camera sensor to the controller cabinet, processor module, power and coax termination panels, surge suppressor, cabinet wiring, and all associated hardware and incidental materials. If more than one Intersection Video Detection Assembly and/or video camera sensor is installed at an intersection or ramp meter installation, provide one power termination panel and one coax termination panel for that intersection or ramp meter installation.
 4) All weather heads, vertical conduit risers, and conduit hardware on the I-VDS support pole for power and video signal as shown in the Plans
 b. Processor Module:
 1) Provide one Processor Module, Type A
 2) Configuration and processor software on the processor module
 3) Programming Device; if more than one Processor Module is installed in a cabinet at an intersection, provide one Programming Device for that cabinet

2. Intersection Video Detection Assembly, Type B
 a. Video Camera Sensor:
 1) Provide two (2) cameras, environmental enclosures, variable focal length lenses, mounting bracket assemblies, and junction boxes with all associated hardware and incidental materials
 2) Electric Lens Adjustment Device; if more than one video camera sensor is installed at an intersection, provide one Electric Lens Adjustment Device for that intersection
 3) Field cabling and cabinet equipment, including but not limited to power and video cabling from the video camera sensors to the controller cabinet, processor modules, power and coax termination panels, surge suppressors, cabinet wiring, and all associated hardware and incidental materials. If more than one Intersection Video Detection Assembly and/or video camera sensor is installed at an intersection or ramp meter installation, provide one power termination panel and one coax termination panel for that intersection or ramp meter installation.
 4) All weather heads, vertical conduit risers, and conduit hardware on the I-VDS support pole for power and video signal as shown in the Plans
 b. Processor Module:
 1) Provide one Processor Module, Type B or C
 2) Configuration and processor software on the processor module
 3) Programming Device; if more than one Processor Module is installed in a cabinet at an intersection, provide one Programming Device for that cabinet
B. **Output Expansion Module**
Output expansion modules paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install an Output Expansion Module to include, at a minimum, the following:

Output expansion module
Any cabling required to connect to the processor module or additional expansion modules

C. **Programming Monitor**
A Programming Monitor is measured for payment by the number actually furnished and accepted. Unless otherwise specified in the Plans, furnish a Programming Monitor to include, at a minimum, the following:

Programming Monitor
Any cabling required to connect the processing modules to the programming monitor

D. **Testing**
Testing is measured as a lump sum for full delivery of testing and acceptance requirements.

E. **Training**
Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.

937.5 **Payment**

937.5.01 **Video Detection System**

A. **Video Camera Sensor Assembly**
Video camera sensor assemblies, complete in place and accepted by the Department, are paid for at the Contract Unit Price. Payment is full compensation for furnishing and installing the video camera sensor assembly.

B. **Video Detection System Processor, Type A**
Video detection system processors, complete in place and accepted by the Department, are paid for at the Contract Unit Price. Payment is full compensation for furnishing and installing the video detection system processor.

C. **Video Detection System Processor, Type B**
Video detection system processors complete in place and accepted by the Department, are paid for at the Contract Unit Price. Payment is full compensation for furnishing and installing the video detection system processor.

D. **Testing**
The Department will pay for testing performed as prescribed by this Item, measured as provided under Measurement at the Lump Sum Contract bid price.

E. **Training**
The Department will pay twenty-five (25%) of the total Lump Sum Contract bid amount for training upon approval of the Training Plan. The Department will pay the remaining seventy-five (75%) after completion of all training as described in Subsections 937.2.01. The total sum of all payments cannot exceed the original contract amount for this item.

Payment is full compensation for furnishing and installing the items complete in plans according to this Specification.
937.5.02 Microwave Detection System

A. Microwave Radar Detector Assembly

Microwave radar detection assemblies paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for a microwave video detection assembly:

- Microwave radar detector
- Housing
- Field cabling and cabinet equipment
- Power supply
- Mounting bracket(s)
- All weatherheads, vertical conduit risers, and conduit hardware on the support pole for power and detector signal as shown in the plans
- Configuration

B. Testing

Testing is paid for as a lump sum for full delivery of testing and acceptance requirements, measured as provided under Measurement at the Lump Sum Contract bid price

C. Training

Training is paid for as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training, measured as provided under Measurement at the Lump Sum Contract bid price

Payment is full compensation for furnishing and installing the items complete in plans according to this Specification.

937.5.03 Intersection Video Detection

A. Intersection Video Detection Assembly

Intersection Video Detection System Assemblies paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install the following minimum items for an Intersection Video Detection System Assembly:

1. Type A
 a. Video Camera Sensor:
 1) Camera, environmental enclosure, variable focal length lens, mounting bracket assembly, with all associated hardware and incidental materials
 2) Electric Lens Adjustment Device; if more than one video camera sensor is installed at an intersection, provide one Electric Lens Adjustment Device for that intersection
 3) Field cabling and cabinet equipment, including but not limited to power and video cabling from the video camera sensor to the controller cabinet, processor module, power and coax termination panels, surge suppressor, cabinet wiring, and all associated hardware and incidental materials. If more than one Intersection Video Detection Assembly and/or video camera sensor is installed at an intersection or ramp meter installation, provide one power termination panel and one coax termination panel for that intersection or ramp meter installation.
 4) All weather heads, vertical conduit risers, and conduit hardware on the I-VDS support pole for power and video signal as shown in the Plans
 b. Processor Module:
 1) Provide one Processor Module, Type A
2) Configuration and processor software on the processor module

3) Programming Device; if more than one Processor Module is installed in a cabinet at an intersection, provide one Programming Device for that cabinet

2. Type B

a. Video Camera Sensor:
 1) Provide two (2) cameras, environmental enclosures, variable focal length lenses, mounting bracket assemblies, and junction boxes with all associated hardware and incidental materials
 2) Electric Lens Adjustment Device; if more than one video camera sensor is installed at an intersection, provide one Electric Lens Adjustment Device for that intersection
 3) Field cabling and cabinet equipment, including but not limited to power and video cabling from the video camera sensors to the controller cabinet, processor modules, power and coax termination panels, surge suppressors, cabinet wiring, and all associated hardware and incidental materials. If more than one Intersection Video Detection Assembly and/or video camera sensor is installed at an intersection or ramp meter installation, provide one power termination panel and one coax termination panel for that intersection or ramp meter installation.
 4) All weather heads, vertical conduit risers, and conduit hardware on the I-VDS support pole for power and video signal as shown in the Plans

b. Processor Module:
 1) Provide one Processor Module, Type B or C
 2) Configuration and processor software on the processor module
 3) Programming Device; if more than one Processor Module is installed in a cabinet at an intersection, provide one Programming Device for that cabinet

3. Output Expansion Module

Output expansion modules paid for are the number actually installed, complete, functional, and accepted. Unless otherwise specified in the Plans, furnish and install an Output Expansion Module to include, at a minimum, the following:

- Output expansion module
- Any cabling required to connect to the processor module or additional expansion modules

4. Programming Monitor

A Programming Monitor is measured for payment by the number actually furnished and accepted. Unless otherwise specified in the Plans, furnish a Programming Monitor to include, at a minimum, the following:

- Programming Monitor
- Video input Switching Device
- Any cabling required to connect the processing modules to the programming monitor

5. Testing

Testing is paid for as a lump sum for full delivery of testing and acceptance requirements, measured as provided under Measurement at the Lump Sum Contract bid price

6. Training

Training is paid for as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training, measured as provided under Measurement at the Lump Sum Contract bid price
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 937</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 937</td>
<td>Video Camera Sensor Assembly</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>VDS System Processor, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Testing - Video Detection System</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Training - Video Detection System</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Microwave Radar Detection Assembly</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Testing - Microwave Detection System</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Training - Microwave Detection System</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Intersection Video Detection System Assembly, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Output Expansion Module, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Programming Monitor, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Testing – Intersection Video Detection</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 937</td>
<td>Training – Intersection Video Detection</td>
<td>Lump Sum</td>
</tr>
</tbody>
</table>

Traffic Operations
Notes:
1. All dimension and scale are approximate.
2. FDC (Fiber Distribution Center) required and paid for in Section 935
3. Support Panels shall be mounted inside the cabinet rack cage.
5. Field Switch required and paid for in Section 939

Detail Drawing 937.1
Type D Equipment Cabinet Assembly With VDS Equipment
Note:
1. All linear dimensions +/− 0.005” tolerance.
2. Drawing not to scale
3. Mounting Panel shall be 0.125” 5052 Aluminum

Detail Drawing 937.2
VDS Surge Mounting Panel, Type D Cabinet
Detail Drawing 937.3

Microwave Radar Detection Assembly Block Diagram
SPECIAL PROVISION

PROJECT: 0009542
DEKALB COUNTY

Section 939—Communication and Electronic Equipment

Delete Section 936 and substitute the following:

Section 939—Communication and Electronic Equipment

939.1 General Description

This work includes installation, acceptance testing, warranty, and guaranty of items that are either components of several NaviGAtor subsystems or elements of the communication network.

Provide all equipment and materials of like kind and function to be of the exact same manufacture, model, revision, firmware, etc.

Provide all equipment, materials, and work in accordance with all manufacturers’ recommendations.

939.1.01 Definitions

- Type A Cabinet – The Type A cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in. (1.2 m) (H) x 24 in. (0.61 m) (W) x 23 in. (0.58 m) (D).
- Type B Cabinet - The Type B cabinet housing is a standard Model 337 housing with approximate exterior dimensions of 35 in. (0.89 m) (H) x 20 in. (0.5 m) (W) x 17 in. (0.43 m) (D).
- Type C Cabinet - The Type C cabinet housing is a standard Model 332 housing with approximate exterior dimensions of 64 in. (1.6 m) (H) x 24 in. (0.61 m) (W) x 30 in. (0.76 m) (D).
- Type D Cabinet – The Type D cabinet housing is a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in. (1.2 m) (H) x 24 in. (0.61 m) (W) x 23 in. (0.58 m) (D). The difference between a Type D and Type A cabinet is the difference in interior cabinet configuration as shown in the Detail Drawings in this section.
- Type F Cabinet - The Type F cabinet housing shall be a standard ITS Cabinet Housing #3 with approximate exterior dimensions of 67 in. (1.7 m) (H) x 44 in. (1.2 m) (W) x 26 in. (0.66 m) (D).

939.1.02 Related References

A. Georgia Standard Specifications

Section 631 – Permanent Changeable Message Sign

Office of Traffic Operations
Section 682 – Electrical Wire, Cable and Conduit
Section 797 – Buildings
Section 922 – Electrical Wire and Cable
Section 923 – Electrical Conduit
Section 925 – Traffic Signal Equipment
Section 935 – Fiber Optic System
Section 936 – Closed Circuit Television System (CCTV)
Section 937 – Video Detection System
Section 938 – Detection
Section 940 – NaviGAtor Advanced Transportation Management System Integration

B. Referenced Documents

American Society of Testing and Materials (ASTM)
American National Standards Institute (ANSI)
Caltrans TEES
Canadian Standards Association (CSA)
Deutsches Institut für Normung {German Institute for Standardization} (DIN)
Electronics Industry Association (EIA)
Standards of the European Committee for Standardization (EN)
ICEA Table K.2/Method 1
Institute of Electrical and Electronics Engineers (IEEE)
International Electrotechnical Commission (IEC)
International Standards Organization (ISO)
International Telecommunications Union (ITU)
Motion Pictures Expert Group (MPEG)
National Electric Code (NEC)
National Electric Safety Code (NESC)
National Electrical Manufacturers Association (NEMA)
National Television System Committee (NTSC)
National Transportation Communications for ITS Protocol (NTCIP)
Telecommunications Industry Association (TIA)
Underwriter’s Laboratory Incorporated (UL)
Association for Electrical, Electronic & Information Technologies [Germany] (VDE)

939.1.03 Submittals

The following chart provides the Contractor with an outline of the submittal requirements for the equipment and components for this pay item. This chart is to be used as a guide and does not relieve the Contractor from submitting additional information to form a complete submittal package.
Section 939 Submittal Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification Subsection</th>
<th>Catalog Cuts</th>
<th>Factory Specifications</th>
<th>Independent Test</th>
<th>Lab Certification</th>
<th>Installation Procedure</th>
<th>Test Plans</th>
<th>Maintenance Procedures</th>
<th>Submittal Due Date (Cal. Days after NTP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Data Terminal Server (All Types)</td>
<td>939.2.02</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Patch Cords</td>
<td>939.2.03</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Hub UPS</td>
<td>939.2.04</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Network Switch, Layer 3 Gig-E (All Types)</td>
<td>939.2.05</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>GBIC Routing Switch Module (All Types)</td>
<td>939.2.06</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>GBICs (All Types)</td>
<td>939.2.07</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Field Switch (All Types)</td>
<td>939.2.08</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Video Encoder (All Types)</td>
<td>939.2.09</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Video Decoder (All Types)</td>
<td>939.2.10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Equipment Rack</td>
<td>939.2.11</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Equipment Frame</td>
<td>939.2.12</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Dial-up modem</td>
<td>939.2.13</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Equipment Cabinet Assembly (All Types)</td>
<td>939.2.13.A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Training Plan</td>
<td>939.3.08</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>60 Days</td>
</tr>
</tbody>
</table>

- Submit submittal data for all equipment, materials, test procedures, and routine maintenance procedures required for these items within sixty (60) calendar days after the Notice To Proceed and prior to any installation, unless noted otherwise in the Contract Documents.

- Submit to the Engineer for approval, two (2) copies of the manufacturer’s descriptive literature (catalog cuts), technical data, operational documentation, service and maintenance documentation and all other materials required within these specifications. An electronic copy, which includes all the aforementioned documents, shall be placed on a CD as pdf documents and delivered to the Engineer.

- Provide submittal data that is neat, legible, and orderly. Neatly organize each package of submittal data and separate by hardware item. Use the “Materials Certification Package Index and Transmittal Form”, contained in Section 105.02 of the Special Provisions, for each pay item to document and list all material and components that are included in the submittal package. Any submittal data submitted without the Index/Transmittal form or that is incomplete will be rejected.

A. Equipment

Equipment

Materials submittal data for items specified herein shall include, but not be limited, equipment performance and technical specifications, electrical/power specifications, size/weight/mounting configuration requirements, and environmental operating conditions.

Provide a diagram showing the location of all equipment within the TCC, Hub and/or Equipment Cabinet, 30 days prior to any installation activities at the site. Include in this diagram the dimensions, power requirements, power service materials and heat dissipation specifications for all of the equipment.

Submit and provide all equipment and corresponding ancillary and incidental materials of a like kind to be the exact same manufacturer, model, revision, firmware, etc. for the entire quantity in the project. Like kind equipment shall include but is not limited to serial data terminal servers, uninterruptible power supplies, network switches, GBIC routing switch modules, GBICs, field switches, video encoders and decoders, equipment racks, equipment frames, and dial-up modems.

Submittal Review Demonstration Test Set

Submit demonstration test set(s) for Department evaluation after the Engineer approves the submittal materials for the equipment and materials listed below. The demonstration test sets shall be connected to and operated through the NaviGAtor system by the Engineer. Deliver the test set to the Department at the location specified by the Engineer. Request a delivery and test time a minimum of 30 days in advance. Provide demonstration test sets of the materials, types and quantities as shown below:

- Serial Data Terminal Server, all types (quantity 2 of each type)
A demonstration test set shall include all materials, components, assemblies, control software and documentation of the equipment and shall be complete and fully functional for communications with the NaviGAtor system. All equipment shall be configured for locating on a benchtop, or else provide a desktop stand to secure the equipment. Provide a high-density chassis cage for video encoders and decoders when the cage is required on a project. Provide an RS232 serial cable for console connection for each type of equipment item. Provide a NEMA 5-15 cord for power service to all equipment.

Review of the demonstration test set submittal shall be conducted in two parts. The first part of the review shall be performed by the Contractor in the presence of the Engineer and shall include the setup and configuration of the demonstration test set on the NaviGAtor system. The first part of the review shall be conducted during normal Department weekday business hours and shall be conducted for the period of time necessary to the satisfaction of the Engineer. The second part of the review shall be a 60-day period during which the Engineer shall operate and evaluate the demonstration test set with the NaviGAtor system. The second part of the review shall commence only upon the Engineer’s approval of the first part of the review. Retrieve the demonstration test set upon completion of the second part of the review as notified by the Engineer.

B. Testing
Provide test equipment and system set-up and diagnostic software required for the testing, operation, maintenance and troubleshooting of the equipment, along with Operations, Installation and Maintenance manuals for these software packages.

Submit all testing plans and procedures for Department approval in accordance with the chart above.

C. Equipment Cabinet Assembly
Submit materials submittal data for the equipment cabinet and all individual component and hardware items that make up the complete assembly. These items shall include, but are not limited to, cabinet shell specifications, electrical component description and performance specifications, wiring and cabling equipment and materials, electrical/power specifications, and all documentary items.

Submit materials submittal data for all materials and hardware necessary for the patch and electrical cabling, conduit and power service. These items include but are not limited to cabling, wire and conduit materials, service disconnect breaker/surge suppression/termination/housing description and performance specifications, ground rod and conductor, proposed conduit route from service point to equipment cabinet, and all miscellaneous hardware and accessories.

Submit and provide all equipment cabinet assemblies and corresponding ancillary and incidental materials of a like kind from the exact same manufacturer, model, revision, firmware, etc. for the entire quantity in the project. Like kind equipment shall include, but is not limited to, cabinet housings, internal cabinet assembly components, and electrical components including surge suppressors, terminal blocks, rack-mount equipment outlets, and side and support panels.

939.2 Materials

939.2.01 Not Applicable

939.2.02 Serial Data Terminal Server
Provide multiport Serial Data Terminal Servers (terminal servers) that are compatible with the existing NaviGAtor serial port control system. The existing serial port control system consists of serial data terminal servers (Digiboard PortServer II) addressed with the Digiboard RealPort system interface.

Ensure all terminal servers meet the following requirements:
- Compatible with the existing NaviGAtor serial port control system.
- IP addressable supporting Ethernet 10/100Base-T/TX with RJ45 port.
- RS-232 serial ports with RJ45 ports.
- Management access by HTTP, telnet, and console ports, all password protected.
• SNMP read/write management of terminal server and individual serial ports.
• Each serial port individually configurable comm. settings and TCP/UDP socket support.
• Each serial port with minimum 64kbps buffering and data capture.
• Firmware upgradeable by FTP/TFTP.
• Upload/download of configuration settings.
• Diagnostic LEDs for Ethernet connection and unit status.
• UL approval.

Ensure Serial Data Terminal Server, 16 Port, meet the following additional requirements:
• EIA 19-inch rack-mounted units with maximum vertical height of 1.75 inch (44.4 mm).
• 16 RS-232 ports mounted on the front of the unit.
• Internal 120VAC power supply.

Ensure Serial Data Terminal Server, Type B, meet the following additional requirements:
• Operating temperature of unit and power supply of -31ºF to 165ºF (-35ºC to 74ºC).
• Conformal-coated circuit boards.
• Capable of being panel-mounted, rack-mounted and shelf-mounted in equipment cabinets.
• Minimum of two (2) RS-232 ports mounted on the front of the unit.
• Internal or external 120VAC power supply.

939.2.03 Patch Cords

General Requirements:

a. Provide all necessary patch cords with all electronic equipment for interconnection. Verify that patch cords consist of a length of cable that is connectorized on both ends, primarily used for interconnecting termination or patching facilities and/or equipment.

b. All patch cords shall be factory assembled and connectorized and be certified by the patch cord manufacturer to meet the relevant performance standards required below. All connectors shall incorporate mechanical cable strain relief and protective boots.

c. Coaxial Video Patch Cords: Ensure that coaxial video patch cords are 75-ohm precision double-shielded cables withes copper braid shield and minimum #22AWG solid copper stranded center conductor. Use BNC connectors with gold-plated center pins at both ends. Connectorized coaxial video patch cords shall be 100% sweep tested. Provide only adapters with gold-plated pins.

d. Network/Field Switch/Data Patch Cords: Verify that network/field/data patch cords meet all ANSI/EIA/TIA requirements for Category-6 4-pair unshielded twisted pair cabling with stranded conductors and RJ45 connectors.

e. Voice/Telephone Patch Cords: Provide voice/telephone patch cords that meet all ANSI/EIA/TIA requirements for Category 3 unshielded twisted pair cabling with stranded conductors, unless otherwise required by the voice/telephone equipment manufacturer.

f. Fiber Optic Patch Cords: Provide fiber optic patch cords that meet all requirements of Section 935.

939.2.04 Hub Uninterruptible Power Supply

Ensure the Hub UPS provides AC back-up power for network electronics and other equipment as shown in the contract documents. Provide a Hub UPS meeting the following requirements:

• 19” rack mounted, maximum height of six (6) rack units (10.5”).
• 120 VAC single phase 60 HZ output
• Input line cord plug type NEMA L5-30P
• 8 output receptacles type NEMA5-15R
• Pure sine wave output at 115 VAC +/- 5%
• Transfer time of 4 ms or less
• Capacity of 2200 VA/1600 W
• Load factor range of 0.5 to 1.0
• Peak current capability of 6.5 KVA
• Software adjustable high and low voltage buck/boost function
• SNMP manageable hardware and software with 10Base-T connection (RJ-45)
• Addressable SNMP command set shall minimally include: UPS state, battery condition (capacity, age, internal temperature); current AC input conditions (voltage, phase, frequency, failure condition); current AC output conditions (voltage, frequency, load); and diagnostic/self-test control and status.
• Remote environmental sensing hardware and software integrated with SNMP minimally capable of temperature and humidity monitoring and 4 dry contact closures
• Network connection to Ethernet port on Hub Network Switch, Layer 3 GigE
• Printed and electronic user documentation for all management, configuration and operation hardware and firmware settings, installation procedures, and the MIB.
• Sealed maintenance-free lead-acid batteries
• Maximum audible noise of <53 dBA at 3 ft (0.9 m).
• Upgradeable for increased runtime capacity (minimum 2.5X) with additional battery packs
• Expansion battery pack that is 19” rack mounted, with maximum height of five (5) rack units (8.75”).

939.2.05 Network Switch, Layer 3 GigE

Furnish a Gigabit Ethernet Layer 3 network routing switch that is compatible with the existing GDOT Ethernet switching network. The existing network consists of Nortel Networks 8600 Layer 3 routing switches. The network switches shall be manageable using the Department’s existing Device Manager network management software. Furnish and configure the network switches as complete compatible assemblies. Configure the network switch(es) at the locations shown in the Plans, as applicable, to the following minimum requirements:
• Minimum 6-slot chassis with hot-swappable card capability
• Two (2) Enterprise Routing Switch Module CPU/Switch Fabric Modules with PCMCIA flash memory card and a processing capability of 380 million packets-per-second
• One (1) 30-port 1000 Base SFP GBIC Routing Switch Module.
• One (1) 48-port auto-sensing 10/100/1000 Base-T/TX Ethernet Layer 3 switching interface Module.
• Three (3) 100-240VAC power supplies including North American power cables, configured for 120VAC service
• Ethernet Routing Switch 8600 software license, latest version, including license, agent software, management software, and all software documentation
• EIA 19” rack mounted

Additionally configure each Network Switch, Layer 3 GigE, Type E, with four (4) Type E GBICs. Include four (4) duplex fiber optic single-mode patch cords, 30 ft. (9 m) in length, in accordance with Section 935 and with ST-connectors on one end (at the FDC) and an LC-connector on the other end (at the network switch.)

Additionally configure each Network Switch, Layer 3 GigE, Type F, with four (4) Type E GBICs and four (4) Type F GBICs. Include eight (8) duplex fiber optic single-mode patch cords, 30 ft. (9 m) in length, in accordance with
Section 935 and with ST-connectors on one end (at the FDC) and an LC-connector on the other end (at the network switch.)

939.2.06 GBIC Routing Switch Module

Provide a GBIC Routing Switch Module, Type B, which consists of 30-1000Base SFP GBIC ports populated with GBICs as called-out on the Plans and as specified herein. All Modules and GBICs provided shall be compatible with the Network Switch, Layer 3 GigE.

939.2.07 GBIC (Gigabit interface converter)

The GBICs shall meet the following minimum requirements:

a. Support single-mode operation
b. Fully compliant with IEEE 802.3z standards
c. Operate at 1000Mbps and full-duplex two fiber operation supporting the following types:
 • GBIC, Type A (LX): (SMFO at 1310nm); optical link budget: 10.5dB, typical
 • GBIC, Type B (XD): (SMFO at 1550nm); optical link budget: 17.0dB, typical
 • GBIC, Type C (ZX): (SMFO at 1550nm); optical link budget: 22.0dB, typical
 • GBIC, Type D (SFP LX): (SMFO at 1310nm); optical link budget: 10.5dB, typical
 • GBIC, Type E (SFP XD): (SMFO at 1550nm); optical link budget: 17.0dB, typical
 • GBIC, Type F (SFP ZX): (SMFO at 1550nm) optical link budget: 20.0dB, typical
 • GBIC, Type G (SFP SX): (MMFO at 850nm) optical link budget: 7.0dB, typical
d. Allow for hot swapping failed components.
e. Operate as its own switched port.
f. Support detecting and shutting down one-way link failures, using auto-negotiation.
g. The GBIC optical receiver saturation level shall be greater or equal to the maximum optical output of the mating transmitter minus 5db. Where required for manufacturer’s recommended operations, provide fiber optic patch cords in accordance with Section 935 with integral optical attenuators for optical power control in accordance with the Ethernet switch (network switch, field switch, etc.) manufacturer’s recommendations.
h. GBICs, all types, furnished with field switches shall meet the same environmental operating requirements as the field switch.

939.2.08 Field Switch

All Field Switches shall meet the following requirements:

a. General Characteristics and Capabilities:
 1) Meet the IEEE 802.3 (10Mbps Ethernet) standard.
 2) Meet the IEEE 802.3u (Fast Ethernet 100 Mbps) standard
 3) Provide Gigabit-Ethernet SFP GBIC sockets as specified in Field Switch Types subsection.
 4) Provide a minimum of six (6) 10/100 Base-T/TX ports unless otherwise specified in the Field Switch Types subsection. Each 10/100Base-T/TX port shall connect via RJ45 connector. The ports shall operate as half-duplex or full-duplex (IEEE 802.3x) over 100m segment lengths and provide auto-negotiation.
 5) Bit Error Ratio (number of erroneous bits divided by the total number of bits transmitted, received, or processed) shall not increase over the optical channel when two units are connected with a fiber optic jumper having total optical losses of 6dB, including connector losses.
 6) Operate non-blocking, at full wire speed
 7) Support remote reset and remote management

Office of Traffic Operations
8) Minimum MTBF of 100,000 hrs using Bellcore TS-332 standard.

b. Network Capabilities and Features:
 The Field Switch shall support/comply with the following minimum requirements:
 1) Provide full implementation of IGMPv2 and IGMP snooping
 2) Meet the IEEE 802.3x (Full Duplex with Flow Control) standard.
 3) Meet the IEEE 802.1p (Priority Queuing) standard.
 4) Meet the IEEE 802.1Q (VLAN) standard per port for up to four VLAN’s.
 5) The switch shall meet the IEEE 802.1D (Spanning Tree Protocol) and IEEE 802.1w (Rapid Spanning Tree) standards.
 6) Meet the IEEE 802.3ad (Link Aggregation) standard for a minimum of two groups of four ports.
 7) Full implementation of GVRP (Generic VLAN Registration Protocol).

c. Port Security:
 The Field Switch shall support/comply with the following (remotely) minimum requirements:
 1) Ability to configure static MAC addresses access
 2) Ability to disable automatic address learning per ports; know hereafter as Secure port. Secure Ports only forward statically configured Mac addresses.
 3) Trap and alarm upon any unauthorized MAC address and shutdown. Port shutdown requires administrator to manually reset the port before communications are allowed.

d. Network Management Functions:
 The Field Switch shall support/comply with the following minimum requirements:
 1) Password manageable
 2) Full implementation of SNMPv1 and SNMPv2c.
 3) Full implementation of RMON I statistics, history, alarms, and events objects.
 4) Capable of mirroring any port to any other port within the switch.

e. Remote Management and Configuration:
 The Field Switch shall support/comply with the following minimum requirements:
 1) SNMP
 2) Telnet/CLI
 3) HTTP (Embedded Web Server) with Secure Sockets Layer (SSL).
 4) Full implementation of RFC 783 (TFTP) to allow remote firmware upgrades.

f. Mounting:
 The Field Switch shall be rack mountable as shown on the Detail Drawings in this section. All necessary hardware and adaptors for mounting shall be included. Provide a perforated shelf and secure with rack mounting hardware for a Field Switch that is not rack mountable with integral “rack ears.”
 Provide a sufficient quantity of fiber optic patch cords to match the populated optical ports on the Field Switch. Include duplex fiber optic single-mode patch cords, 3 ft. (1 m) in length, in accordance with Section 935 and with ST-connectors on one end (at the FDC) and an LC-connector on the other end (at the Field Switch).

g. Environmental:
 The Field Switch shall support/comply with the following minimum requirements:
1) Operate between -34 to +74 degree Celsius. (-29ºF to +165ºF). No fans are permitted.
2) Operate from 10% to 90% humidity
3) Maximum size of 1 rack unit high by 12.5 in (320 mm) deep

h. Electrical/Safety:
The Field Switch shall support/comply with the following:
1) Operate from 100 VAC to 200 VAC (120VAC nominal, 60Hz) as shown on the Detail Drawings in this section.
2) The Field Switch shall be provided with all power conversion which is temperature hardened from -34 to +70 degrees Celsius (-29ºF to +165ºF) and all regulation necessary to support electronics operation. The power input circuitry shall be designed to protect the electronics from damage by a power surge or under voltage condition.
3) All power transformers provided shall be “fastening mechanism” type. No plug-in types will be provided. All cored transformers shall be mountable with the ability to neatly secure power cords.
4) Include UL approval
5) Provide rubber dust caps/covers with insertion/removal handles that completely seal the port opening for all unused copper and optical ports.

i. Status Indicators:
The Field Switch shall support/comply with the following minimum requirements:
1) Power: On, Off
2) Network Status per port: Transmit, Receive, Link, Speed
3) Status indicators shall be LED.

j. Field Switch Types:
In addition to meeting all the requirements specified herein, the Field Switch SFP GBIC sockets shall be populated as indicated on the Plans. The Field Switch types are defined as follows:
- Field Switch, Type A – provide a minimum of three (3) Gigabit-Ethernet SFP GBIC sockets, populated with three (3) GBIC, Type D (SFP LX)
- Field Switch, Type B – provide a minimum of three (3) Gigabit-Ethernet SFP GBIC sockets, populated with one (1) GBIC, Type D (SFP LX) and two (2) GBIC, Type E (SFP XD)
- Field Switch, Type C – provide a minimum of two (2) Gigabit-Ethernet SFP GBIC sockets, populated with two (2) GBIC, Type D (SFP LX)
- Field Switch, Type D – provide a minimum of two (2) Gigabit-Ethernet SFP GBIC sockets, populated with one (1) GBIC, Type D (SFP LX) and one (1) GBIC, Type E (SFP XD)
- Field Switch, Type E – provide a minimum of two (2) Gigabit-Ethernet SFP GBIC sockets, populated with two (2) GBIC, Type E (SFP XD)
- Field Switch, Type F – provide a minimum of eight (8) Gigabit-Ethernet SFP GBIC sockets, populated with four (4) GBIC, Type D (SFP LX). One 10/100 Base-TX port is required unless otherwise specified.
- Field Switch, Type G – provide a minimum of (3) Gigabit-Ethernet SFP GBIC sockets, populated with two (2) GBIC, Type D (SFP LX) and one (1) GBIC, Type E (SFP XD)

939.2.09 Video Encoder (All Types)
Provide a Video Encoder in accordance with the minimum requirements below for the encoding of analog video inputs and transmission as digital streams over a network.
A. Video Encoder, Type B

Video Encoder, Type B is a standalone, environmentally hardened encoder for a single video signal, suitable for field cabinet use.

1. General
 a. Chassis
 1) Furnish rack-mountable or shelf-mountable units.
 2) Rack-mountable units shall include integrated brackets for mounting in standard EIA 19-inch rack rack-mountings, and shall be no more than one (1) rack unit (1.75 inches (45 mm)) high and 13 in. (330 mm) deep.
 3) Shelf-mountable units shall be no more than 3.5 in. (89 mm) (H) x 9 in. (229 mm) (W) x 11 in. (280 mm) (D), and shall include a perforated ventilated shelf for mounting in a standard EIA 19-inch rack, no more than 13 inches (330 mm) deep with mounting flanges of two (2) rack units (3.5 in. (89 mm)) and a minimum 20 lb (9 kg) load rating.
 b. Labeling and Identification
 1) Provide external silk-screened markings for all connectors, indicators, switches, and replaceable components.
 2) Provide external labeling on the front or rear enclosure face for the manufacturer’s name, product, model and part numbers, revision numbers, serial number, and MAC address.
 c. Environmental
 1) Operating temperature of -30 degrees F (-34 C) to 165 degrees F (74 C) with relative humidity between 10% to 90% non-condensing.
 2) Ventilation fans are not permitted.
 d. Power
 1) Nominal power input voltage of 120 VAC.
 2) Maximum power consumption of 20 watts.
 3) If external power supplies are used, they shall fit into the allotted space for the encoder, and shall meet the same operating temperature and relative humidity requirements.
 e. Connectors
 1) Video Input: BNC connector with gold-plated center socket.
 2) Network: RJ-45 jack
 3) Serial Data: 9-pin D-subminiature (DE-9), keyed pluggable locking terminal block, or keyed locking connector jack. If DE-9 connector is used, comply with TIA-574. If keyed locking connector jack is used, furnish an adapter cable (no greater than 1m in length) with the required DE-9F/TIA-574 connector and labeled “DATA”.
 4) Console: Female 9-pin D-subminiature (DE-9F) connector for RS-232 DCE (data circuit equipment) console interface compliant with TIA-574. If encoder housing has a connector interface other than DE-9F, furnish an adapter cable (no greater than 1m in length) with the required DE-9F connector for each encoder and labeled “CONSOLE”.
 5) Power: NEMA 5-15 plug
2. Interfaces
 a. Video Input: Color NTSC signal, 1 volt peak-to-peak.
 b. Serial Data
 1) RS-232 operation, bidirectional with minimum data receive, data transmit, and ground signal connections.
 2) Baud-rate selectable between 1200 and 38400 bits per second.
3) Line parameters of 1 start bit, 8 data bits, no parity, and no flow control.

d. Ethernet
 1) IEEE 802.3/802.3u 10/100Mbps Ethernet.
 2) Auto-negotiation of speed/duplex operation according to IEEE 802.3ab.

3. Network Communication
 a. Provide a fully functional IP stack and interface that is both standards compliant and consistent with established practices. IP stack must include TCP (per RFC 793), UDP (per RFC 768), IGMPv2 (per RFC 2236), ARP (per RFC 826), ICMP (per RFC 792), SNMP (per RFC 1157), and unicast/broadcast/multicast support.
 b. Provide statically configurable IP address, subnet netmask, and default gateway.
 c. Provide support for managing the following network communication parameters via the Local Management functionality required herein.
 - IP Address
 - Subnet Mask
 - Default Gateway

4. Video Encoding and Streaming
 b. Support streaming via RTP (per RFC 3550) to configurable unicast or multicast address and port.
 c. Support configurable multicast time-to-live (TTL) parameter.
 d. Maintain 4:3 frame aspect ratio.
 e. Support the following simultaneous settings:
 - Minimum encoded image resolution of 704x480
 - 30 frames-per-second frame rate
 - I-to-P (group of pictures) ratio of 1:30
 - 4Mbps encoding bit rate
 - Constant bit rate encoding or constrained variable bit rate encoding
 f. Support access to SDP file (per RFC 4566) matching current stream configuration via HTTP (per RFC2616), RTSP (per RFC 2336), or SAP (per RFC 2974).
 g. Upon loss of sync on the video input, continue streaming with a solid black image or some indication of “video loss” other than interrupting the stream.
 h. Any on-screen text or title overlay features shall be configurable to be fully disabled.
 i. Provide maximum encoding and transmission latency of 300 milliseconds with minimal transmission jitter and no video image degradation or transmission interruptions.
 j. RTP packet stream’s timestamp is derived from the encoder’s 90KHz clock reference. Reference clock must be synchronized with the actual wall-clock time and the MPEG4 stream, with no noticeable clock drift, for an interval of at least one (1) hour.
 k. Provide support for managing the following video streaming parameters via the Remote Management functionality required herein.
 - Target address and port
 - TTL parameter
 - Resolution
- Frame rate
- I/P ratio
- Encoding bit rate
- On-screen text or title overlay features

5. Serial Data Communication
 a. Support network/serial data pass-through operation via UDP or TCP.
 b. Pass traffic between the UDP/TCP port and the serial data port without modifying the payload, defined as raw pass-through with no TELNET or other character escaping.
 c. Support configurable TCP or UDP listener port number.
 d. UDP network/serial data pass-through implementation shall not require pre-configuration of the IP address for return traffic from an attached serial device. Forwarding incoming serial data to the originating source address and port of the most recently received UDP pass-through traffic is an acceptable implementation.
 e. TCP network/serial data pass-through implementation shall include a method of automatic network fault recovery initiated by the encoder in 60 seconds or less. TCP keepalives with configurable parameters for inactivity period, number of probes to send, and probe timeout interval is an acceptable implementation.
 f. Provide support for managing the following serial data parameters via the Remote Management functionality required herein:
 - Serial data line parameters including baud rate, parity, data and stop bits, and flow control.
 - Network protocol (TCP or UDP) and port number

6. Management
 a. Local Management
 1) Provide a command-line interface on the console port.
 2) Support configuration via the local management interface of the parameter groups detailed in the following sections:
 - Network Communication
 - Administrative Security
 b. Remote Management
 1) Configuration
 a) Support remote configuration using either the SNMP Agent required herein or a documented and programmatically parsable file accessible for upload and download via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.
 b) No manufacturer-sourced configuration utilities, applications, or drivers shall be required to configure the encoder.
 c) Support interactive remote management interface using one or more of the following:
 - Command-line interface via TELNET and/or SSH
 - Embedded HTTP server
 d) Support configuration of all settings in the following parameter groups via the remote management interface(s).
 - Video Encoding and Streaming
 - Serial Data
 - SNMP Agent
 - SNMP Traps
2) SNMP Agent
 a) Provide an SNMPv1 agent accessible on UDP port 161 over the network interface per RFC 1157.
 b) Support separate configurable read-only and read-write community strings.
 c) Provide the standard MIB-II objects per RFC 1213.
 d) Provide the following data in MIB-II object “sysDescr”:
 • Manufacturer name
 • Manufacturer model number
 • Manufacturer part number
 • Version identifiers for hardware and firmware components
 e) Provide the following information via SNMP; using vendor-specific MIB object(s) when necessary:
 • Video Status – whether sync is detected in the video input or not
 f) Furnish list of all industry standard MIBs that are supported.
 g) Furnish properly formatted MIB files detailing all vendor-specific objects supported. All MIB files should conform to RFC 1155 and RFC 1212.
 h) Provide support for managing the following SNMP Agent parameters via both the Local and Remote Management interfaces required herein.
 • Read-only and read-write community strings

3) SNMP Traps
 a) Provide support for transmitting SNMPv1 traps over the network interface to UDP port 162 on configured receivers per RFC 1157 and RFC 1215.
 b) Support a minimum of four (4) configurable trap receivers with corresponding IP addresses and community strings.
 c) Provide traps reporting changes in the state of the video input sync (i.e. video input sync lost, video input sync restored).
 d) Furnish list of all industry standard traps that are supported.
 e) Furnish properly formatted MIB files detailing all vendor-specific trap objects supported. All MIB files should conform to RFC 1155 and RFC 1212.
 f) Provide support for managing the following SNMP Trap parameters via both the Local Management and Remote Management interfaces required herein.
 • Trap receiver IP addresses and corresponding community strings.

c. Firmware Updates
 1) Provide firmware update mechanism via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.
 No manufacturer-sourced firmware update utilities, applications, or drivers shall be required to perform firmware updates.
 2) Provide password protection for firmware update mechanism or support for enabling and disabling the mechanism if the protocol doesn’t support authentication (i.e. embedded TFTP server).
 3) Provide support for managing the following firmware update parameters via both the Local Management and Remote Management interfaces required herein.
 • Enable/disable insecure firmware update mechanism

d. Administrative Security
1) Provide administrative access control via a configurable password.

2) Provide support for managing the following administrative security parameters via both the Local Management and Remote Management interfaces required herein.
 - Administrative password

e. Factory Reset
 1) Provide mechanism of resetting the device to a known and documented factory default configuration.
 2) Prior knowledge of the current administrative password or current network configuration shall not be necessary to reset the unit to the factory default configuration.
 3) Opening the encoder case or enclosure shall not be necessary to reset the unit to the factory default configuration.

f. LED Indicators
 Provide separate LED indicators on the exterior of the unit indicating:
 - Power
 - Video input status (video input sync detected or not detected)
 - Network link status and activity

B. Video Encoder, Type C

Video Encoder, Type C is a high density encoder unit for multiple video signals, with one encoder per video signal, suitable for control center use.

1. General
 a. Chassis
 1) Furnish rack-mountable units.
 2) Rack-mountable units shall include integrated brackets for mounting in standard EIA 19-inch rack rack-mountings, and shall be no more than one (1) rack unit (1.75 inches (45 mm)) high and 13 in. (330 mm) deep.
 3) High density rack-mountable units are either self-contained, or a card/module-based chassis cage with individual encoders.
 4) Furnish a high-density modular chassis cage when card/module-based encoders units are used.
 5) High density rack-mountable units shall hold a minimum of eight (8) individual encoders.
 b. Labeling and Identification
 1) Provide external silk-screened markings for all connectors, indicators, switches, and replaceable components.
 2) Provide external labeling on the front or rear enclosure face for the manufacturer’s name, product, model and part numbers, revision numbers, serial number, and MAC address(es).
 c. Environmental
 1) Operating temperature of 32 degrees F (0 C) to 113 degrees F (45 C) with relative humidity between 20% to 80% non-condensing.
 d. Power
 1) Nominal power input voltage of 120 VAC.
 2) If external power supplies are used, they shall fit into the allotted space for the high density unit, and shall meet the same operating temperature and relative humidity requirements.
 3) High density unit shall be powered from a single power connection.
 e. Connectors
1) Video Inputs: Multiple BNC connectors with gold-plated center sockets.
2) Network: Single network connection, RJ-45 jack
3) Power: Single power connection, NEMA 5-15 plug

2. Interfaces
 a. Video Inputs: 1 input for each video signal, color NTSC signal, 1 volt peak-to-peak.
 b. Ethernet
 1) IEEE 802.3/802.3u 10/100Mbps Ethernet.
 2) Auto-negotiation of speed/duplex operation according to IEEE 802.3ab.
 3) High density unit shall be connected with a single network cable connection.

3. Network Communication
 a. Provide a fully functional IP stack and interface, on a per encoder unit or per high density unit basis, that is both standards compliant and consistent with established practices. IP stack must include TCP (per RFC 793), UDP (per RFC 768), IGMPv2 (per RFC 2236), ARP (per RFC 826), ICMP (per RFC 792), SNMP (per RFC 1157), and unicast/broadcast/multicast support.
 b. Provide statically configurable IP address, subnet netmask, and default gateway.
 c. Provide support for managing the following network communication parameters via the Local Management functionality required herein.
 • IP Address
 • Subnet Mask
 • Default Gateway

4. Video Encoding and Streaming
 b. Support streaming via RTP (per RFC 3550) to configurable unicast or multicast address and port.
 c. Support configurable multicast time-to-live (TTL) parameter.
 d. Maintain 4:3 frame aspect ratio.
 e. Support the following simultaneous settings on all encoder inputs:
 • Minimum encoded image resolution of 704x480
 • 30 frames-per-second frame rate
 • I-to-P (group of pictures) ratio of 1:30
 • 4Mbps encoding bit rate
 • Constant bit rate encoding or constrained variable bit rate encoding
 f. Support access to SDP file (per RFC 4566) matching current stream configuration via HTTP (per RFC2616), RTSP (per RFC 2336), or SAP (per RFC 2974).
 g. Upon loss of sync on a video input, continue streaming with a solid black image or some indication of “video loss” other than interrupting the stream.
 h. Any on-screen text or title overlay features shall be configurable to be fully disabled.
 i. Provide maximum encoding and transmission latency of 300 milliseconds with minimal transmission jitter and no video image degradation or transmission interruptions.
 j. RTP packet stream’s timestamp is derived from the encoder’s 90KHz clock reference. Reference clock must be synchronized with the actual wall-clock time and the MPEG4 stream, with no noticeable clock drift, for an interval of at least one (1) hour.
k. Provide support for managing the following video streaming parameters via the Remote Management functionality required herein.

- Target address and port
- TTL parameter
- Resolution
- Frame rate
- I/P ratio
- Encoding bit rate
- On-screen text or title overlay features

l. Video parameters for each encoder input shall be individually configurable.

m. Encoders shall provide a method of reporting video input sync status via an SNMP Agent or HTTP server.

5. Management

a. Local Management

Provide a command-line or HTTP server interface for configuring the parameter groups detailed in the following sections:

- Network Communication
- Administrative Security

b. Remote Management

1) Configuration

a) Support remote configuration using either the SNMP Agent required herein or a documented and programmatically parsable file accessible for upload and download via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.

b) No manufacturer-sourced configuration utilities, applications, or drivers shall be required to configure the encoders.

c) Support interactive remote management interface using one or more of the following:

- Command-line interface via TELNET and/or SSH
- Embedded HTTP server

d) Support configuration of all settings in the following parameter groups via the remote management interface(s).

- Video Encoding and Streaming
- SNMP Agent

2) SNMP Agent

a) Provide an SNMPv1 agent accessible on UDP port 161 over the network interface per RFC 1157.

b) Support separate configurable read-only and read-write community strings.

b) Provide the standard MIB-II objects per RFC 1213.

d) Provide the following data in MIB-II object “sysDescr”:

- Manufacturer name
- Manufacturer model number
- Manufacturer part number
- Version identifiers for hardware and firmware components
e) Furnish list of all industry standard MIBs that are supported.

f) Furnish properly formatted MIB files detailing all vendor-specific objects supported. All MIB files should conform to RFC 1155 and RFC 1212.

g) Provide support for managing the following SNMP Agent parameters via both the Local and Remote Management interfaces required herein.
 • Read-only and read-write community strings

c. Firmware Updates
 1) Provide firmware update mechanism via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.
 2) No manufacturer-sourced firmware update utilities, applications, or drivers shall be required to perform firmware updates.
 3) Provide password protection for firmware update mechanism or support for enabling and disabling the mechanism if the protocol doesn't support authentication (i.e. embedded TFTP server).
 4) Provide support for managing the following firmware update parameters via both the Local Management and Remote Management interfaces required herein.
 • Enable/disable insecure firmware update mechanism

d. Administrative Security
 1) Provide administrative access control via a configurable password.
 2) Provide support for managing the following administrative security parameters via both the Local Management and Remote Management interfaces required herein.
 • Administrative password

e. Factory Reset
 1) Provide mechanism of resetting the device to a known and documented factory default configuration.
 2) Prior knowledge of the current administrative password or current network configuration shall not be necessary to reset the unit to the factory default configuration.
 3) Opening the encoder case or enclosure shall not be necessary to reset the unit to the factory default configuration.

f. LED Indicators
 Provide separate LED indicators on the exterior of the unit indicating:
 • Power
 • Network link status and activity

939.2.10 Video Decoder (All Types)

A. Video Decoder, Type B
 Video Decoder, Type B is a standalone decoder for a single RTP video stream, suitable for dedicated point-to-point analog video transport links, or viewing encoded video on a single monitor.

 1. General
 a. Chassis
 1) Furnish rack-mountable or shelf-mountable units.
 2) Rack-mountable units shall include integrated brackets for mounting in standard EIA 19-inch rack rack-mountings, and shall be no more than one (1) rack unit (1.75 inches (45 mm)) high and 13 in. (330 mm) deep.
3) Shelf-mountable units shall be no more than 3.5 in. (89 mm) (H) x 9 in. (229 mm) (W) x 11 in. (280 mm) (D), and shall include a perforated ventilated shelf for mounting in a standard EIA 19-inch rack, no more than 13 inches (330 mm) deep with mounting flanges of two (2) rack units (3.5 in. (89 mm)) and a minimum 20 lb (9 kg) load rating.

b. Labeling and Identification
 1) Provide external silk-screened markings for all connectors, indicators, switches, and replaceable components.
 2) Provide external labeling on the front or rear enclosure face for the manufacturer’s name, product, model and part numbers, revision numbers, serial number, and MAC address.

c. Environmental
 1) Operating temperature of -30 degrees F (-34 C) to 165 degrees F (74 C) with relative humidity between 10% to 90% non-condensing.
 2) Ventilation fans are not permitted.

d. Power
 1) Nominal power input voltage of 120 VAC.
 2) Maximum power consumption of 20 watts.
 3) If external power supplies are used, they shall fit into the allotted space for the decoder, and shall meet the same operating temperature and relative humidity requirements.

e. Connectors
 1) Video Output: BNC connector with gold-plated center socket.
 2) Network: RJ-45 jack
 3) Console: Female 9-pin D-subminiature (DE-9F) connector for RS-232 DCE (data circuit equipment) console interface compliant with TIA-574. If decoder housing has a connector interface other than DE-9F, furnish an adapter cable (no greater than 1m in length) with the required DE-9F connector for each decoder and labeled “CONSOLE”.
 4) Power: NEMA 5-15 plug

2. Interfaces
 a. Video Output: Color NTSC signal, 1 volt peak-to-peak.
 c. Ethernet
 1) IEEE 802.3/802.3u 10/100Mbps Ethernet.
 2) Auto-negotiation of speed/duplex operation according to IEEE 802.3ab.

3. Network Communication
 a. Provide a fully functional IP stack and interface that is both standards compliant and consistent with established practices. IP stack must include TCP (per RFC 793), UDP (per RFC 768), IGMPv2 (per RFC 2236), ARP (per RFC 826), ICMP (per RFC 792), SNMP (per RFC 1157), and unicast/broadcast/multicast support.
 b. Provide statically configurable IP address, subnet netmask, and default gateway.
 c. Provide support for managing the following network communication parameters via the Local Management functionality required herein.
 • IP Address
 • Subnet Mask
 • Default Gateway

4. Video Decoding and Streaming
a. For each video output, decode video streams that are compliant to all of the following ISO/IEC 14496-2:2004/Amd.2:2005 MPEG-4 Part 2 profiles:
 - Simple Profile Level 0 (QCIF)
 - Simple Profile Level 1 (QCIF)
 - Simple Profile Level 2 (CIF)
 - Simple Profile Level 3 (CIF)
 - Simple Profile Level 5 (D1)
 - Advanced Simple Profile Level 0 (QCIF)
 - Advanced Simple Profile Level 1 (QCIF)
 - Advanced Simple Profile Level 2 (CIF)
 - Advanced Simple Profile Level 3 (CIF)
 - Advanced Simple Profile Level 4 (CIF)
 - Advanced Simple Profile Level 5 (D1)

b. Support streaming via RTP (per RFC 3550) to configurable unicast or multicast address and port.

c. Maintain 4:3 frame aspect ratio.

d. Support for the following resolutions, scaled to the proper aspect ratio:
 - D1 (720x480)
 - 4CIF (704x480)
 - CIF (352x240)
 - QCIF (176x120, 176x112, 160x120, 160x112)

e. Support the following simultaneous capabilities on the decoder output:
 - 30 frames-per-second frame rate
 - I-to-P (group of pictures) ratio from 1:1 to 1:30
 - Up to 4Mbps encoding bit rate
 - Automatic adjustment to stream format changes
 - Switch between RTP streams on different addresses and port numbers and resynchronize with the new stream within 3 I-frames.

f. Upon loss of video stream, output an indication in the video image that the video stream was lost.

g. Any on-screen text or title overlay features shall be configurable to be fully disabled.

h. Provide maximum decoding latency of 300 milliseconds with minimal transmission jitter and no video image degradation or transmission interruptions.

i. Decoded video must remain synchronized with the RTP packet stream with no noticeable drift for an interval of at least one (1) hour. RTP packet stream is derived from a 90 KHz clock reference.

j. Provide support for managing the following video streaming parameters via the Remote Management functionality required herein.
 - Unicast or multicast stream selection
 - Target address (for multicast sources)
 - Target port

5. Management
 a. Local Management
 1) Provide a command-line interface on the console port.
2) Support configuration via the local management interface of the parameter groups detailed in the following sections:
 • Network Communication
 • Administrative Security

b. Remote Management

1) Configuration
 a) Support remote configuration using either the SNMP Agent required herein or a documented and programmatically parsible file accessible for upload and download via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.
 b) No manufacturer-sourced configuration utilities, applications, or drivers shall be required to configure the decoder.
 c) Support interactive remote management interface using one or more of the following:
 • Command-line interface via TELNET and/or SSH
 • Embedded HTTP server
 d) Support configuration of all settings in the following parameter groups via the remote management interface(s).
 • Video Decoding and Streaming
 • SNMP Agent
 • SNMP Traps

2) SNMP Agent
 a) Provide an SNMPv1 agent accessible on UDP port 161 over the network interface per RFC 1157.
 b) Support separate configurable read-only and read-write community strings.
 c) Provide the standard MIB-II objects per RFC 1213.
 d) Provide the following data in MIB-II object “sysDescr”:
 • Manufacturer name
 • Manufacturer model number
 • Manufacturer part number
 • Version identifiers for hardware and firmware components
 e) Furnish list of all industry standard MIBs that are supported.
 f) Furnish properly formatted MIB files detailing all vendor-specific objects supported. All MIB files should conform to RFC 1155 and RFC 1212.
 g) Provide support for managing the following SNMP Agent parameters via both the Local and Remote Management interfaces required herein.
 • Read-only and read-write community strings

3) SNMP Traps
 a) Provide support for transmitting SNMPv1 traps over the network interface to UDP port 162 on configured receivers per RFC 1157 and RFC 1215.
 b) Support a minimum of four (4) configurable trap receivers with corresponding IP addresses and community strings.
 c) Provide traps reporting changes in the state of the video input sync (i.e. video input sync lost, video input sync restored).
d) Furnish list of all industry standard traps that are supported.

e) Furnish properly formatted MIB files detailing all vendor-specific trap objects supported. All MIB files should conform to RFC 1155 and RFC 1212.

f) Provide support for managing the following SNMP Trap parameters via both the Local Management and Remote Management interfaces required herein.
 • Trap receiver IP addresses and corresponding community strings.

c. Firmware Updates
 1) Provide firmware update mechanism via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.
 2) No manufacturer-sourced firmware update utilities, applications, or drivers shall be required to perform firmware updates.
 3) Provide password protection for firmware update mechanism or support for enabling and disabling the mechanism if the protocol doesn't support authentication (i.e. embedded TFTP server).
 4) Provide support for managing the following firmware update parameters via both the Local Management and Remote Management interfaces required herein.
 • Enable/disable insecure firmware update mechanism

d. Administrative Security
 1) Provide administrative access control via a configurable password.
 2) Provide support for managing the following administrative security parameters via both the Local Management and Remote Management interfaces required herein.
 • Administrative password

e. Factory Reset
 1) Provide mechanism of resetting the device to a known and documented factory default configuration.
 2) Prior knowledge of the current administrative password or current network configuration shall not be necessary to reset the unit to the factory default configuration.
 3) Opening the decoder case or enclosure shall not be necessary to reset the unit to the factory default configuration.

f. LED Indicators
 Provide separate LED indicators on the exterior of the unit indicating:
 • Power
 • Video stream status (video stream detected or not detected)
 • Network link status and activity

B. Video Decoder, Type C

Video Decoder, Type C is a high density decoder unit to decode multiple RTP video streams and display them on analog video outputs, with one output per video stream, suitable for control center use.

1. General
 a. Chassis
 1) Furnish rack-mountable units.
 2) Rack-mountable units shall include integrated brackets for mounting in standard EIA 19-inch rack rack-mountings, and shall be no more than five (5) rack units (8.75 inches (223 mm)) high and 13 in. (330 mm) deep.
3) High density rack-mountable units are either self-contained, or a card/module-based chassis cage with individual decoders.

4) Furnish a high-density modular chassis cage when card/module-based decoder units are used.

5) High density rack-mountable units shall hold a minimum of twelve (12) individual decoders.

b. Labeling and Identification

1) Provide external silk-screened markings for all connectors, indicators, switches, and replaceable components.

2) Provide external labeling on the front or rear enclosure face for the manufacturer’s name, product, model and part numbers, revision numbers, serial number, and MAC address(es).

c. Environmental

1) Operating temperature of 32 degrees F (0 C) to 113 degrees F (45 C) with relative humidity between 20% to 80% non-condensing.

d. Power

1) Nominal power input voltage of 120 VAC.

2) If external power supplies are used, they shall fit into the allotted space for the high density unit, and shall meet the same operating temperature and relative humidity requirements.

3) High density unit shall be powered from a single power connection.

e. Connectors

1) Video Outputs: Multiple BNC connectors with gold-plated center sockets.

2) Network: Single or multiple network connection(s), RJ-45 jack(s)

3) Console: Single or multiple console ports using female 9-pin D-subminiature (DE-9F) connector for RS-232 DCE (data circuit equipment) console interface compliant with TIA-574. If encoder housing has a connector interface other than DE-9F, furnish an adapter cable (no greater than 1m in length) with the required DE-9F connector for each encoder and labeled “CONSOLE”.

4) Power: Single power connection, NEMA 5-15 plug

2. Interfaces

a. Video Outputs: 1 output for each video signal, color NTSC signal, 1 volt peak-to-peak.

c. Ethernet

1) IEEE 802.3/802.3u 10/100Mbps Ethernet.

2) Auto-negotiation of speed/duplex operation according to IEEE 802.3ab.

3. Network Communication

a. Provide a fully functional IP stack and interface, on a per decoder unit or per high density unit basis, that is both standards compliant and consistent with established practices. IP stack must include TCP (per RFC 793), UDP (per RFC 768), IGMPv2 (per RFC 2236), ARP (per RFC 826), ICMP (per RFC 792), SNMP (per RFC 1157), and unicast/broadcast/multicast support.

b. Provide statically configurable IP address, subnet netmask, and default gateway.

c. Provide support for managing the following network communication parameters via the Local Management functionality required herein.

- IP Address
- Subnet Mask
- Default Gateway
4. **Video Decoding and Streaming**
 a. For each video output, decode video streams that are compliant to all of the following ISO/IEC 14496-2:2004/Amd.2:2005 MPEG-4 Part 2 profiles:
 - Simple Profile Level 0 (QCIF)
 - Simple Profile Level 1 (QCIF)
 - Simple Profile Level 2 (CIF)
 - Simple Profile Level 3 (CIF)
 - Simple Profile Level 5 (D1)
 - Advanced Simple Profile Level 0 (QCIF)
 - Advanced Simple Profile Level 1 (QCIF)
 - Advanced Simple Profile Level 2 (CIF)
 - Advanced Simple Profile Level 3 (CIF)
 - Advanced Simple Profile Level 4 (CIF)
 - Advanced Simple Profile Level 5 (D1)
 b. Support RTP (per RFC 3550) stream decoding from configurable unicast port, or multicast address and port.
 c. Maintain 4:3 frame aspect ratio.
 d. Support for the following resolutions, scaled to the proper aspect ratio:
 - D1 (720x480)
 - 4CIF (704x480)
 - CIF (352x240)
 - QCIF (176x120, 176x112, 160x120, 160x112)
 e. Support the following simultaneous capabilities on all decoder outputs:
 - Up to 30 frames-per-second frame rate
 - I-to-P (group of pictures) ratio from 1:1 to 1:30
 - Up to 4Mbps encoding bit rate
 - Automatic adjustment to stream format changes
 - Switch between RTP streams on different addresses and port numbers and resynchronize with the new stream within 3 I-frames.
 f. Upon loss of video stream, output an indication in the video image that the video stream was lost.
 g. Any on-screen text or title overlay features shall be configurable to be fully disabled.
 h. Provide maximum decoding latency of 300 milliseconds with minimal transmission jitter and no video image degradation or transmission interruptions.
 i. Decoded video must remain synchronized with the RTP packet stream with no noticeable drift for an interval of at least one (1) hour. RTP packet stream is derived from a 90KHz clock reference.
 j. Provide support for managing the following video streaming parameters via the Remote Management functionality required herein.
 - Unicast or multicast stream selection
 - Target address (for multicast sources)
 - Target port
 k. Video parameters for each decoder shall be individually configurable.

5. **Management**
a. Local Management
 1) Provide a command-line interface on the console port.
 2) Support configuration via the local management interface of the parameter groups detailed in the following sections:
 - Network Communication
 - Administrative Security

b. Remote Management
 1) Configuration
 a) Support remote configuration using either the SNMP Agent required herein or a documented and programmatically parsable file accessible for upload and download via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.
 b) No manufacturer-sourced configuration utilities, applications, or drivers shall be required to configure the decoders.
 c) Support interactive remote management interface using one or more of the following:
 - Command-line interface via TELNET and/or SSH
 - Embedded HTTP server
 d) Support configuration of all settings in the following parameter groups via the remote management interface(s).
 - Video Decoding and Streaming
 - SNMP Agent
 - SNMP Traps
 2) SNMP Agent
 a) Provide an SNMPv1 agent accessible on UDP port 161 over the network interface per RFC 1157.
 b) Support separate configurable read-only and read-write community strings.
 c) Provide the standard MIB-II objects per RFC 1213.
 d) Provide the following data in MIB-II object “sysDescr”:
 - Manufacturer name
 - Manufacturer model number
 - Manufacturer part number
 - Version identifiers for hardware and firmware components
 e) Furnish list of all industry standard MIBs that are supported.
 f) Furnish properly formatted MIB files detailing all vendor-specific objects supported. All MIB files should conform to RFC 1155 and RFC 1212.
 g) Provide support for managing the following SNMP Agent parameters via both the Local and Remote Management interfaces required herein.
 - Read-only and read-write community strings
 3) SNMP Traps
 a) Provide support for transmitting SNMPv1 traps over the network interface to UDP port 162 on configured receivers per RFC 1157 and RFC 1215.
 b) Support a minimum of four (4) configurable trap receivers with corresponding IP addresses and community strings.
c) Provide traps reporting changes in the state of the video input sync (i.e. video input sync lost, video input sync restored).

d) Furnish list of all industry standard traps that are supported.

e) Furnish properly formatted MIB files detailing all vendor-specific trap objects supported. All MIB files should conform to RFC 1155 and RFC 1212.

f) Provide support for managing the following SNMP Trap parameters via both the Local Management and Remote Management interfaces required herein.
 - Trap receiver IP addresses and corresponding community strings.

c. Firmware Updates

1) Provide firmware update mechanism via embedded FTP or TFTP client, TFTP server, SSH/SCP server, or HTTP server.

2) No manufacturer-sourced firmware update utilities, applications, or drivers shall be required to perform firmware updates.

3) Provide password protection for firmware update mechanism or support for enabling and disabling the mechanism if the protocol doesn't support authentication (i.e. embedded TFTP server).

4) Provide support for managing the following firmware update parameters via both the Local Management and Remote Management interfaces required herein.
 - Enable/disable insecure firmware update mechanism

d. Administrative Security

1) Provide administrative access control via a configurable password.

2) Provide support for managing the following administrative security parameters via both the Local Management and Remote Management interfaces required herein.
 - Administrative password

e. Factory Reset

1) Provide mechanism of resetting the device to a known and documented factory default configuration.

2) Prior knowledge of the current administrative password or current network configuration shall not be necessary to reset the unit to the factory default configuration.

3) Opening the encoder case or enclosure shall not be necessary to reset the unit to the factory default configuration.

f. LED Indicators

Provide separate LED indicators on the exterior of the unit indicating:
 - Power
 - Video stream status (video stream detected or not detected)
 - Network link status and activity

939.2.11 Equipment Rack

Provide equipment racks as applicable and required within the equipment cabinets as specified herein.

939.2.12 Equipment Frame

Provide equipment frames meeting the following requirements:
 - Overall dimensions of approximately 84” (210 mm) high by 20.25” (514.4 mm) wide and meeting EIA standards for mounting 19” (480 mm) equipment.
• Equipment frame upright channels fabricated from 6061-T6 aluminum extrusions with minimum depth of 5.75" (146 mm), flange thickness of 0.19" (4.8 mm) and web thickness of 0.16" (4.1 mm).

• Fully assembled frames, with all mounting and accessories as required herein, that comply with Telcordia GR-63-CORE Network Equipment Building System Seismic Zone Rating 4.

• Equipment frame upright channels manufactured with threaded #12-24 mounting holes of entire channel length front and rear with standard EIA spacing. Do not use non-threaded clearance holes with separate “clip nuts”.

• Provide front and rear mounting base angles fabricated from 6061-T6 aluminum extrusions with minimum 6” (150 mm) footing extension. Secure base angles to floor with a minimum of four 0.625 threaded expansion anchor bolts with steel or brass expansion sleeves. Do not use any other type of anchor.

• Provide front and rear top angles fabricated from 6061-T6 aluminum extrusions with minimum 1.5” (38 mm) by 2.0” (51 mm) web.

• Provide a front-mounted lower guard-rail fabricated from minimum 0.25” (6.4 mm) by 2.0” (51 mm) bar stock with 6.0” (150 mm) to 7.0” (180 mm) standoff from the upright channel.

Provide vertical cable management ducts in between all equipment frames and at each end of a row of equipment frames. Provide a vertical cable management duct on each side of a single equipment frame. Use vertical cable management ducts that reach from the bottom of the equipment frame fully to the top of the frame and that connect with the cable (fiber optic jumper) management ducts installed in the hub’s cable runways. Use ducts that are double-sided, opening to the front and rear of the equipment frames, with each side having the minimum inside dimensions of 3.5” (89 mm) wide by 6.25” (159 mm) deep. Provide plastic or rubber grommeted openings, between the two sides of the duct, with a minimum opening of 2” (50 mm) and a maximum spacing of 12” (300 mm). On the front-opening of each side of the duct, provide positive cable restraint through opening latches or removable covers.

• For all assembly or fastening hardware use zinc-plated steel, nickel-plated brass, or stainless steel unless otherwise specified.

• Use a black color finish on upright channels, top and base angles, and lower guard rails.

• With each equipment frame provide a minimum of 50 #12-24 x 0.75” (19 mm) (minimum) cuphead phillips-slot mounting screws with pilot points and nylon washers. Use zinc-plated steel, nickel-plated brass, or stainless steel screws. Provide more screws if necessary to properly mount all equipment as shown in the Plans.

• Provide a rear-mounted, 20-amp, 10-receptacle power strip secured with a minimum of four rigid standoff brackets. Do not use threaded bolts or rods as standoff brackets.

• Provide a sliding drawer that is an aluminum storage compartment mounted in each frame with the approximate following dimensions: 1.75 in (44.4 mm) (H) x 16 in (410 mm) (W) x 14 in (360 mm) (D). Ensure the compartment has telescoping drawer guides to allow full extension from the equipment frame upright channels. When extended, the storage compartment shall open to provide storage space for documentation and other miscellaneous items. The sliding drawer/storage compartment shall be of adequate construction to support a weight of 25 lb (11 kg) when extended. The top of the storage compartment shall have a non-slip plastic laminate attached which covers a minimum of 90% of the surface area of the top.

• Perform all assembly and installation in accordance with the equipment frame manufacturer’s recommendations.

939.2.13 Dial-up Modem

As required, furnish and ensure that the dial-up modems are stand-alone modems that support programmable communication rates of 0-56,000 bps and provide fully automatic communications rate selection. Provide modems meeting the following minimum specifications:

• Modulation: V.34, V.90, V.32

• Protocol: Asynchronous and synchronous supported

• Error control: V.42
• Hayes standard AT command set
• Automatic speed buffering
• Flow control
• (2) Modular RJ-11 telephone line connectors
• Modular DB-25 RS-232C serial interface connector
• LED indicators for TX, RX, RTS, DCD, PWR

A. Equipment Cabinet Assembly

Ensure that all cabinets exhibit a smooth, uniform natural aluminum finish.

All bolts, nuts, washers, screws, hinges and hinge pins shall be stainless steel.

Manufacture the exterior mounting bracket and fixtures of aluminum or galvanized steel, and manufacture all fastening and mounting hardware of stainless steel. Verify that the bottom of the pole-mounted cabinet is fully enclosed. Where base-mounting of equipment cabinets is specified, the cabinet bottom shall be open.

Verify that all electrical cables between the cabinet and the device are UL-listed tray cable with #18 AWG 16-strand copper conductors with PVC/nylon insulation and a UV-resistant PVC outer jacket rated for 600V, 190 F (90 C) dry, 170 F (75 C) wet and wet/dry direct burial use. Conductor color-coding shall be in accordance with ICEA Table K.2/Method 1.

1. General
 a. Standard Cabinet Housing
 1) General Requirements: Unless otherwise specified, furnish cabinet housings that conform to the Cabinet Housing Details as defined in Chapter 6, Sections 2, 3 and 5 and the Cabinet Housing Details of the Caltrans Traffic Signal Control Equipment Specification, latest version (TSCES). The police panel and associated wiring circuits are not required as part of this cabinet assembly. All cabinets shall have hooks, welded to the inside of the front cabinet door, for hanging the plastic documentation pouch.
 2) Unless otherwise specified in these Special Provisions or in the Plans, configure all equipment cabinet assemblies for pole mounting. The holes for pole mounting shall be properly reinforced with metal plates of adequate size and strength welded longitudinally across the inside depth of the cabinet. Where base-mounting of equipment cabinets is specified, make the cabinet bottom open and provide an approved base mounting adapter, in accordance with the Department’s Standard Specification for Traffic Signal Equipment.
 b. Type A Standard Cabinet Housing – Not Applicable
 c. Type B Standard Cabinet Housing – Not Applicable
 d. Type C Standard Cabinet Housing:
 1) The Type C cabinet housing (see Detail Drawings) is a standard Model 332 housing with approximate exterior dimensions of 64 in. (1.6 m) (H) x 24 in. (0.61 m) (W) x 30 in. (0.76 m) (D).
 2) Equip all Type C cabinet housings with the standard EIA 19-inch rack cabinet cage as described in Section 3 of the Caltrans specification. Install side panels within the two sides of the cabinet cage as shown on the Detail Drawings in this section. Each side panel shall be fabricated from 5052 sheet aluminum alloy with a minimum thickness of 0.125 in (3.175 mm).
 3) Equip Type C cabinet housings with a cabinet sliding drawer. Follow the drawer specifications given in Subsection 939.2.B.5.
 4) Provide a ground fault interrupt 15A duplex receptacle (NEMA 5-15R) in the cabinet as an accessory outlet. Install two (2) non-ground fault protected 15A equipment outlet strips, each with ten (10) receptacles. Mount the strip outlets vertically near the top of the cabinet as shown in the Detail Drawings in this section.
 e. Type D Standard Cabinet Housing:
1) The Type D cabinet housing shall be a standard Model 336 stretch (336S) housing with approximate exterior dimensions of 46 in. (1.2 m) (H) x 24 in. (0.61 m) (W) x 23 in. (0.58 m) (D). The minimum door opening dimensions shall be 40.5 in. (1.03 m) (H) x 22 in. (0.56 m) (W).

2) Equip all Type D cabinet housings with the standard EIA 19-inch rack cabinet cage as described in Section 3 of the Caltrans specifications and mounting panels as shown on the Detail Drawings in this section. The

3) minimum clear vertical inside dimension of the rack for equipment mounting shall be 39.5 in. (1.00 m). Install side panels within the two sides of the cabinet cage. Use side panels fabricated from 5052 sheet aluminum alloy with a minimum thickness of 0.125 in (3.175 mm).

4) Equip the Type D cabinet housing with a cabinet-sliding drawer. Follow the drawer specifications given in Subsection 939.2.B.5.

5) Provide a ground fault interrupt 15A duplex receptacle (NEMA 5-15R) in the cabinet as an accessory outlet. Provide rack mounted power strip outlets near the top of the cabinet as shown in the Detail Drawings in this section. The power strip shall incorporate eight (8) NEMA 5-15R receptacles. The power strip receptacle shall face the back of the cabinet and shall be recessed within the cabinet rack to provide a minimum spacing of three (3) inches between the outlet’s face and the cabinet door when the door is closed.

f. Type F Standard Cabinet Housing:

1) The Type F cabinet housing shall be a standard ITS Cabinet Housing #3 with approximate exterior dimensions of 67 in. (1.7 m) (H) x 44 in. (1.2 m) (W) x 26 in. (0.66 m) (D) as specified in the Caltrans Transportation Electrical Equipment Specifications, latest version and all addenda (TEES). The minimum door opening dimensions shall be 56 in. (1.4 m) (H) x 20 in. (0.51 m) (W).

2) Equip all Type F cabinet housings with two standard EIA 19-inch rack cabinet cages as described in the Caltrans TEES. Equip all Type F cabinet housing with four (4) side mounting panels in the rack cabinet cages; side mounting panels shall mount from inside the rack cabinet cage only. The minimum clear vertical inside dimension of the rack for equipment mounting shall be 54.5 in. (1.4 m). Use side panels fabricated from 5052 sheet aluminum alloy with a minimum thickness of 0.125 in (3.175 mm) with minimum dimensions of 50 in (1.3 m) (H) x 21 in. (0.53 m) (W).

3) Provide a minimum of four (4) wiring pass-through holes on the inside mounting panels to permit patch cords to pass between the two cabinet sides. Each pass-through hole shall be 5 in. (127 mm) in diameter and shall be fully grommeted for patch cord protection, with the holes positioned with two (2) in the cabinet front and two (2) in the cabinet rear and aligning horizontally between the two side panels.

4) Provide a minimum of 16 plastic- or rubber-coated J-hooks or D-rings, minimum 1 in. (25 mm) depth and height, on the inside rails of the rack cabinet cages, to organize patch cords passing between the two cabinet sides. Install the J-hooks in horizontally-aligned pairs on the inside rails, with four (4) pairs in the cabinet front and four (4) pairs in the cabinet rear.

5) Equip the Type F cabinet housing with two cabinet-sliding drawers. Follow the drawer specifications given in Subsection 939.2.B.5.

6) Provide a ground fault interrupt 15A duplex receptacle (NEMA 5-15R) in the cabinet as an accessory outlet. Provide rack mounted power strip outlets near the top of the cabinet as shown in the Detail Drawings in this section. The power strip shall incorporate eight (8) NEMA 5-15R receptacles. The power strip receptacle shall face the back of the cabinet and shall be recessed within the cabinet rack to provide a minimum spacing of 3 in. (76 mm) between the outlet’s face and the cabinet door when the door is closed.

2. Internal Cabinet Assembly Components

a. Unless otherwise specified in the Plans or approved by the Engineer, construct all cabinet assemblies in conformance with this Subsection 939.2.B including all Detail Drawings, all applicable provisions of the Georgia DOT Standard Specifications for Traffic Signal Equipment, and applicable provisions of the Caltrans TSCES or TEES. Do not include with the cabinet assembly the power supply assembly, power distribution assembly, input file, output file, monitor unit assembly, field terminal hookup blocks, modular/serial/control bus, AC/DC power assembly and extension, and related wiring assemblies as described in the Caltrans TSCES or TEES.
b. Provide a plastic documentation pouch to store the cabinet and equipment documentation. Use a pouch that is side-opening, resealable, opaque, and of a heavy-duty plastic material. Use a pouch that has metal or hard-plastic reinforced holes for hanging from hooks included on the cabinet door. The pouch shall be of the size and strength to easily hold all wiring diagrams, equipment documentation and the maintenance logbook.

3. Wiring, Conductors and Terminal Blocks

All 120VAC service entrance, power distribution, grounding and protection shall be provided by components mounted on 35mm DIN standard rails. Devices include, terminal blocks, circuit breakers and surge protection devices. All DIN rail mounted components will be certified to meet or exceed UL-94, UL-467, UL-489, UL-1449, IEC-947-7-1, IEC-60947-2, CSA-22.2 or as specified in the Details or special provisions.

DIN rail mounted power distribution devices supplied shall be configured as shown in the Details and shall meet or exceed the specifications and certifications listed below.

a. Mounting Rail

Use DIN rail fabricated from galvanized passivated steel with prepunched holes for mounting and certified to meet EN 50022, EN 60715 and DIN 46277-3. DIN mounting rail shall be 35mm wide, 7.5 mm high, 1 mm thick, perforated for flexible mounting and cut to length as show in the Details. Rail will cut between mounting holes to allow mounting at both ends of the rail section. Rail shall be provided burr free with no sharp edges or deformation from the standard profile. The portion of the rail at the mounting bolt holes shall be cleaned of any coating to expose the underlying steel. The area under the bolt hole and the aluminum power panel mounting point shall be covered with an anti corrosion paste to provide a solid and long lasting electrical connection between the DIN Rail and the power panel. DIN Rail shall be attached to the power panel by nut and bolt with star washers to provide a low resistance electrical connection between the rail and the power panel.

b. Terminal Blocks

Use DIN terminal blocks with voltage and current ratings greater than the voltage and current ratings of the wires that are terminated on the blocks. Metallic terminal block connection hardware and components shall be non-ferrous copper or nickel/tin-plated copper alloy or equivalent. All terminal blocks and wire shall be supplied in the colors listed below (see Detail Drawings).

- Black – Line
- White – Neutral
- Green or Green/Yellow – Ground

c. Service Entrance Terminal Blocks

Make the terminal block for the 120VAC cabinet service entrance (SE) a 10 mm single level screw type device. The terminal block shall accommodate #20 - 6 AWG wiring and shall be provided in colors as specified herein. The Ground terminal shall be the same size and pitch as the power terminals and shall provide positive electrical and mechanical connection to the mounting rail. Ground terminals may be provided in the color green or the international green and yellow style. Provide the quantity of terminals as shown in the Details.

d. Distribution Terminal Blocks

Terminal blocks for distribution of 120 VAC (TB2) and ground located on the protected side of the power distribution assembly shall be a 6 mm single level screw type device. The terminal block shall accommodate #24-8 AWG wiring and shall be provided in colors as specified herein. The Ground terminal shall be the same size and pitch as the power terminals and shall provide positive electrical and mechanical connection to the mounting rail. Ground terminals may be provided in the color green or the international green and yellow style. Provide the quantity of terminals as shown in the Details.

e. Cross Connection Bridge

Cross connection bridge strips shall be provided to connect a number of terminal blocks to create the specified power distribution design. The bridge strips shall match the pitch and construction of the terminals to be connected and shall be certified by the terminal block manufacturer to be compatible with the connected terminal blocks. Cross connection bridge strips shall be fully insulated to prevent operator contact. Connected terminal blocks of any number shall be connected by a single cross connection bridge strip.

f. Circuit Breaker
Provide circuit breakers as shown in the Detail Drawings in this section. Use only circuit breakers that are UL-489 and CSA 22.2 approved and plainly marked with trip, frame sizes and ampere rating. All circuit breakers shall be quick-make, quick-break on either automatic or manual operation. Ensure that contacts are silver alloy and enclosed in an arc-quenching chamber. Overload tripping shall not be influenced by an ambient air temperature range from -18 degrees C to 50 degrees C. Minimum interrupting capacity shall be 5,000 amperes RMS. Use only circuit breakers that are 35 mm DIN rail mounted.

g. End Brackets
Provide screw-clamped end brackets to positively lock all DIN rail mounted devices to the rail.

h. Spacer
Spacers or dividers shall be placed between terminal blocks and other components as shown in the Details for visual separation. Spacers shall snap on to DIN rail be approximately 5-18 mm thick and match the size of the terminals they separate.

i. Safety Cover
A safety covers shall be provided on terminal blocks to prevent contact with exposed conductors or any metallic components. This cover will provide electrical and visual separation between terminal blocks and other rail mounted devices. Covers shall be approximately 2mm thick and sized to match the terminal blocks they protect or separate.

j. Surge Suppressor
Provide a DIN rail mounted TVSS (Transient Voltage Surge Suppressor) with RFI/EMI filtering for AC power service to the cabinet housing. The TVSS shall provide protection from all conductors to ground and meet or exceed the following requirements and levels of protection.

- Nominal operating Voltage 120 V
- Max. Continuous Operating Voltage 150V
- Max. Surge Current Rating 20 kA
- Nominal Surge Current Rating for 8x20µs surge 20 kA
- Internal Thermal Fuses
- Failure/ replacement indication
- Operating Temperature: -40C to 80C
- Meet UL1449 2nd Ed.,
- VDE0675-6, CSA-22.2, and CE marked

k. Wiring
Use a minimum #12 AWG grounding of each surge suppression device, or larger if recommended by the surge suppression device manufacturer or indicated in the Details. Use insulated green wire and connect the ground wire directly to the ground terminals. Do not “daisy chain” with the grounding wires of other devices including other surge suppressors. Terminate all ground wiring between cabinet surge suppressor devices on the DIN rail mounted ground terminal blocks. Dress and route grounding wires separately from all other cabinet wiring. Install grounding wires with the absolute minimum length possible between the suppressor and the ground terminals. Label all surge suppressors with silk-screened lettering on the mounting panel. Use minimum #12 AWG insulated THHN-THWN conductors between the surge suppression device and the power distribution terminal.

4. Sliding Drawer
Install drawer that is an aluminum storage compartment mounted in the rack assembly with the approximate following dimensions: 1.75 in (44.4 mm) (H) x 16 in (410 mm) (W) x 14 in (360 mm) (D). Ensure the compartment has telescoping drawer guides to allow full extension from the rack assembly. When extended, the storage compartment shall open to provide storage space for cabinet documentation and other miscellaneous items. Install a storage compartment that is of adequate construction to support a weight of 25 lb (11 kg) when extended. The top of the storage compartment shall have a non-slip plastic laminate attached which covers a minimum of 90% of the surface area of the top.
939.3 Construction Requirements

939.3.01 Personnel

Have trained personnel available for troubleshooting and problem solving until all equipment is fully functional and ready to start the acceptance phase.

939.3.02 Equipment - Not applicable

939.3.03 Preparation

A. Network Equipment Programming

Perform network equipment programming and testing in accordance with the Network Equipment Programming Procedure below and as directed by the Engineer. Network equipment is defined as any traffic control and monitoring equipment with an Ethernet interface and includes equipment from the following GDOT Specifications and Special Provisions:

- Section 631—Changeable Message Signs
- Section 925—Traffic Signal Equipment
- Section 937—Video Detection System
- Section 938—Detection
- Section 939—Communications & Electronic Equipment

The Contractor is responsible for all steps, work, and activities in the procedure below except when Department responsibility is expressly indicated. At all times, the Contractor is responsible for all equipment and materials, including while being programmed by the Department, and including operation, warranties, and technical support.

Coordinate all aspects of the procedure through the Engineer.

Perform all network equipment programming for a complete project at one time. The Contractor may request in writing for a staged equipment programming; provide a plan with schedule for the complete project that details all of the proposed stages and identifies all network equipment and field sites for each stage. If approved by the Department, the procedure below applies independently and fully to each individual stage. Field sites will always be programmed concurrently for all of the equipment at that site.

Materials submittal reviews for all network equipment, and related equipment, shall be successfully completed prior to beginning the Network Equipment Programming Procedure.

Step 1

Request in writing for GDOT to prepare and provide the basic equipment programming data. The request shall clearly identify the project. If the Contractor desires a staged equipment programming, that request must be identified at this time and the staging plan must be submitted.

Step 2

Once the Contractor’s request is complete, the Department will provide the basic equipment programming data within 45 days from the Department’s acceptance of the Contractor’s request. Basic equipment programming data will include the IP address, subnet, and gateway for each network device. The programming data will be provided in spreadsheet form.

Step 3

Complete installation of all field equipment, including but not limited to support poles, equipment cabinets, power service, field and network devices, and fiber communications infrastructure. Complete all basic equipment programming.
Furnish Network Switch GBICs to GDOT. Furnish all fiber patch cords in the hub(s) but make no connections to the Network Switch. Provide in spreadsheet form the equipment model numbers, serial numbers, MAC addresses, and firmware revision numbers for each network equipment device in its installed location. Complete all field testing required prior to the Interim Field Subnet (IFS) test, and conduct an IFS test dry-run.

Step 4
Request in writing to begin the IFS test a minimum of 30 days in advance of the desired start date. Conduct IFS test in the presence of the Engineer. If the IFS test fails, identify the defects and make corrections, provide a written report on the diagnosis and corrections made, and request in writing an IFS retest a minimum of 14 days in advance of the desired start date.

Step 5
Upon successful and accepted completion of IFS testing, the Department will have 45 days to complete all network and system programming and NaviGAtor integration of the field devices and hub equipment. Continue with all remaining field construction that has no impact on any equipment or communications infrastructure associated with the network programming. Any disruption of the equipment or communications infrastructure shall result in stopping the 45 day period for Department programming.

Step 6
The Department will notify the Contractor when network programming is successfully completed, at which time the Network Equipment Programming Procedure will be considered completed. Continue with all remaining project activities, including remaining acceptance testing.

939.3.04 Fabrication

A. Cabinet Equipment and Components
Install in Types A, B, C, and D cabinet assembly one (1) fluorescent lighting fixture mounted inside the top front portion of the cabinet. Include with the fixture a cool white lamp, covered and operated by a normal power factor UL listed ballast. Install an RC network noise suppression filter in the light circuit. Install door actuated switches installed to turn on the cabinet light when either door is opened.

Install in Type F cabinet assembly four (4) fluorescent lighting fixtures mounted inside the top portions of the each cabinet side. Include with the fixture a cool white lamp, covered and operated by a normal power factor UL listed ballast. Install an RC network noise suppression filter in the light circuit. Install door actuated switches, front and rear of each door, installed to turn on all cabinet lights when any door is opened.

B. Cabinet Wiring, Conductors, and Terminal Blocks
Use two conductors per DIN terminal block (one conductor per terminal. Wire shall be stripped no longer than is necessary to provide a solid connection to the terminal block. No un-insulated wire shall be exposed at the terminal block. Number all terminal blocks, terminal strips, circuit breakers and have each item and each terminal position numbered and named according to function as shown in the “quoted labels” in the Detail Drawings. Label terminal blocks, terminal strips, and circuit breakers with silk-screened lettering on the mounting panel.

939.3.05 Construction

A. Equipment
1. Installation
 a. Install all equipment in new and/or existing equipment racks and equipment frames in accordance with the equipment manufacturer’s recommendations, including mounting, interconnection wiring, and electrical service. Furnish and install all mounting hardware and incidental materials, including fasteners and auxiliary supporting frames/brackets, as recommended by the manufacturer. Furnish and install all miscellaneous hardware, materials, wiring/cabling, configuration, and any other incidental items necessary for fully operational components and subsystems shown in the Contract Documents and Section 940 of the Special Provisions, except when specifically identified as existing or as work to be performed by the Department.
 b. Work in this project may require access to various Department buildings and Hubs requiring coordination of all work activities in these locations with the Engineer before access is needed. Work in this project requires system configuration tasks to be performed by the Department before some Contractor-installed items can be
brought online and completely system tested. Coordinate all work activities needing system configuration with the Engineer a minimum of 14 days prior to any testing.

c. Install all Hub and control center equipment in the presence of the Engineer. Locate new equipment in new or existing equipment racks or equipment frames as shown in the Plans.

d. Provide proper electrical service, including grounding and current rating, in the equipment racks and equipment frames for all hardware installed under this project. This requirement includes existing and new equipment racks and equipment frames. Obtain Engineer approval prior to installation of all electrical service for hardware in control centers. Furnish and install additional power outlet strips in new and existing equipment racks and equipment frames if needed for the new equipment.

e. For any equipment that is not rack mountable with “rack ears”, provide perforated shelves and secure all shelf-mounted equipment with rack mounting hardware.

f. Label all wiring and cabling, including building entrance cables, jumper and patch cords, and power supply cables, using cable identification numbers as shown in the Plans or provided by the Engineer. Apply cable labels at each end and in the center of the cable. Cable labels shall consist of permanent ink printed or legibly written on self-laminating and over-wrapping label material.

g. Protect cable ends at all times with acceptable end caps. Never subject any coaxial cable to a bend radius of less than six (6) inches. Provide grommets, guides and/or strain relief material where necessary to avoid abrasion of or excess tension on wire and cable.

2. Serial Data Terminal Server

For Hubs, install the Serial Data Terminal Servers, 16 Port, in equipment frames as shown in the Plans and in accordance with the Manufacturer’s recommendations. For equipment cabinets and as required, install the Serial Data Terminal Servers, Type B, as shown in the Plans and in accordance with the Manufacturer’s recommendations. Furnish and install all interconnection wiring and power service connections.

3. Patch Cords

a. General Requirements:

1) Use patch cords only within control center buildings, communication Hubs, and equipment cabinets.

2) Label all patch cords using cable identification numbers as shown in the Plans or provided by the Engineer. Apply cable labels at each end and in the center of the cable. Use printer-generated adhesive overlapping cable labels.

3) Neatly route, dress and secure patch cords in the equipment racks or frames and at both ends. Use all available cable management devices and/or trays. Route patch cords only vertically on the sides of the equipment racks and frames or horizontally across the bottom or top of the racks and frames; no diagonal routing is permitted. Follow all manufacturer’s recommendations including bend radius requirements during all patch cord installation.

b. Fiber Optic Patch Cords: Furnish and install fiber optic patch cords in accordance with Section 935 and this section.

c. Coaxial Video Patch Cords: Where an equipment or termination facility has a connector other than BNC (such as an RCA), furnish and install a BNC adapter to connect the patch cord to the equipment or termination facility.

d. Data Patch Cords: Use data patch cords to connect all local area network and RS-standard (e.g., RS-232, RS-422/485) serial data termination facilities and equipment.

1) Where an equipment or termination facility has a connector other than an RJ45 outlet (such as a “D-shell” connector), furnish and install RJ45 adapters between the connectors and the network/data patch cords as approved by the Department. For any type of RJ45 adapter, provide the proper pin-out of the adapter as part of the documentation.

e. Network Switch / Field Switch Patch Cables: Furnish and install Category-6 unshielded twisted pair (UTP)/shielded twisted pair (STP) patch cables that comply with EIA/TIA-568-A standards for all network to device interconnects (device to switch).
f. Voice/Telephone Patch Cords: Use voice/telephone patch cords to connect all voice or telephone communications facilities and equipment. Furnish and install the voice/telephone patch cords with the necessary pair sizing and connector for the equipment being connected.

4. Network Switch, Layer 3 Gig-E

For Hubs, furnish and install Network Switches, Layer 3 GigE that are compatible with the existing NaviGAtor Ethernet network as shown in the Plans, as applicable. The existing network consists of Nortel Networks 8600 Layer 3 GigE switches.

Furnish and install the network switch and all fiber optic jumper cabling necessary to connect to the fiber optic cable FDC as shown in the Plans.

5. Hub Uninterruptible Power Supply

Furnish and install a dedicated electrical service branch circuit from the Hub main service panel for the UPS system. Ensure that the UPS system branch circuit is in accordance with all recommendation of the UPS manufacturer, including the provision of a locking plug/receptacle connection. Make all electrical conduit and fittings rigid EMT or approved equivalent. Locate the branch circuit receptacle as close as possible to the UPS mounting position to minimize the UPS input line cord and to minimize tripping hazards.

Configure the electrical service inputs for all network switches, serial data terminal servers, video encoders/decoders, and video switches to be supplied by the UPS. Furnish and install line cords, power strips, and all incidental materials to configure the UPS service to the above equipment.

B. Communications Subsystem

1. General

a. Use Network Switches, Layer 3 Gig-E, Field Switches, Serial Data Terminal Servers, and Video Encoders/Decoders, as necessary or required to establish:

 1) For Traffic Signals, digital data communications between local controllers and system masters and to and from Hubs and control centers
 2) For Ramp Meters, digital data communications to and from equipment cabinets/Hubs/control centers
 3) Digital camera video and control data communications to and from equipment cabinets/Hubs/control centers
 4) Digital CMS control data communications to and from equipment cabinets/Hubs/control centers
 5) Digital detector data communications to and from equipment cabinets/Hubs/control centers
 6) Digital VDS processor control data communications to and from equipment cabinets/Hubs/control centers

b. Furnish and install Network Switches, Layer 3 Gig-E, Field Switches, Serial Data Terminal Servers, and Video Encoders/Decoders, as necessary or required as specified in the Plans to ensure proper communications.

2. Installation Requirements

Install all communications equipment and materials necessary for a complete communications path from the field site to the control center or communications Hub as shown in the Plans. Furnish and install all mounting and interconnection materials, including but not limited to card cages, mounting panels and rack hardware, fiber, patch/jumper cables, and power supply cables. Mount card cages and mounting panels as shown in the Plans and Detail Drawings in this section. Furnish and install the type and quantity of equipment shown in the Plans. Where the Plans show that new Field Switches, Video Encoders, VDS System Processors, Modems, and/or other devices are to be placed in existing cabinet space, furnish and install compatible mounting hardware, as required.

Label all wiring and cabling, including entrance cables, jumper and patch cords, and power supply cables. Cable labels shall consist of permanent ink printed or legibly written on self-laminating and over-wrapping label material.

a. Equipment Cabinet Mounting: All field equipment shall be mounted in a manner as to not restrict the replacement of other components in the cabinet housing.

b. Hub/Control Center Mounting: Where data is transmitted to a receiving end such as a Hub, TCC or TMC, permanently mount the equipment as required within an equipment rack, frame.

3. Radar Dial-up Modem
Furnish and install all cabling required to connect the radar dial-up modems to the telephone lines and the radar workstation.

4. CMS Dial-up Modem

Furnish and install all cabling required to connect the CMS dial-up modems to the telephone lines and the CMS workstation.

C. Equipment Cabinet Assembly

1. General Requirements

Furnish and install the equipment cabinet assembly to include all devices/components, assembly, wiring and materials required in this Subsection 939.3.05.C and in Subsection 939.2.B.

The equipment cabinet assembly, as described below, shall conform to all applicable sections of the Caltrans specifications and Georgia DOT Standard Specifications.

2. Classification of Types

Furnish and install equipment cabinet assemblies as called for in the Plans in accordance with the following requirements for each type.

a. Type A Cabinet – Not Applicable.

b. Type B Cabinet – Not Applicable.

c. Type C Cabinet: Furnish and install a Type C Cabinet that conforms with all materials and installation requirements of this Subsection 939.3.05.C and Subsection 939.2.B using a Type C Standard Cabinet Housing (see Detail Drawing in this section).

d. Type D Cabinet: Furnish and install a Type D cabinet assembly that conforms with all materials and installation requirements of this Subsection 939.3.05.C and Subsection 939.2.B using a Type D Standard Cabinet Housing (see Detail Drawing in this section).

e. Type F Cabinet: Furnish and install a Type F cabinet assembly that conforms with all materials and installation requirements of this Subsection 939.3.05.C and Subsection 939.2.B using a Type F Standard Cabinet Housing (see Detail Drawing in this section).

3. Identification and Documentation

Include the manufacturer’s name only on the inside of the front cabinet door along with the cabinet model number, serial number, schematic wiring diagram number, and month/year of manufacture. Provide this information on a waterproof, permanently affixed label.

Identify all components of the cabinet assembly, which are mounted on panels. Make identification on the panels with permanent silk-screen or other printed labels. These components include but are not limited to terminal blocks (with all positions numbered and labeled), panel and socket mounted surge suppressors, circuit breakers, accessory and equipment outlets, and communications transmitters/transceivers.

Provide complete documentation with each cabinet. Identify all cabinet documentation, including the maintenance logbook, by field site name and system ID. Make all cabinet documentation (except that documentation contained in the maintenance logbook below) on ledger size non-fading xerographic black-on-white 20# or greater bond paper. Supply four (4) sets of schematic wiring diagrams with complete parts lists with each cabinet. Draft the diagrams in neat, workmanlike manner. The diagrams shall be completely legible at the specified paper sizes and be non-proprietary. Identify in the diagrams all circuits in a manner as to be readily interpreted. Include in the diagrams a cabinet drawing showing the equipment layout in a front and rear elevation view and front views of each of the side panels. Label all equipment on the drawings with the same identifiers as labeled on the panels themselves. Identify all cabinet electrical components and equipment and the ventilation filter on parts lists on the wiring diagrams or in the maintenance logbook. The parts lists shall include manufacturer and complete model number. Store the diagrams in the documentation pouch on the door.

Include in the cabinet documentation an equipment list and maintenance logbook. This maintenance logbook shall contain a list of all major removable equipment items in the cabinet and all major items installed outside of the cabinet including but not limited to Field Switch, Video Encoders, VDS System Processors, Modems, CCR, camera, lens, housing, and pan/tilt unit, along with manufacturer name, model, and serial numbers. Include in the equipment list in the logbook spaces to enter the communications address, system identifier, and other site-specific configuration information. The maintenance logbook shall include a minimum of five (5) blank forms for
documenting site visits, including the date, time, technician name, and work performed. The maintenance logbook pages shall be standard letter size 3-hole 20# or greater white paper bound in a plastic report cover.

4. Internal Cabinet Assembly Components and Wiring
 a. Cabinet Assembly Installation
 1) Install the cabinet assembly as shown in the Plans. Provide the cabinet assembly with a grounding system in accordance with the Department’s Standard Specification for Traffic Signal Equipment grounding. Measure the resistance to ground in the presence of the Engineer. Resistance to the ground cannot exceed ten (10) ohms. Do not splice the ground conductor between the cabinet grounding terminal and the ground rod. Isolate and insulate the ground conductor from any utility grounding equipment. Completely isolate the cabinet assembly grounding system from any other grounding system, including the support pole grounding system, such that there is no electrical bond between any equipment (cabinet, conduit, camera support bracket, etc.) and any other grounding system. In the case of steel support poles, it is not necessary to insulate equipment strapped to the pole.
 2) Mount all pole mounted cabinet assemblies to the support pole at a height of 4 ft +/- 3 in (1.2 m +/- 76 mm) from ground level to the centerline of the cabinet housing. Where the Plans show base-mounted cabinets, install the cabinets in accordance with the Department’s Standard Specification for Traffic Signal Equipment installations.
 3) Enclose all cabling and wiring entering the cabinet housing in conduit. Securely and neatly dress all cabling and wiring inside the cabinet, including field wiring. Provide sufficient slack (minimum 2 ft. (600 mm)) for cabinet equipment maintenance and re-termination of the field wiring. Route fiber drop cables into the cabinet to provide as much physical protection as possible. Secure the drop cables through the cabinet, and strain-relieve them within the fiber termination unit.
 b. Wiring, Conductors and Terminal Blocks:
 1) Use stranded copper for all conductors, including those in jacketed cables, except for earth ground conductors, which may be solid copper. Neatly arrange all wiring, firmly lace or bundle it, and mechanically secure the wiring without the use of adhesive fasteners.
 2) Route and secure all wiring and cabling to avoid sharp edges and to avoid conflicts with other equipment or cabling. Route camera control wiring, and 120VAC power wiring separately. Terminate all wiring on the DIN rail terminals. Use a minimum #12 AWG THHN-THWN for all conductors of 120VAC circuits. Install all wiring as shown in the Detail Drawings.
 c. Surge Suppression:
 1) Protect all copper wiring and cabling entering the cabinet housing, except for the earth ground conductor, by surge suppression devices as specified.
 2) Terminate all power supply wiring between cabinet devices and the transient surge suppressors on DIN terminal block. Use a minimum #12 AWG grounding of each surge suppression device, or larger if recommended by the surge suppression device manufacturer. Use insulated green wire and connect the ground wire directly to the ground terminal block.
 3) Do not “daisy chain” with the grounding wires of other devices including other surge suppressors. Dress and route grounding wires separately from all other cabinet wiring. Install grounding wires with the absolute minimum length possible between the suppressor and the ground terminal block. Label all surge suppressors with silk-screened lettering on the mounting panel.
 d. Component Installation:
 1) All components/devices of the cabinet assembly are to be rack mounted with Phillips-head machine screws. Install screws into tapped and threaded holes in the panels. These components/devices include but are not limited to DIN rails, terminal blocks, accessory and equipment outlets, DC power supply chassis, video encoders, video processors, and field switches.
 2) Fasten all other cabinet components with hex-head or phillips-head machine screws installed with nuts (with locking washer or insert) or into tapped and threaded holes. These other components include but are not limited to door switches, fans, lights, thermostats, , and door lock mechanisms. Fasten stud-mounted components to a mounting bracket providing complete access to the studs and mounting nuts. All fastener heads and nuts (when used) shall be fully accessible with a complete cabinet assembly, and any
component/device shall be removable without requiring removal of other components, panels, or mounting rails. Do not use self-tapping or self-threading fasteners.

5. Cables, Conduit and Power Service

Furnish and install electrical cables, conduit and power service necessary to make the system fully operational.

a. Electrical Cables:

1) Furnish and install electrical cables for providing electrical power service to the site and for providing telephone and/or DSL service and/or cable service from the telephone company demarcation point to the equipment cabinet.

2) Furnish and install electrical cables used for power service, including grounding, in accordance with the Standard Specifications for electrical, lighting and traffic signal equipment.

3) Furnish and install electrical cables used for power supply as shown in the Detail Drawings. Do not splice any cable, shield or conductor used for power supply. Identify all conductors of all cables by color and number. Identify the conductor function in as-built documentation included in the cabinet documentation.

4) Electrical cables installed for telephone service from the telephone company demarcation point to the equipment cabinet shall be minimum #22 AWG twisted pair, UV-resistant shielded cable rated for wet/dry direct burial use. Install telephone service cable directly to or into the equipment cabinet in accordance with telephone company procedures. Install telephone service cable from the telephone company demarcation point to the equipment cabinet. Unless otherwise shown in the Plans or directed by the Engineer, install the telephone cable underground in conduit of minimum 1 in. (25 mm) diameter. Make all necessary connections at the telephone interface box and inside the equipment cabinet for proper operation of the video, control signaling and communications signaling. Neatly coil a minimum of 2 ft. (0.6 m) of telephone service cable in the bottom of the cabinet.

b. Electrical Conduit:

1) Install electrical conduit to provide enclosures for electrical cables at or terminating at the site. Furnish and install electrical conduit in accordance with the Standard Specifications for electrical, lighting and traffic signal equipment, and as required below.

2) Make all aboveground electrical conduit and conduit bodies rigid metal except as noted below. Terminate all aboveground conduit in either a weather head or in a cabinet. All conduits entering a pole-mounted equipment cabinet shall enter through the bottom with at least one conduit body with a sealable, removable cover for pulling access. All conduits entering in a base-mounted cabinet shall enter through the foundation and the base-mount adapter.

3) Install electrical conduits for electrical power service drops to the cabinet in the diameter indicated in the Plans. Conduits used as risers from a cabinet shall be minimum 2 in. (50 mm) diameter. Make nipples, welded collars, conduit bodies (e.g., LB condulets) and weather heads in hollow metal or concrete poles at the device mounting locations and at the cabinet mounting locations a minimum 2.5 in. (63 mm) diameter.

c. Electrical Power Service:

1) Furnish and install materials and equipment to bring electrical power service to the cabinet from the source shown in the Plans. Furnish and install electrical power service in accordance with the Standard Specifications for electrical, lighting and traffic signal equipment, and as required below.

2) Provide and terminate electrical power service equipment at the power service source as shown in the Plans. If the power service source is shown as a new power service drop, then furnish and install an electrical power service assembly at the new service drop location in accordance with the Standard Specifications. Include, as a minimum, with the electrical power service equipment at a new drop a service disconnect, surge arrestor, grounding electrode and conductor, and all necessary conduit, wiring and hardware. Provide a ground conductor, other than the electrical service conduit, between the electrical service disconnect ground buss and the equipment cabinet service entrance terminal block SE. Furnish and install a service metering base where required by the local utility or electrical codes or where shown in the Plans. Include a minimum 30 ampere circuit breaker with electrical service disconnects. Mount the electrical surge arrestor on the disconnect housing. The arrestor shall be rated for a maximum permissible line to ground voltage of 175RMS, and shall be in conformance with NEMA standards for surge arrestors. Electrical service conduit shall be minimum 2 in. (25 mm) diameter. Separate electrical service conduit from all other conduit. This conduit cannot contain any other wiring. Dedicate electrical service conduit
from the electric utility drop point through the meter base and disconnect and to the cabinet, where the
electrical service conduit shall enter the cabinet through the cabinet bottom.

3) If the power service source is an existing service drop, then furnish and install the necessary materials and
equipment to supply service to the cabinet from the existing service drop. Unless otherwise shown in the
Plans, service the cabinet from a dedicated branch circuit with circuit breaker. Make all electrical service
installation from the existing drop point as specified for new power service drops above.

4) Furnish and install surge suppression at all electrical power service sources. Ground all electrical power
service sources and bond the AC neutral and ground at the power service source only.

5) The contractor will establish accounts with the appropriate utility provider. After all accounts are
established, the contractor will submit the utility transfer form to the appropriate DOT Utility office
through the Engineer for transfer. The Engineer will provide the utility transfer form to the contractor.

939.3.06 Quality Acceptance

The Engineer, based on justification of public interest, may order any completed or partially completed portions of the project
placed in service. Such action is not an acceptance of the project in whole or in part, nor is it a waiver by the Engineer of any
provision of the specifications. Assume no right to additional compensation or extension of time for completion of the work
or any other concession because of the use of the project or any part thereof prior to final acceptance of the completed
project. Fully maintain all equipment prior to final acceptance, which includes but is not limited to equipment configuration
and communication systems.

Perform all acceptance testing in the presence of the Engineer. Notify the Engineer of a desired acceptance test schedule no
less than fourteen calendar days prior to beginning the testing except for testing using the NaviGAtor software and existing
NaviGAtor control center and communications equipment. For acceptance testing using the NaviGAtor software and existing
NaviGAtor control center and communications equipment, coordinate the testing schedule with the Engineer no less than 30
days prior to the start of this testing. Do not conduct any testing during any State or Federal holiday.

A. Equipment

1. General

Coordinate all work activities needing system configuration with the Engineer a minimum of 14 days prior to any
testing.

Work in this project includes furnishing specific equipment to the Department for configuration and use by the
Department during the course of the project. Operate this equipment and maintain the proper configuration until
final acceptance of the project, including throughout the project duration after the Department has started using the
equipment.

2. Start-up Testing

Provide start-up testing for the various devices supplied as described herein and as further detailed in the respective
equipment specification section.

The Contractor shall provide a test plan and procedures for review and approval by the Engineer prior to any testing.
The Contractor shall conduct a pre-test prior to contacting the Engineer prior to final inspection. Pretest shall be
defined as all tests that are performed for the Engineer during inspection. The Contractor shall provide all test
equipment and software necessary to perform the tests. Perform all tests in the presence of the Engineer unless
otherwise specified.

Include in the test plan and procedures, as a minimum, the following tests:

- Device or system power-on self test
- Conduct visual inspection of device or system to confirm presence of all components and features specified by
 the Contract specifications and otherwise customarily provided by the manufacturer
- Test using the built-in manufacturer’s product or system diagnostics to confirm proper performance
- Test all input and output ports
- Demonstrate that all functional features of the device or system are operational
· An operational test demonstrating equipment performs as intended and as prescribed by the manufacturer and meets the requirements of the Contract specifications.

Configure the components of the device, make necessary settings or adjustments, and power-on according to the manufacturer’s instructions.

3. Serial Data Terminal Server

Prior to acceptance of any Serial Data Terminal Servers (all Types), the following shall be performed:
· Connect with serial cable to Serial Data Terminal Server with PC or laptop using HyperTerminal.
· Ensure that the Serial Data Terminal Server recognizes all ports and attached expansion modules.
· Input addressing for Serial Data Terminal Server and reset.
· Determine successful Ethernet connectivity (link light at Hub/switch).
· Successfully telnet from PC or laptop to Serial Data Terminal Server through Hub/switch.
· Print to screen configuration information that is consistent with addressing data previously entered into Serial Data Terminal Server.

4. Field Switches

Prior to acceptance of any Field Switch (all Types), the following shall be performed:

a. Stand-alone Acceptance Test (SAT)
 1) The Contractor shall provide the test plan and procedures for review and approval by the Department prior to any SAT activities. The test procedures shall provide comprehensive tests to verify and demonstrate full compliance with these specifications and device functionality. Pass and fail criteria shall be identified for each tests for review and approval by the Department.
 2) The Contractor shall provide all test equipment and software necessary to perform the tests.
 3) The Department will perform the SAT in a test area provided by the Department. A Contractor representative shall be present during the SAT.
 4) The Field Switch will be assembled and connected to power in a stand-alone configuration.
 5) The Field Switch will be powered up and allowed to initialize, boot and run self-diagnostic tests as defined in the Department-approved test procedures.
 6) After the Field Switch has started and initialized, test procedures will be executed.
 7) After the test procedures have been executed, the Field Switch will be allowed to run, uninterrupted, for a burn-in period of seventy-two (72) hours.
 8) At the end of the burn-in period, the unit will be re-started and configuration verified.

Upon completion of all test procedures, the Contractor will be notified of SAT Field Switch acceptance or failure. If the unit fails the test, the Contractor shall replace it at no additional cost to the Department and the test procedure shall be re-started.

b. Operational Test
 1) The Contractor shall provide the test plan and procedures for review and approval by the Department prior to any Operational Test activities. The test procedures shall provide comprehensive tests to verify and demonstrate full compliance with these specifications in regards to device or subsystem network performance. Pass and fail criteria shall be identified for each tests for review and approval by the Department.
 2) The Contractor shall provide all test equipment and software necessary to perform the tests.
 3) After successful completion of the SAT, the Department will configure and connect the Field Switch to the GDOT Network.
 4) Verify communications and network control from the Field Switch to/from the Hub and TMC.
 5) Verify system integrity through comprehensive diagnostics.
6) Verify 10/100Base-T/TX interfaces and operations.
7) Verify 1000Base-X interfaces and operations.

Upon completion of all the tests, the Contractor will be notified of Operational Field Switch acceptance or failure. If the unit fails the test, the Contractor shall replace the unit at no additional cost to the Department and the test procedure shall be restarted.

5. Video Encoders & Decoders (All Types)

Prior to acceptance of any Video Encoder and Decoder, (All types), the following shall be performed:

a. Stand-alone Acceptance Test (SAT)

1) The Contractor shall provide the test plan and procedures for review and approval by the Department prior to any SAT activities. The test procedures shall provide comprehensive tests to verify and demonstrate full compliance with these specifications and device functionality. Pass and fail criteria shall be identified for each tests for review and approval by the Department.

2) The Contractor shall provide all test equipment and software necessary to perform the tests.

3) Using the Department approved Contractor-supplied test plan and procedures, the Department will perform SAT in a test area provided by the Department. A Contractor representative shall be present during the SAT.

4) The Video Encoder/Decoder will be assembled and connected to power in a stand-alone configuration.

5) The Video Encoder/Decoder will be powered up and allowed to initialize, boot and run self-diagnostic tests as defined in the Department-approved test procedures.

6) After the Video Encoder/Decoder has started and initialized, the test procedures will be executed.

7) After the test procedures have been executed, the Video Encoder/Decoder will be allowed to run, uninterrupted, for a burn-in period of seventy-two (72) hours.

8) At the end of the burn-in period, the unit will be restarted and configuration verified.

Upon completion of all test procedures, the Contractor will be notified of SAT acceptance or failure. If the unit fails the test, the Contractor shall replace the unit and/or update the firmware as required at no additional cost to the Department and the test procedure shall be restarted.

b. Operational Test

1) The Contractor shall provide the test plan and procedures for review and approval by the Department prior to any Operational Test activities. The test procedures shall provide comprehensive tests to verify and demonstrate full compliance with these specifications in regards to device or subsystem network performance. Pass and fail criteria shall be identified for each tests for review and approval by the Department.

2) After successful completion of the SAT, the Contractor shall configure and connect the Video Encoder to the field switch and GDOT network.

3) Along with the Video Encoder, the Contractor shall provide a Video Decoder unit (as specified herein), a video monitor, a laptop, and camera control application provided by the Department. The Contractor shall be responsible to provide all test equipment and software necessary to perform the tests.

4) Verify MPEG video performance over the GDOT network.

5) Verify serial data channel performance using NaviGAtor PTZ control commands.

6) Verify and demonstrate user programmable parameters and functions.

7) Verify and demonstrate network management and remote configuration.

Upon completion of all the tests, the Contractor will be notified of Operational Test acceptance or failure. If the unit fails the test, the Contractor shall replace the unit and/or update the firmware as required at no additional cost to the Department and the test procedures shall be re-started.

6. Interim Field Subnet Test
Prior to acceptance of any network communications equipment or field device connected to the communications network, perform and successfully complete an Interim Field Subnet (IFS) test. All Start-Up and Standalone testing shall be successfully completed on all devices before an IFS test can begin. Include in the IFS test all network communications devices in the project, including but not limited to all field switches, video encoders and decoders, VDS processors, CMS controllers, microwave radar detectors, serial data terminal servers, ramp meter signal controllers, and traffic signal controllers.

a. Provide the test plan and procedures for review and approval by the Department prior to any IFS activities. The test procedures shall provide comprehensive tests to verify and demonstrate full compliance with these specifications and device functionality. Pass and fail criteria shall be identified for each test for review and approval by the Department. The test procedures shall identify all field sites and devices in the project, as well as the field subnets the sites are attached to.

b. Furnish all test equipment and software necessary to perform the tests, including but not limited to laptop PC with web browser and network analysis software, temporary field switch or other compatible media converter, and all necessary patch cords.

c. Prior to conducting a scheduled IFS test, conduct a dry-run test to ensure all preparations for the IFS test are complete. The Engineer reserves the right to attend the dry-run test.

d. An IFS test shall be conducted for each field subnet, which is typically a group of field sites connected to a fiber pair ring between two hubs. The test shall be conducted from one of the hubs. During the test, every network device shall be pinged, probed by SNMP or equivalent status queries, logged into, and connected to by other methods as needed to demonstrate that the equipment is functional, contains the proper base programming data, and is in the proper location.

939.3.07 Contractor Warranty and Maintenance

Provide a Manufacturer’s support (usual and customary warranties) period for all equipment and materials furnished and installed as part of the Communications and Electronic Equipment System. Include in warranty and support all Contractor or Manufacturer activities related to maintenance, removal and replacement of parts and materials during the period of support. Begin the Manufacturer warranty support period upon successful completion of equipment cabling and component testing as outlined in Subsection 939.3.06. All Manufacturer warranties shall be continuous throughout the period and state that they are subject to transfer to the Department.

939.3.08 Training

Provide training as required herein. Include with training all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training. Furnish a training notebook in a labeled 3-ring binder to each trainee. Include in the cost of training all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training. Provide installation, operations, and maintenance training on the equipment at a site near the project area. Personnel trained by the various equipment manufacturers and authorized by said manufacturers shall perform the training. Provide installation, operations and maintenance training for up to twelve (12) people. Include in this training both classroom training and hands-on training. Limit in-shop and in-field training to group sizes of four (4) people at a time. Conduct all training in half-day sessions. Two half-day sessions may be held on the same day. The total of the training shall consist of at least six (6) clock hours of training for each participant. Provide a course content of, at a minimum, the following:

Field Switches
- Unit set-up and configuration
- Diagnostic and maintenance
- Performance tuning
- Hands-on use of Field Switches for each trainee

Video Encoders and Decoders
- Installation of all digital video compression system equipment
- Explanation of MPEG-4 digitized video
- Maintenance of all digital video encoder and decoder system components including software
- Measurement of digital video signals
Hands-on use of digital video transport system equipment for each trainee

If CCTV training is also required in the project, digital video transport system training shall be provided in conjunction with the CCTV training specified herein. If so, the total of the CCTV and digital video transport system training shall consist of at least eight (8) clock hours of training for each participant. Meet all CCTV training requirements of Subsection 936.3.08.

939.4 Measurement

B. Equipment

For each equipment unit listed below, furnish and install all mounting and interconnection materials, including but not limited to card cages, mounting hardware, all patch cords of all types, and power strips and power supply cables at no separate cost to the Department. If software device drivers/communication protocols not currently incorporated into NaviGAtor software are needed, provide and integrate them at no separate cost to the Department.

1. Serial Data Terminal Server:

Serial Data Terminal Servers (16 Port and all Types) are measured for payment by the number actually installed, complete, functional and accepted. For each unit provided, furnish and install any required Serial Data Terminal Servers and serial port concentrators as specified in Subsection 939.2.A.2 and in the Plans at no separate cost to the Department.

2. Hub Uninterruptible Power Supply:

Hub Uninterruptible Power Supplies are measured for payment by the number actually installed, complete, functional and accepted.

3. Network Switch, Layer 3 Gig-E:

Network Switches, Layer 3 GigE (all Types) are measured for payment by the number actually installed, complete, functional and accepted. For each unit provided, furnish and install any required switching Hubs, router and switching chassis as specified in Subsection 939.2.A.5 and in the Plans at no separate cost to the Department.

4. GBIC Routing Switch Module:

GBIC Routing Switching Modules (all Types) are measured for payment by the number actually installed, complete, functional and accepted.

5. GBICs:

GBICs (all Types) are measured for payment by the number actually installed, complete, functional and accepted.

6. Field Switches:

Field Switches (all Types) with rack mounting hardware are measured for payment by the number actually installed, complete, functional and accepted.

7. Video Encoders, Type B:

Video Encoders, Type B, with rack mounting hardware are measured for payment by the number actually installed, complete, functional and accepted.

8. Video Encoders, Type C:

Video Encoders, Type C, with rack mounting hardware are measured for payment by the number actually installed, complete, functional and accepted.

9. Video Decoders, Type B:

Video Decoders, Type B, with rack mounting hardware are measured for payment by the number actually installed, complete, functional and accepted.

10. Video Decoders, Type C:

Video Decoders, Type C, with rack mounting hardware are measured for payment by the number actually installed, complete, functional and accepted.

11. Equipment Frame:
Equipment frames are measured for payment by the number actually installed, complete, functional and accepted.

12. Dial-Up Modems:

As required, dial-up modems are measured for payment by the number actually installed, complete, functional and accepted. For each unit installed, furnish and install all mounting and interconnection materials, including but not limited to card cages, shelves, hardware, fiber, jumper cables, RS-232/422/485 converters and power supply cables at no separate cost to the Department.

C. Equipment Cabinet Assembly

Equipment cabinet assemblies are measured for payment by the number actually installed, complete, functional and accepted. For each unit installed, furnish all required items, including but not limited to identification and documentation, lighting, contact switch, fan, contact-closure sensor, patch cords, and cables at no separate cost to the Department.

D. Electrical Power Service Assembly

Electrical power service assemblies are measured for payment by the number actually installed, complete, functional, and accepted. For each assembly installed, furnish all required items, including but not limited to conduit; riser; wiring; hardware; disconnect; meter base; and Class 3, 30 ft. (9 m) timber pole at no separate cost to the Department. Exceptions to the previous sentence include horizontal conduit, wiring, Type 2 pull boxes, electrical junction boxes, and directional bores between the electrical service pole to the equipment cabinet requiring power service which will be measured for payment as conduit, nonmetal, type 2 – power service as per Section 682.

E. Testing

Testing is measured as a lump sum for full delivery of testing and acceptance requirements.

F. Training

Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.

939.4.02 Limits - Not applicable

939.5 Payment

Payment is full compensation for furnishing and installing the items complete in place according to this Specification. Payment for all items is as follows:

<table>
<thead>
<tr>
<th>Item No. 939</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 939</td>
<td>Serial Data Terminal Server, 16 Port and Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Type _ Cabinet</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Electrical Power Service Assembly (type)</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Network Switch, Layer 3 Gig-E, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>GBIC Routing Switch Module, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>GBIC, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Field Switch, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Video Encoder, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Video Decoder, Type _</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Hub Uninterruptible Power Supply</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Equipment Frame</td>
<td>Per Each</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Testing</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>Item No. 939</td>
<td>Training</td>
<td>Lump Sum</td>
</tr>
</tbody>
</table>

939.5.01 Adjustments

Not applicable
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION

Project Number: 0009542
DeKalb County

SECTION 999 – DESIGN-BUILD PROJECT

999.1 GENERAL DESCRIPTION

A. Project Location: The location of the construction work included in this Project is shown in the Costing Plans. This Project is located in unincorporated DeKalb County. The Project is located along Interstate 20 between the I-20/I-285 Interchange (exit 67), and Panola Road (exit 71).

B. Design-Build Concept: The Contractor and a design consultant (or design consultant team) shall work together to design and build the Project. The design consultant shall either be acting as a subcontractor to the Contractor or as a joint-venture member with whom this agreement has been executed. In this document (Section 999), the words “design consultant” or “design consultant team” shall refer to the consultant firm or consultant team acting as a subcontractor or joint-venture team member to the Contractor. The design consultant or design consultant team will not be required to fill out Department subcontractor forms for Department use.

The words “Engineer” (with a capital “E”) shall refer to those personnel of the Department which are or are acting in the capacity of an engineer for the Department. When the word “engineer” is used it shall refer to those persons acting on behalf of the Contractor. The Department will have oversight responsibilities only, which include performing official reviews and granting acceptance of the design work.

The Contractor shall not be given Notice to Proceed for land disturbing activities until the following have been accepted by the Engineer, and the Department provides written authorization that the plans are Released for Construction:

1. Basis of design
2. ROW recertification
3. NEPA clearance and/or recertification (as applicable)
4. Approved Permits (as applicable)
5. Final construction plans
6. Erosion Sedimentation and Pollution Control Plans
7. Notice of Intent (NOI) submission to EPD along with the 14 day wait period
8. QC/QA Plan
9. Traffic Control Plan
10. Traffic Management Plan
11. Utility Agreements, Utility Encroachment Permits, Utility Relocation Plans, and/or Contractor Certification of “No-Conflict”
Bids on the Project shall reflect designing and constructing the Project as shown in the Scope (999.1.C) and close conformity to applicable portions of the Costing Plans. No additional design exceptions and no design variances shall be assumed by the Contractor. No Value Engineering proposals shall be accepted from the Contractor for consideration by the Department.

The Contractor shall submit a Basis of Design. The Basis of Design narrative shall constitute the Contractor’s ownership of or modifications to the documents provided “for information only” (See 999.2.A) as well as a discussion of how this information will be utilized to develop the final design. The Contractor shall be required to submit any proposed changes in the design as well as the justification for the changes.

The Contractor may propose alternative methods/solutions to the Project Scope once the Project is awarded, but shall provide the same, or better, facilities as shown in the Costing Plans Package and specifications and meet the following criteria:

- no additional or increased costs,
- no extension in overall schedule (or specified milestones),
- no exceptions to specifications included in this contract.

Alternatives proposed by the Contractor shall be submitted to the Engineer in writing and shall include clear documentation background, reason for the change, and any potential cost and/or time savings that may result. If acceptable, the Department will authorize the change in writing and the Department reserves the right to approve or deny the proposed changes.

The Contractor shall use those entities prequalified in related disciplines (design, traffic analysis, geotechnical, etc.) as presented in the Statement of Qualifications (SOQ). Revisions to the design and data-gathering elements of the team and/or the proposed assignments reflected in the SOQ shall be approved by the Engineer. All proposed changes to the team shall be received prior to letting. The Contractor shall send all requests for changes to:

Transportation Services Procurement Administrator
Georgia Department of Transportation
Office of Transportation Services Procurement
One Georgia Center,
600 West Peachtree Street, NW, Room 1920
Atlanta, GA 30308

Additional disciplines needed to meet the requirements of the special provisions for this Project not identified in the SOQ shall meet GDOT prequalification as required and any applicable standards, policies or guidelines of the local, state or federal agencies or utility owners.

Any revisions to the team and/or the proposed assignments reflected in the SOQ after award of the contract shall be approved by the Department. The Contractor shall send all requests to the Department's Project manager for review and further handling for approval.

The work covered under this Specification includes the furnishing of all materials, labor, tools, equipment, and other incidental items for the designing, detailing, and construction of the Project contained in the Project Scope. The Contractor shall make all the improvements for this Project within the right of way as included in the Costing Plans, (See also 999.1.D Right of Way). The Contractor shall not begin final project design activities until the Department issues a formal written Notice to Proceed for Final Design.

Information related to “existing conditions”, as reflected in the Costing Plans Package, is for information only. The Contractor shall be aware that existing conditions found in the Costing Plans Package may have changed since the field survey work and associated design efforts were completed. The Costing Plans Package, along with the specifications, shall attempt to highlight areas of known changes in the existing conditions. These areas may or may not include all actual areas where existing conditions differ from those that currently exist in the field. The Contractor shall
be responsible to verify all existing conditions. No claims will be considered due to decisions/assumptions made by the Contractor based on "existing conditions" reflected in the Costing Plans Package.

C. General Project Scope: The Project includes the construction of three Collector Distributor (CD) lanes separated from eastbound I-20 with concrete barrier from I-285 to Wesley Chapel Road. The three CD lanes will be constructed to split into two exit lanes to Wesley Chapel Road and two CD lanes continuing eastbound along I-20. The concrete barrier construction between the CD lanes and the I-20 mainline lanes ends just west of Wesley Chapel Road. Two CD lanes are constructed to merge with I-20 mainline to form two auxiliary lanes. One auxiliary lane is constructed to taper out just west of Snapfinger Creek, and the remaining auxiliary lane is constructed to continue eastbound to exit at CR 5150/Panola Road. All existing bridges shall be retained. The total Project length along I-20 is approximately 4.81 miles. The following is a list of the major items of the Project:

1. The Costing Plans Typical Sections and Construction Plans shall be adhered to for the edge of traveled way locations, lane tapers, ramp configurations, lane configurations, roadway dimensions, rates of superelevation, and all other horizontal geometric constraints. If Errors and/or omissions are found in the design that do not meet AASHTO and Department requirements, the contractor will be responsible for proposing an alternate to fulfill these requirements.

 Note: Geometric design (including but not limited to horizontal and vertical alignments, radii, etc.) shall be as shown in the Costing Plans Package or may be revised as long as the design incorporates more conservative values.

2. Construction of a 12’ auxiliary lane starting just east of the I-20 exit ramps to I-285 for approximately 2400’, then construction of a 16’ slip ramp from mainline I-20 to the proposed CD lanes for approximately 1500’ as shown in the costing plans.

3. Construction of four 12’ CD lanes separated from I-20 mainline by concrete barrier for approximately 700’ as shown in the costing plans. The CD typical section in this area will be as follows: median barrier, 4’ inside shoulder, four 12’ CD lanes, and a 10’ outside shoulder.

 Construction of three 12’ CD lanes separated from I-20 mainline by concrete barrier for approximately 2800’ as shown in the costing plans. The CD typical section in this area will be as follows: median barrier, 4’ inside shoulder, three 12’ CD lanes, and a 10’ outside shoulder. Drop the outside CD lane at the I-20 eastbound off ramp to Wesley Chapel Road.

 Construction of two 12’ CD lanes separated from I-20 mainline by concrete barrier for approximately 1700’ as shown in the costing plans, then merge with mainline I-20 eastbound just east of the Wesley Chapel Road overpass over I-20. The CD typical section in this area will be as follows: median barrier, 4’ inside shoulder, two 12’ CD lanes, and a 10’ outside shoulder.

 Most areas along the Collector Distributor will have a concrete barrier on the outside shoulder. I-20 mainline typical section will be retained as existing.

4. Construction of two 12’ auxiliary lanes starting at the merge of I-20 eastbound and the CD lanes for approximately 4700’. Drop the outside lane with a 1:70 taper and continue a four 12’ lane section for approximately 1260’ as shown in the costing plans.

 Reduce I-20 mainline from four 12’ lanes to four 11’ lanes with a 1:70 taper just west of the I-20 bridge over Snapfinger Creek.

5. Reconfigure the striping on I-20 eastbound at the bridge over Snapfinger Creek to accommodate three, 11’ travel lanes and one 11’ auxiliary lane. The existing bridge is to remain in-place.
6. At the Snapfinger Creek Bridge on I-20 Eastbound, the Contractor shall remove all existing asphaltic concrete pavement down to the existing concrete bridge deck. The Contractor shall take precautions to protect the concrete deck from damage and shall repair any visible damage that is found in the existing deck or damage caused by removal of the asphalt. The Contractor shall seal the existing deck joints using Watson, Bowman & Acme Wabo Expandex Asphaltic Plug Joint System; D.S. Brown Matrix 502 Asphaltic Expansion Joint, or approved equal, installed per manufacturer's specifications. Asphaltic concrete pavement shall be inlaid per the Plan Typical Sections, or as approved by the Department, not to exceed the depth of the existing asphalt surfacing.

7. Reconfigure striping on I-20 eastbound for three 11' lanes and construct an 11' auxiliary lane on I-20 eastbound as shown in the costing plans for approximately 4300’ from the Snapfinger Creek Bridge to just east of the Miller Road overpass of I-20.

8. Reconfigure striping on I-20 eastbound and construct new side barrier at the bridge under Miller Road to accommodate three 11’ travel lanes and one 11’ auxiliary lane. The existing bridge is to remain in-place.

9. Construction of a 12’ auxiliary lane starting just east of the Miller Road overpass of I-20 to the I-20 eastbound off ramp to Panola Road for approximately 2400’ as shown in the costing plans. Drop the auxiliary lane at the I-20 eastbound off ramp to Panola Road.

10. The proposed typical section dimensions for the I-20 CD lane and mainline lane normal shoulder condition shall be as follows: 12 feet (10 feet paved, 2 feet grassed), a 6:1 desirable, variable width foreslope with a 4 foot wide ditch.

11. Realign the I-285 NB/SB to I-20 EB ramps to align with the proposed CD lanes as shown in the costing plans. Extend the I-285 NB to I-20 EB ramp approximately 1400’ with three 12’ lanes.

12. It has been determined that the existing quadruple 12’x12’ culvert for Cobbs Creek under the I-285 ramp realignment was built using a step-down design. The Contractor may utilize lightweight fill to construct the realignment as shown in the Costing Plans in lieu of culvert replacement. The final placement of the outlet of the culvert, the required erosion control, and the construction of the culvert shall be wholly contained within existing Right of Way. Information about lightweight fill and impermeable membrane are provided in Special Provisions 208, 307, and 888. The Contractor shall submit for approval by the Department methods of construction over the Cobbs Creek culvert other than lightweight fill. If culvert replacement is chosen as the method of construction for the Cobbs Creek culvert, the contractor shall notify the Department of the need for an Environmental Reevaluation. Refer to the Environmental section of this document.

13. Realign the Wesley Chapel Road eastbound on ramp approximately 1500’ and extended approximately 1200’ from the current ramp terminal as shown in the costing plans.

14. Realign approximately 1000’ of the I-20 eastbound off ramp to Panola Road as shown in the costing plans.

15. The final location of sound barriers shall remain consistent with the location shown in the costing plans and the approved Categorical Exclusion. The final location of the sound barriers cannot be moved from the shoulder toward the right-of-way limit or from the right-of-way limit to the shoulder without Department approval. The final location of the sound barrier can be slightly adjusted for constructability but any shift greater than 5 feet will need to be remodeled and approved by the Department. With proposed shifts of less than 5 feet for constructability, the sound barrier top elevation shall be compensated at a ratio of 1:1.

16. Sound barriers shall be placed so construction will not encroach outside of existing right-of-way. Sound barriers shall not be placed closer than 10’ to existing right-of-way. Sound barrier type B, type C, or absorptive barriers shall be used on this Project.
17. In areas where sound barriers are in a location that is not within the limits of embankment or excavation for the roadway grade, clearing and grubbing and reseeding for permanent grassing will be required up to the face of the sound barrier.

18. A field engineer’s office will be required on this Project. Refer to Special Provision 153.

19. A Municipal Electric Authority of Georgia (MEAG) transmission line traverses the Project at approximately I-20 Eastbound station 1222+20 of the Costing Plans. Conceptual studies show that sound barrier is required in this area. The Contractor shall construct a sound barrier using methods that will adhere to MEAG encroachment and outage restrictions. The Department requires that any construction within the existing easement of this transmission line adhere to MEAG safety requirements as follows:

- All work around high voltage electric lines is regulated by the Georgia High Voltage Safety Act, which can be found at http://www.georgiapower.com/safety/law.asp. This act states that “if you are responsible for any activity performed within 10 feet of an overhead high voltage line, you are required FIRST to give notice to the Utilities Protection Center.” No work within 10 feet of the lines may be performed until MEAG Power is given notice and sufficient time to take safety precautions and schedule personnel to be on-site.

If work is to be performed within 10 feet of MEAG Power lines, a line clearance will likely be required, at the discretion of MEAG Power. Line clearance availability is dictated by weather and loading conditions, as well as other activities on the electric grid system. Line clearances are granted by the Georgia Control Center (GCC) and are generally unavailable from May to September. The GCC requires 5 working days notice to review a clearance request (not including weekends or holidays).

Clearance requests should be sent to Doug Allison (dallison@meagpower.org) as soon as the required dates are known. The GCC requires a minimum of 7 working days not including weekends and holidays to schedule a clearance, however, a longer lead time provides a higher probability of getting a clearance approved. MEAG requests a tentative schedule 60 days from the expected clearance date and an exact schedule 30 days to the known clearance date. Clearance durations should be limited to the amount of time required to perform work in the immediate vicinity of transmission lines."

The MEAG Power transmission line in this project vicinity is the Austin – Klondike 230 kV line. The Austin – Klondike is a major network line which will limit line clearance availability. The clearance to ground from the bottom conductor is approximately 55 feet at this location.

20. A Georgia Power distribution line is also present on the same MEAG transmission line. Conceptual studies show that sound barrier is required in this area. The Contractor shall construct a sound barrier using methods that will adhere to Georgia Power encroachment restrictions. Refer to section 999.3.D and any other applicable Special Provisions. The Department requires that any construction within the existing MEAG easement cannot utilize cranes or any other equipment that would vertically encroach closer than 10' to the Georgia Power distribution line. Field investigations indicate that this would result in the top of sound barrier not exceeding elevation 928. The Contractor will be responsible for validating these requirements prior to construction.

21. The speed designs for the respective roadways are as follows:

a. Interstate 20 Eastbound mainline 70 mph
b. Interstate 20 Eastbound CD Lanes 55 mph
c. Interstate 285 to Interstate 20 Eastbound ramps 45 mph
d. Wesley Chapel Road eastbound on and off ramps 45 mph
e. Panola Road eastbound off ramp 45 mph
22. The Contractor shall install the overhead sign structures and all signing and marking as shown in the Costing Plans. Overhead signs along Interstate 20 shall be installed in accordance with Department and 2009 MUTCD design guidelines (or most current edition). See the Costing Plans for location and type of sign installations, removals, and replacements.

23. The Contractor shall replace existing high mast lighting facilities impacted by this Project per current Department guidelines and coordinate energy service with the appropriate power company.

24. The Contractor shall install all ATMS/ITS systems and equipment as shown in the Costing Plans.

25. Level 1 ITS deployment will be included in this Project. The contractor shall replace or upgrade existing facilities.

26. The Contractor shall install conduit and single mode fiber optic cable as shown in the costing plans in accordance with GDOT standards and specifications. Refer to applicable Special Provisions.

27. The Contractor shall install CCTV, microwave radar detection, and changeable Message signs. Refer to applicable Special Provisions. The Contractor shall coordinate and engineer power service to all devices according to GDOT standards.

28. The overhead sign and changeable message sign structures shall be placed during the pacing of traffic.

29. The Contractor shall splice new installed fiber to existing fiber optic cables on I-20, Wesley Chapel Road, and Panola Road as shown in the Costing Plans. The Contractor shall be responsible for producing device allocation tables detailing how the new devices will communicate with the Hub I and the TMC. Contractor shall coordinate with GDOT Office of Traffic Operations to obtain splicing charts/allocation tables for the existing fiber along I-20, as well as device names for installed CCTV cameras, microwave radar detection units, and changeable message signs.

30. Install ATMS conduit across the existing I-20 bridge over Snapfinger Creek. Bore under the approach slab and through the end wall of the bridge and suspend the conduit from the bridge deck and between the beams. If the conduit will not fit under the edgebeams, coring through the edgebeams will be necessary. Do not damage any of the main reinforcing steel in the edgebeams if coring is required. Repair damage at no additional cost to the Department. Submit details for ATMS attachment to the Engineer for review and approval.

31. The Contractor shall provide a minimum of 10 portable changeable message signs to be used as directed by the Engineer.

32. The pavement design shall be based on the approved pavement design as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Paving for I-20 Auxilliary and CD Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Lanes</td>
<td>Shoulders</td>
</tr>
<tr>
<td>Material</td>
<td>Spread Rate</td>
</tr>
<tr>
<td>12.5 mm PEM, GP 2 ONLY, INCL POLYMER-MODIFIED BITUM MATL & H LIME</td>
<td>135 lb/sy</td>
</tr>
<tr>
<td>12.5 mm SMA, GP 2 ONLY, INCL POLYMER-MODIFIED BITUM MATL & H LIME</td>
<td>220 lb/sy</td>
</tr>
<tr>
<td>19 mm SUPERPAVE, GP 1 OR 2, INCL MATL & H LIME</td>
<td>220 lb/sy</td>
</tr>
<tr>
<td>25 mm SUPERPAVE, GP 1 OR 2, INCL MATL & H LIME</td>
<td>1540 lb/sy</td>
</tr>
</tbody>
</table>
Paving for I-20 Eastbound CD Ramp Realignments

<table>
<thead>
<tr>
<th>Travel Lanes</th>
<th>Shoulders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Spread Rate</td>
</tr>
<tr>
<td>12.5 mm SUPERPAVE, GP 2 ONLY, INCL BITUM MATL & H LIME</td>
<td>220 lb/sy</td>
</tr>
<tr>
<td>19 mm SUPERPAVE, GP 1 OR 2, INCL MATL & H LIME</td>
<td>220 lb/sy</td>
</tr>
<tr>
<td>25 mm SUPERPAVE, GP 1 OR 2, INCL MATL & H LIME</td>
<td>1540 lb/sy</td>
</tr>
<tr>
<td>GRADED AGGREGATE BASE – 16” DEPTH</td>
<td>N/A</td>
</tr>
</tbody>
</table>

33. The contractor shall place PEM along I-20 mainline and CD, along with appropriate striping throughout the Project limits.

34. Asphaltic curb shall be installed behind guardrail when the fill height exceeds 10 feet. When asphaltic curb is installed behind guardrail, the Contractor shall use concrete spillways with down drains or concrete flumes to drain.

35. Existing pavement inside the construction limits that will no longer be used shall be obliterated, graded to drain and grassed.

36. Memorandums of Understanding (MOU) will be provided for utility work. See section 999.3.D.

37. The Contractor shall install detention facilities at any outfall where the roadway construction produces a 10 percent or greater increase in peak flow volume for the design year storm event and has a disturbed area of 5 acres or more. Additionally, any outfall locations where the receiving channel is located in or leads to a wetland or environmentally protected habitat will require detention facilities.

Detention facilities shall be designed and constructed per detention requirements as dictated in the Georgia DOT Manual on Drainage Design for Highways, most current version. The location of any detention facilities and their construction limits shall be contained within existing right of way. Due to right of way restrictions, it is anticipated that alternate methods of detention such as in-line pipe detention, vaults, or ditch check retention may be required, and must be submitted for approval by the Department.

Ensure proposed detention plans are coordinated with Georgia DOT to ensure that the planned feature can be cleaned and maintained.

38. Design Exceptions have been submitted and were approved for the following design features:
 a. Inside shoulder width on mainline I-20 eastbound throughout the Project
 b. Horizontal clearance to obstruction on the inside shoulder on mainline I-20 eastbound throughout the Project
 c. Outside shoulder width on mainline I-20 eastbound at the Snapfinger Creek Bridge
 d. Horizontal clearance to obstruction on the outside shoulder on mainline I-20 eastbound at the Snapfinger Creek Bridge
e. Outside shoulder width on mainline I-20 eastbound at the Miller Road underpass
f. Horizontal clearance to obstruction on the outside shoulder on mainline I-20 eastbound at the Miller Road underpass
g. Bridge width on mainline I-20 eastbound at the Snapfinger Creek Bridge
h. Lane width on mainline I-20 eastbound from the Snapfinger Creek Bridge to the Miller Road underpass
i. Stopping sight distance on the left-hand curve on mainline I-20 eastbound just east of the Snapfinger Creek Bridge

39. The Contractor shall replace or upgrade existing facilities. Possible affected resources include, but are not limited to the following: GDOT ITS system, signing and marking, and utilities.

40. Due to the presence of migratory birds, the Contractor shall install exclusionary barriers in several locations. See Special Provision 107.23G and subsection 999.1.E of this report.

41. Due to the presence of the Altamaha Shiner in Cobbs Creek and Snapfinger Creek, the Contractor shall institute best management practices (BMPs) as dictated in Special Provision 107.23G. See also subsection 999.1.E of this report.

42. The contractor shall apply for a Nationwide Permit 23 for permanent stream impact. See subsection 999.1.E of this report.

43. GDOT ITS Systems in conflict with this Project:
 a. Video detection cameras
 b. Concrete strain poles with CCTV surveillance cameras
 c. ITS communication fiber and conduit
 d. Electrical communication boxes and pull boxes
 e. Utilities for powering ITS System

 Note: The GDOT ITS System is a vital part of traffic management in metro Atlanta. The westbound portion of the ITS System on I-20 and all those portions outside of the Project limits on eastbound I-20 shall not be taken out of service for more than 24 hours at any time during construction. See special provision section 108 and 150.

D. Right of Way: All construction shall occur within the existing Right of Way.

The Contractor is responsible for designing and constructing the Project within the existing Interstate Right of Way. If elements of the proposed construction are shown extending beyond this area then the Contractor is responsible for designing and constructing measures necessary for the construction limits to remain within the Right of Way.

The contractor is responsible for locating and clearly defining existing Right of Way to ensure that no encroachments will occur as a result of construction. The Contractor shall field-establish the limits of right or way by staking the existing right of way at a minimum spacing of 100 feet.

E. Environmental:

The Contractor shall adhere to and provide all material, labor, equipment, and other incidentals required to adhere to the “Commitments/Requirements” that apply to the Contractor, design or construction of the Project. Key words such as -construction,” -contractor,” -work,” etc., point to the areas for which the Contractor is responsible.

1. The NEPA document for this Project is a Categorical Exclusion (CE). The Department is responsible for preparation and obtaining approval of the CE and any Environmental Reevaluations (of the CE) from the Federal Highway Administration (FHWA) since the
Contractor is prohibited from being involved with the decision making responsibilities, related to the NEPA process (23 CFR Ch 1, Section 636.109.6). The Contractor is also prohibited from performing or having a Consultant perform Special/Technical Studies on their behalf. It is anticipated that the CE will not be approved prior to award of the Design-Build Contract. Upon approval the Department will provide a copy of the CE to the Contractor.

2. The Contractor may only proceed with preliminary design and will not begin final design activities, purchase construction materials or rolling stock, or begin construction until the CE has been approved.

3. Until the CE is approved, the alternative is not "selected"; therefore, the "No-Build" option is still a viable alternative for the Project.

If the "No-Build" alternative is selected, the Project will be terminated according to Section 109.09 of the Contract. In that case, the Contractor will be eligible for compensation on only those specific design-related activities that were performed up to the time of termination as per the Terms and Conditions of the post-award non-ground breaking Notice-to-Proceed.

4. The CE includes an Environmental Commitments Table. The Environmental Commitments Table in this "99" is a draft, included for bidding purposes only, and will be superseded by the Environmental Commitments Table from the approved CE. The Contractor will adhere to all commitments included in the Environmental Commitments Table from the approved CE.

5. The CE and Special/Technical Studies are valid until project changes occur which would invalidate the original findings. Any and all design changes made by the Contractor, which are outside of the parameters of the approved Environmental documentation, may require that one or more of the Special/Technical Studies (Air, Archaeology, Ecology, History, and Noise) be updated. Please note, revising Special/Technical Studies may require that review/approval coordination with the various agencies be reopened. Project changes would also require an Environmental Reevaluation of the CE. Updates to the Special/Technical Studies and the Environmental Reevaluation will be completed by the Department. The Environmental Timeframe Matrix provides approximate timeframes for environmental approvals to assist the Contractor in scheduling.

6. In order to update Special/Technical Studies and complete the Environmental Reevaluation the Contractor will provide to the Department project change information, revised/final plan sheets, and any additional work product that may need to be considered in the NEPA analysis.

7. To proceed to Construction, the Special/Technical Studies and the NEPA document must have addressed all project changes that would affect environmental resources. Should there be discrepancies; changes could be necessary to the following special studies: Historical and Archaeological Resource Reports, Ecology Report, Air and Noise Studies. Following approval of the revised special studies previously listed, an updated NEPA document (e.g. Re-evaluation) would be required. Upon identification of a design change, the Contractor shall coordinate with the Georgia DOT Office of Environmental Services to initiate documentation of the previously listed Special Studies and the updates to the NEPA document. All environmental approvals must be obtained and concurred upon by the Department as well as the applicable State and Federal Agency prior to any construction activities.

8. Once it has been determined that the Environmental documentation is accurate and all NEPA related tasks (such as approval of an Environmental Reevaluation or Categorical Exclusion, and all Preconstruction Environmental Commitments, including, but not limited to receipt of all permits, variances, and the purchase of mitigation credits) have been completed the Department
will issue an Environmental Certification for Let of the Project, which will be provided to the Contractor. **No groundbreaking activities will take place until this Certification is issued.**

9. The Contractor shall provide the proposed impacts to streams and wetlands, which shall include impacts that result from utility relocations and temporary and/or permanent impacts that result from construction of the Project.

10. The Contractor shall prepare the Section 404 Nationwide Permit application to the Department’s satisfaction. The Department will transmit the Section 404 Nationwide Permit to the US Army Corps of Engineers. The Contractor shall be responsible for satisfactorily addressing the US Army Corps of Engineer’s comments. It is anticipated that approximately 90 days will be required from the time the Department transmits an acceptable Section 404 Nationwide Permit application to receipt of agency approval. The Contractor is required to satisfactorily address the US Army Corps of Engineer’s comments within 14 calendar days of receipt. If any additional impacts result from the Contractor’s proposed design versus those in the most recent ecology addendum, then the Department will perform special studies which will require 90 additional days prior to the Department’s submittal of permit documentation to the appropriate agency and will require the Department to complete a reevaluation. Once the Department receives an approved Section 404 Nationwide permit from the US Army Corps of Engineers, the Department will issue written notification to the Contractor that the Contractor shall then acquire all mitigation credits in the name of the Department as required under the approved permit. All mitigation credits obtained by the Contractor and applied to the Project shall be approved by the US Army Corps of Engineers. Upon satisfactory receipt of the Contractor’s credit purchase, the Department will provide written authorization to work in jurisdictional Waters of the US in accordance with the permit conditions.

11. The Contractor is responsible for verifying the need for any Buffer Variances on this Project. The Contractor shall also be responsible for the necessary design and construction needed to avoid or mitigate for the buffer(s) impact. If a Buffer Variance is identified then the Contractor is responsible for notifying the Department no later than the time of the preliminary plans submittal to the Department. The Contractor shall prepare the Buffer Variance application to the Department’s satisfaction. The Department will transmit the Buffer Variance application to Georgia’s Environmental Protection Division. The Contractor shall be responsible for satisfactorily addressing Georgia’s Environmental Protection Division comments. It is anticipated that approximately 120 days will be required from the time the Department transmits an acceptable Buffer Variance application to receipt of agency approval. The Contractor is required to satisfactorily address the Georgia Environmental Protection Division’s comments within 14 calendar days of receipt. The Buffer Variance cannot be granted prior to issuance of the Section 404 Nationwide permit.

12. The contractor shall be responsible for erecting orange barrier fencing within the Project area to establish and protect any Environmentally Sensitive Areas (ESA) within the Project that to prevent encroachment upon during construction activities. Within ESA buffers for which a variance was obtained, orange barrier fence shall be erected within the buffer at the limits of the construction for which the variance was obtained.

13. The Contractor shall design and construct sound barriers as defined in section 999.1.C, General Project Scope, above.

14. The Contractor is responsible for installing exclusionary barriers as specified in Special Provision 107.23G for the protection of migratory birds during construction.
DRAFT ENVIRONMENTAL COMMITMENTS TABLE

<table>
<thead>
<tr>
<th>NO.</th>
<th>COMMITMENT/REQUIREMENT (Separate out commitments by PI No.)</th>
<th>DOCUMENT STIPULATED IN</th>
<th>RESPONSIBLE PARTY</th>
<th>ESTIMATED COST*</th>
<th>PLACE ON PLANS (Yes or No)</th>
<th>REQUIRES A SPECIAL PROVISION (Yes or No)</th>
<th>STATUS (Pre- and Post Construction – Complete or Incomplete; During Construction – Signature Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All streams, buffers, and wetlands will be delineated on the construction plans.</td>
<td>September 2010 Ecology Report</td>
<td>Design/Build (D/B) Contractor & Georgia DOT Office of Innovative Program Delivery (IPD)</td>
<td>$0</td>
<td>Yes</td>
<td>No</td>
<td>Complete</td>
</tr>
<tr>
<td>2</td>
<td>Due to the presence of migratory birds at the Cobbs Creek/Fowler Branch culvert, 1-20 culvert outflow into Walden Lake, Panthers Branch culvert, and the Miller Road and Panama Road bridges over I-20). Special Provisions 107.23G will be included in the construction contract.</td>
<td>CE; Special Provision 107.23G</td>
<td>Georgia DOT Office of Environmental Services (OES), Office of IPD, & Office of Construction</td>
<td>Negligible</td>
<td>Yes</td>
<td>Yes</td>
<td>Incomplete</td>
</tr>
<tr>
<td>3</td>
<td>A Nationwide Permit (NWP) 23 with a preconstruction notice (PCN) is anticipated and would be obtained from the U.S. Army Corps of Engineers (USACE) for the 45 linear feet of permanent stream impact.</td>
<td>September 2010 Ecology Report: CE</td>
<td>D/B Contractor & Georgia DOT OES</td>
<td>$0</td>
<td>No</td>
<td>No</td>
<td>Incomplete</td>
</tr>
<tr>
<td>4</td>
<td>A buffer variance application will be submitted to the Georgia Environmental Protection Division (EPD) for the approximately 180 linear feet of impacted vegetated buffer along Streams 2, 6, and 10. This authorization would be secured prior to certification for let.</td>
<td>September 2010 Ecology Report</td>
<td>D/B Contractor & Georgia DOT OES</td>
<td>$0</td>
<td>No</td>
<td>No</td>
<td>Incomplete</td>
</tr>
<tr>
<td>5</td>
<td>A note will be placed on the construction plans stating that orange barrier fencing will be installed around the construction limits along buffers within the project limits to minimize impacts to these buffers.</td>
<td>September 2010 Ecology Report</td>
<td>D/B Contractor & Georgia DOT Office of IPD</td>
<td>$0</td>
<td>Yes</td>
<td>No</td>
<td>Incomplete</td>
</tr>
</tbody>
</table>

*Estimated Cost for planning purposes only; in current dollars as of Date Updated
<table>
<thead>
<tr>
<th>NO.</th>
<th>COMMITMENT/REQUIREMENT (Separate out commitments by PI No.)</th>
<th>DOCUMENT STIPULATED IN</th>
<th>RESPONSIBLE PARTY</th>
<th>ESTIMATED COST</th>
<th>PLACE ON PLANS (Yes or No)</th>
<th>REQUIRES A SPECIAL PROVISION (Yes or No)</th>
<th>STATUS (Pre- and Post Construction - Complete or Incomplete; During Construction - Signature Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Coordination will take place with the local floodplain management agency, the Federal Emergency Management Agency (FEMA), and the Georgia Department of Natural Resources (DNR) regarding all floodplain and roadway impacts in accordance with “Procedures for Coordinating Highway Encroachments on Floodplains.”</td>
<td>CE</td>
<td>Georgia DOT Office of Construction</td>
<td>$0</td>
<td>No</td>
<td>No</td>
<td>Incomplete</td>
</tr>
<tr>
<td>7</td>
<td>A stipulation will be placed in the D/B Construction Contract that sound barriers will be constructed in the northwest and southwest quadrants of the I-20/I-285 interchange and along the mainline of I-20 (in both the eastbound and westbound directions) at impacted receiver sites in accordance with the approved Noise Impact Assessment.</td>
<td>CE; October 2010 Noise Impact Assessment</td>
<td>Georgia DOT OES, Office of IPD, & Office of Construction</td>
<td>$0</td>
<td>Yes</td>
<td>No</td>
<td>Incomplete</td>
</tr>
<tr>
<td>8</td>
<td>The Department will hold a community information meeting with the communities located in the northwest and southwest quadrants of the I-20/I-285 interchange that would be affected by the proposed noise walls in these areas to solicit their input, since these noise walls were not shown during the initial Public Information Open House held for this project.</td>
<td>CE</td>
<td>Georgia DOT OES</td>
<td>$0</td>
<td>No</td>
<td>No</td>
<td>Complete (Community Meeting held September 25, 2010)</td>
</tr>
</tbody>
</table>

During Construction Commitments

Construction or Area Engineer signature required upon the completion of all During Construction Commitments.

<table>
<thead>
<tr>
<th>NO.</th>
<th>COMMITMENT/REQUIREMENT</th>
<th>DOCUMENT STIPULATED IN</th>
<th>RESPONSIBLE PARTY</th>
<th>ESTIMATED COST</th>
<th>PLACE ON PLANS (Yes or No)</th>
<th>REQUIRES A SPECIAL PROVISION (Yes or No)</th>
<th>STATUS (Construction/Area Engineer signature upon completion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>A National Pollutant Discharge Elimination System (NPDES) permit shall be required for this project. The permit shall be acquired by the construction contractor following the award of the contract but prior to the start of construction.</td>
<td>Notification from Project Engineer dated 04/12/10</td>
<td>D/B Contractor & Office of Bidding Administration</td>
<td>$0</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sound barriers will be constructed in the northwest and southwest quadrants of the I-20/I-285 interchange and along the mainline of I-20 (in both the eastbound and westbound directions) at impacted receiver sites in accordance with the approved Noise Impact Assessment.</td>
<td>CE; October 2010 Noise Impact Assessment</td>
<td>D/B Contractor with oversight by Georgia DOT Office of Construction</td>
<td>$11,000,000</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

*Estimated Cost for planning purposes only, in current dollars as of Date Updated
<table>
<thead>
<tr>
<th>NO.</th>
<th>COMMITMENT/REQUIREMENT (Separate out commitments by PI No.)</th>
<th>DOCUMENT STIPULATED IN</th>
<th>RESPONSIBLE PARTY</th>
<th>ESTIMATED COST</th>
<th>PLACE ON PLANS (Yes or No)</th>
<th>REQUIRES A SPECIAL PROVISION (Yes or No)</th>
<th>STATUS (Pre- and Post Construction – Complete or Incomplete; During Construction - Signature Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Orange barrier fencing will be installed around the construction limits along streams within the project limits to minimize impacts on the 25-foot buffers around these streams.</td>
<td>September 2010 Ecology Report</td>
<td>D/B Contractor with oversight by Georgia DOT Office of Construction</td>
<td>Negligible</td>
<td>Yes</td>
<td>No</td>
<td>Construction/Area Engineer signature upon completion</td>
</tr>
<tr>
<td>12</td>
<td>The presence of migratory birds at the Cobbs Creek/ Fowler Branch culvert, I-20 culvert outflow into Walden Lake, Panthers Branch culvert, and the Miller Road and Panola Road bridges over I-20) requires that Special Provisions 107.23G will be followed. These provisions prohibit the demolition or reconstruction of existing bridges or culverts during the nesting season of these species from 01 April to 31 August unless exclusionary barriers or hanging flaps/curtains (for culverts) are installed prior to 01 March but after 31 August, as described in Special Provision 107.23G, and successfully prevent the nesting of migratory birds on the bridge or in the culvert.</td>
<td>CE; Special Provision 107.25G</td>
<td>D/B Contractor with oversight by Georgia DOT OES & Office of Construction</td>
<td>Negligible</td>
<td>Yes</td>
<td>Yes</td>
<td>Construction/Area Engineer signature upon completion</td>
</tr>
<tr>
<td>13</td>
<td>The final location of sound barriers shall remain consistent with the locations shown in the costing plans and cannot be moved without Department approval. A change of this nature would require the sound barrier be remodeled by the Department to determine optimal height and length. The final location of the sound barrier can be slightly adjusted for constructability but any shift greater than five feet will need to be approved by the Department and may also require remodeling. With proposed shifts of less than five feet for constructability, the sound barrier top elevation shall be compensated at a ratio of 1:1.</td>
<td>Special Provision Section 999 Design Build Project</td>
<td>D/B Contractor with oversight by Georgia DOT OES & Office of Construction</td>
<td>Negligible</td>
<td>No</td>
<td>No</td>
<td>Construction/Area Engineer signature upon completion</td>
</tr>
</tbody>
</table>

Post Construction Commitments

None

Total Estimated Cost* for all Project Commitments: **$11,000,000**

*Estimated Cost for planning purposes only; in current dollars as of Date Updated
Environmental Timeframe Matrix

<table>
<thead>
<tr>
<th>Document/Permit/Authorization</th>
<th>Coordinating Agency</th>
<th>Materials Needed</th>
<th>Approval Time*</th>
<th>Additional Information</th>
<th>Expiration of Document/Permit/Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special/Technical Studies and NEPA Environmental Reevaluation</td>
<td>State Historic Preservation Officer (SHPO), United States Fish and Wildlife Service (USFWS), and the Federal Highway Administration (FHWA)</td>
<td>1. The Contractor shall be required to provide to the Department project change information, revised/final plans, and any additional work product that may need to be considered in the NEPA analysis that are outside of the original parameters of the Special/Technical Studies and the NEPA document for updating of those documents. 2. Approved Special/Technical Study Addendums provided to the Contractor by the Department, which have been updated with regard to any project changes or change in project impacts due to more detailed design plans.</td>
<td>1. FHWA: to initiate Section 7 coordination w/ USFWS; 2. USFWS: 30 days for Section 7; 3. GDOT: 30 days, minimum, to draft Special/Technical Studies and an Environmental Reevaluation; 4. SHPO/USFWS: 30 days to review Special Studies 5. FHWA: 21 days to review Environmental Reevaluation and an additional 21 days if they provided comments to GDOT on the Reevaluation. GDOT: 30 days to update draft Special/Technical Studies and/or the draft Environmental Reevaluation based on comments received from FHWA or any agency reviewing documentation such as USFWS, or the SHPO.</td>
<td>1. Section 7 concurrence from FHWA/USFWS will be required before the reevaluation can be submitted to FHWA. 2. All preconstruction commitments on the green sheet will need to be completed or on track to be completed for the Environmental Reevaluation to be submitted to FHWA for review. 3. The Project cannot be Environmentally Certified for construction until ALL preconstruction commitments have been completed.</td>
<td>The Environmental Reevaluation is valid until project changes are made that could invalidate the document or affect any of the commitments included in the Environmental Reevaluation. Should changes occur during construction, Special/Technical Studies may need to be updated and a new Environmental Reevaluation would need to be approved.</td>
</tr>
<tr>
<td>Section 404</td>
<td>US Army Corp of Engineers (USACE)</td>
<td>PCN, 8½” X 11” plans (includes cover sheet and construction plan sheets that show the impacted resource), Jurisdictional Determination request, and signed Categorical Exclusion</td>
<td>60 days</td>
<td>Mitigation for the freshwater wetland impacts requires approval from the Corps before work can begin.</td>
<td>In general, 2 years from date of letter unless under construction and then there is 12 additional months to complete the authorized activities; however, for this project, there will be three years from when the letter is issued to complete ALL authorized activities.</td>
</tr>
<tr>
<td>Buffer Variance</td>
<td>Georgia Environmental Protection Division (EPD)</td>
<td>Application, 11” X 17” plans (includes cover sheet and the individual E&S plans for the area(s) of the project requiring the variance, legal ad for newspaper</td>
<td>120 days</td>
<td>For the roadway buffer impacts, the design must follow the mitigation guidelines found on EPD's website. If the variance is being applied for under criterion -H-, then the Section 404 permit is required before variance can be issued.</td>
<td>None unless there are changes in the plans that result in additional buffer impacts. At that time a revision to the existing variance would be needed.</td>
</tr>
<tr>
<td>State Waters Determination</td>
<td>EPD</td>
<td>Plan sheets</td>
<td>30 days</td>
<td>Required if any resources will have non-exempted buffer impacts and buffer status is unclear</td>
<td>None unless conditions change.</td>
</tr>
</tbody>
</table>

*Times are approximate
999.2 PLANS

A. General: The Costing Plans Package prepared on behalf of the Department includes multiple resources listed below. The additional resources will be made available to the short listed Design-Build Teams via a read only GDOT FTP site and shall be considered for information only. These resources are to be used in preparing the bid and corresponding technical proposal (refer to Special Provision Section 102—Bidding Requirements and Conditions) for this Project. The Contractor shall make the Department aware of any resource that is in error or would cause the design (as presented in the Costing Plans Package) to not be constructible.

The Contractor shall check this site weekly for possible updates.

The items below are available for download at the GDOT FTP site which shall be accessed two ways:

<table>
<thead>
<tr>
<th>1st Access to the FTP site through the internet:</th>
<th>2nd Access to the FTP site through the FTP program:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp://dotpublic:dotoutside02@ftp.dot.state.ga.us/</td>
<td>Username: dotpublic</td>
</tr>
<tr>
<td></td>
<td>Password: dotoutside02</td>
</tr>
<tr>
<td></td>
<td>Host Name: ftp.dot.state.ga.us</td>
</tr>
</tbody>
</table>

The files are located at /DOTFTP/InnovativeProgramDelivery/0009542/. Files will be posted 8 am the day of Project Advertisement. The Contractor shall check this site weekly for possible updates.

1. Approved Concept Report
2. Interchange Modification Report (IMR)
3. Value Engineering Study and Responses to Study
4. Survey Control Information
5. CAiCE Data (survey performed prior to resurfacing Project M003234)
6. Microstation J Files
7. Approved Design Exceptions
8. Approved Soils Survey Report
9. Approved Wall Foundation Investigation (WFI) Report
10. Existing Pavement Evaluation
11. Overhead/Subsurface Utility Engineering Investigation Plans for quality level "B" (See Section 999.3.D.3.c for details)
12. Costing Plan Review Report
13. Traffic Engineering Studies
14. Draft Traffic Management Plan (to be completed by Contractor)
15. Previously prepared highway/bridge plans within the Project area.
 a. Original I-20 Construction, Project 1-402-2(5), No PI #
 b. I-20 Lane Additions, Project AC19-FI-20-2(72)66, Contract 1, PI 711290
 c. I-20 Widening from I-285 to Wesley Chapel Road, Project IR-20-2(121) DeKalb, PI #712330
 d. I-285 & I-20 Interchange, Project I-FI-285-1(194), Contract 1, No PI #
 e. I-285 & I-20 Bridges, Project I-FI-285-1(194), Contract 3, No PI #
 f. I-285 & I-20 Interchange, Project I-285-1(40)-110, No PI #
 g. I-20/I-285 Intersection Safety Improvements, Project IM-0000-00(374), PI #0000374
 h. I-20 Bridge Widening Specials & Bridge Jackings, Project AC19-FI20-2(72)66, Contract 3, PI #711292
 i. Wesley Chapel Road Bridge Widening, Project IM-NH-20-21(156), PI #713220
999.3 DESIGN

A. General: The Contractor shall not begin final project design activities until the Department issues a formal written Notice to Proceed for Final Design. The Contractor shall be responsible for the design of the complete Project. The design shall be based on their specific knowledge, and engineering judgment in the preparation of the design for the Project.

1. Measuring Units: The Project shall be designed in English units of measurement.

2. Design Software: Design using Microstation/J in conjunction with CaiCE, v10, sp 3. MicroStation V8i in conjunction with InRoads (version 08.11.05.17) may optionally be used.

Current Department design manuals and guidelines may be found at: http://www.dot.ga.gov/doingbusiness/PoliciesManuals/roads/Pages/default.aspx. Project designers shall adequately consider all elements of the design, including but not limited to roadway geometry, drainage requirements, traffic control during construction, erosion control, structural design, utility conflicts, signing and marking, and future maintenance requirements.

4. Design Reviews: The design is to be prepared under the direct supervision of licensed design professionals. A Professional Engineer licensed to practice engineering in the State of Georgia on the design team shall seal the final plans. Their seal on the drawing shall represent certification that the design meets all applicable codes and is of good engineering practice and standards. It shall be the responsibility of the Contractor to check and certify the design.

The Department will establish dates and times for cursory reviews and will comment on design work, but will not require hold points on the design, review periods, or comment responses, except as noted otherwise. If at any time the Department determines that the design work is not in conformance with the Department’s standards, details, specifications, or good engineering practice, the Department reserves the right to stop work, at the Contractor’s expense until a resolution of the issue(s) has occurred.

Construction documents (plans and specifications) shown in Table 4-1 shall be submitted to the Department for review and acceptance. Acceptance, disapprovals, or comments made by the Department will be provided in writing to the Contractor within the appropriate timeframes shown in Table 4-1.

No construction is to begin on any phase of the work prior to the Department authorizing the various component(s) of the plans as Released for Construction. Other items shall be submitted to the Department by the Contractor, if requested. After the Department has accepted the plans and has authorized them as Released for Construction then the Contractor shall submit to the Department a request for any subsequent plan/design changes and include necessary documentation which supports the reasoning behind the change request. The Department must approve the requested change with written notice prior to its implementation as a plan revision and subsequent construction activity.
The Contractor shall facilitate monthly progress meetings at a venue and time that is determined convenient to the Department. The general purpose of these meetings are to update the Department staff on the status of design, current activities, issues, activities that the Department is currently performing, and other related matters that impact scope, schedule and budget. The Contractor shall provide the Engineer an agenda of items one week in advance of the meeting so that the Engineer may arrange for the various GDOT Office reviewer(s) to attend, if necessary. Other attendees shall include the Contractor, design consultant, the Department’s Project Engineer and Project Manager. The Contractor shall provide a call in number and conferencing capabilities to allow others to participate at the Department’s discretion. The Contractor shall publish meeting notes of those discussions within two weeks of their occurrence. The first of these monthly meetings shall occur at the conclusion of the initial preconstruction conference.

ABBREVIATIONS FOR TABLE 4.1

<table>
<thead>
<tr>
<th>AR</th>
<th>As Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>Full-size paper – meets GDOT Plan Presentation Guide</td>
</tr>
<tr>
<td>HC</td>
<td>Hard Copy – 8 ½ x 11 unless otherwise noted</td>
</tr>
<tr>
<td>HS</td>
<td>Half-size paper – meets GDOT Plan Presentation Guide</td>
</tr>
<tr>
<td>MS</td>
<td>Microstation File – Electronic</td>
</tr>
<tr>
<td>NTP</td>
<td>Notice to Proceed</td>
</tr>
<tr>
<td>PAS</td>
<td>Per Approved Schedule</td>
</tr>
<tr>
<td>PDF</td>
<td>Adobe PDF – One complete file</td>
</tr>
<tr>
<td>Submittal Description</td>
<td>Format</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Basis of Design</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Schedule – including review times</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>QC/QA Plan</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Worksite Utility Control Supervisor</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Worksite Erosion Control Supervisor Qualifications</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Traffic Control Supervisor Qualifications</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Construction Traffic Control Plan</td>
<td>FS, HS, PDF</td>
</tr>
<tr>
<td>Traffic Management Plan</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Preliminary Plans (including all roadway plan components,</td>
<td>HS, PDF</td>
</tr>
<tr>
<td>erosion control plans, signing and marking, ITS, signal plans)</td>
<td></td>
</tr>
<tr>
<td>Final Plans (including all roadway plan components, erosion control plans, signing and marking, ITS and signal plans)</td>
<td>HS, PDF</td>
</tr>
<tr>
<td>Notice of Intent (NOI) with final/signed Erosion Control Plans</td>
<td>HS, PDF</td>
</tr>
<tr>
<td>Submittal Description</td>
<td>Format</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Preliminary Structures</td>
<td>FS, HS, PDF</td>
</tr>
<tr>
<td>• Wall Layouts</td>
<td></td>
</tr>
<tr>
<td>100% Structures</td>
<td>FS, HS, PDF</td>
</tr>
<tr>
<td>• Wall Plans</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td>FS</td>
</tr>
<tr>
<td>Released for Construction Plans</td>
<td>FS, HS, PDF</td>
</tr>
<tr>
<td>Plan Revisions During Construction</td>
<td>FS, HS, PDF</td>
</tr>
<tr>
<td>As-Built Plans</td>
<td>See 999.3.A.8</td>
</tr>
<tr>
<td>Utility Submittal Description</td>
<td>Format</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Supplemental verification of Overhead/Subsurface Utility Engineering (SUE) Investigations - QL-B</td>
<td>MS, HS</td>
</tr>
<tr>
<td>SUE Utility Impact Analysis -"UIA"</td>
<td>AR, PDF</td>
</tr>
<tr>
<td>Overhead/Subsurface Utility Engineering (SUE) Investigations - QL-A</td>
<td>AR, MS</td>
</tr>
<tr>
<td>Subsurface Utilities Engineering Information to Utilities for Review (URPN Letter 1a - SUE Submit to Utility Companies Revise)</td>
<td>FS, HS, PDF, MS</td>
</tr>
<tr>
<td>Relocated Utility Plans (URPN Letter 2 - 2nd Submission Letter (Existing and Proposed))</td>
<td>FS, HS, PDF, MS</td>
</tr>
<tr>
<td>Preliminary Utility Status Report (URPN Letter 6 - Notice to Proceed with Permit)</td>
<td>HC, PDF</td>
</tr>
<tr>
<td>Utility Plans/Agreements (Utility NTP Letter)</td>
<td>Plans/Agreements HS, PDF, MS</td>
</tr>
</tbody>
</table>
“All days are Calendar Days.”, as defined in section 101, Standard specifications

All Submittals shall be made directly to the Engineer. The Engineer shall provide submittals to the applicable GDOT Office Reviewer and/or other applicable entities (including FHWA) as directed by the Engineer, unless otherwise noted or discussed with the Contractor. As accepted by the Engineer the Contractor may provide submittals to applicable offices for a concurrent review. The Contractor shall hand-deliver submittals, track and regularly update the Engineer on review status. In the event that concurrent submittals are required, the receipt date shall be the date the last recipient receives the submittal and shall be the contractual begin date for the review. Unless a different review time is specified elsewhere in the contract, a period of thirty (30) calendar days from receipt to release of the submittal by the Department shall be allowed for the Department’s review. Engineer’s (Department’s) acceptance as to completeness is required for all reviews. All Contractors’ schedules shall reflect the review times contained within the specifications and contract. Engineer’s receipt of submittals will mark the beginning of the review period. All submittals by the Contractor shall be required to contain a statement certifying that no unapproved design-exceptions have been incorporated in the submittal. Up to date half-size sets of plans with the most current design and construction plans shall be made available to a distribution list made up of up to 20 individuals/offices at all times during this Project. Errors and omissions are the responsibility of the Contractor to correct and shall be at the Contractor’s expense.

Any submittal received by the Engineer after 12 PM (noon) shall be considered as being received the following business day.
5. **Field Surveys**: The Contractor shall verify all provided survey data. The survey data provided does not reflect the final as-built conditions due to the Maintenance resurfacing Project M003234. The Contractor is to provide terrain and drainage cross sections, pavement elevations, and drainage structure information for this Project. All survey data shall be noted in English units. The following is only a guideline for data collection and is not intended to be comprehensive:

a. **Provide cross sections of the terrain and pavement at stations as follows:**
 1) These cross sections shall be provided at intervals adequate enough to accurately design and construct the Project, but not to exceed 50 feet along centerlines. Cross sections are required along the relocated driveway on the west side of I-20.
 2) The cross sections are to extend from the centerline to the limits of construction, plus 20 feet, or to the existing or proposed right of way, whichever is greater.
 3) In addition to all terrain breaks, the cross sections shall include all applicable edges of pavement (emergency, outside edges of travel lanes, and curb and gutter sections).

b. The Department feature codes shall be used when collecting the data in accordance with CAiCE Survey Data Guidelines or InRoads Survey Data Processing Guidelines, current version at time of advertising.

c. Locate all existing mainline drainage structures (X,Y, and Z) within the right of way and provide their size, type, condition, and flow line elevations at each end.

d. Locate inlet elevations for all drop inlets and catch basins.

e. Develop terrain profile at each drainage structure showing the skew of the structure.

f. Develop terrain profile of the drainage outfall from the end of each structure to the appropriate limits of influence.

g. Provide any additional necessary survey control.

h. Stake centerlines of all alignments, (mainline, sideroads, ramps, and driveways).

i. Verify the Survey control Packet.

j. Perform sign surveys

k. Perform bridge surveys

l. Perform surface utility surveys

m. Perform supplemental topo surveys

n. Perform right of way surveys

o. Perform stream surveys

p. Perform surveys of ITS items, if located within the limits of construction

q. The accuracy for all survey data shall be as follows:
 1) Horizontal: \(1:10,000\)
 2) Topography: \(0.4'\)
 3) Vertical: NOAA 3rd Order
 4) Pavement: \(0.03'\)
 5) Ground Terrain: \(0.25'\)
6. **Quality Control/Quality Assurance for Design**: The Department, except where noted otherwise, will have oversight responsibilities only and will not perform official reviews and approvals of design work. The Department will not take any approval or formal review actions on design issues except as noted herein or for deviations from the intended scope of the Project.

The Contractor is to employ only persons duly registered in Georgia in the appropriate category in responsible charge of supervision and design of the work; and further, shall employ only qualified, State of Georgia registered land surveyors in responsible charge of any survey work.

The Contractor shall use only a consultant design team that is prequalified by the Department in all applicable area classes as described in the SOQ. Should a member of the Contractor’s Team need to be replaced, the Department must approve of the change.

The Contractor shall endorse all final reports, contract plans and survey data. These endorsements shall be made by a person(s) duly registered in the appropriate category by the Georgia State Board of Registration for Professional Engineers and Land Surveyors, being in the full employ of the Contractor and responsible for the work prescribed in the contract.

All reports, drawings, studies, specifications, estimates, maps and computations prepared by or for the Contractor shall be available to authorized representatives of both the Department and the FHWA for inspection and review. The Department’s review comments are to be incorporated into the plans by the Contractor or as agreed. These changes shall not result in an increase in cost.

Before the start of the contracted design effort, the Contractor shall develop and acquire the Department’s approval for a QC/QA Plan to ensure that all design documents are prepared in accordance with the Department’s Plan Presentation Guide (PPG) for CAiCE or InRoads using good, prudent and generally accepted design and engineering practice. Also see the Department’s Manual of Quality Standards for Consultant Services.

a. The QC/QA Plan shall include the following, which shall be considered minimum requirements:

1) Quality control and quality assurance procedures for design documents shall specify measures to be taken by the Contractor to (A) ensure that appropriate quality standards are specified and included in the design documents and to control deviations from such standards, being understood and agreed that no deviations from such standards shall be made unless they have been previously accepted by the Department, and (B) for the selection of suitable materials and elements of the Work that are included in the Project.

2) Quality control and quality assurance procedures for preparing and checking all plans, calculations, drawings and other items submitted to ensure that they are independently checked and back-checked in accordance with generally accepted engineering practices, by experienced engineers. The originator, checker and back-checker shall be clearly identified on the cover of all submittals. Plans, reports and other documents shall be stamped, signed and dated by the responsible Georgia Registered Engineer where required under the contract documents, generally accepted engineering practices or by applicable laws. The Contractor will submit a certified statement to ensure all reviews have been made.

3) Procedures for coordinating work performed by different persons within the same area, in an adjacent area or in related tasks shall ensure that conflicts, omissions
or misalignments do not occur between drawings or between the drawing and specifications. These procedures shall also allow for the coordination of the review, approval, release, distribution and revision of documents involving such persons.

4) All the persons proposed to be responsible for Quality Control and Quality Assurance procedures are to be listed as follows: Discipline, Name, Qualifications, Duties, Responsibilities and Authorities.

5) All key personnel performing Quality Control and Quality Assurance functions shall be designated as such and shall not be assigned to perform conflicting duties.

All plan related documents produced during the contract period are to be maintained by the Contractor for the duration of the Contract and shall be organized, indexed and delivered to the Department (1) upon Final Acceptance of the Project or (2) even if incomplete, within seven (7) days of receipt of request from the Department. These documents shall include, but not be limited to, the following items: design criteria, reports and notes, calculations, drawings, schematics, supporting materials, statement regarding accomplishment of reviews and others.

7. Released for Construction: Upon the Contractor’s satisfactory completion of the items listed in 999.1.B, and upon written authorization from the Department that the plans are Released for Construction, the Contractor shall stamp each plan sheet with “Released for Construction” and shall include the authorization date. The Released for Construction plans shall be the official plans used for construction of the Project.

8. As-Built Plans: Upon completion of the Project construction, a complete As-Built set of plans shall be provided to the Department in the following formats:
 a. Two (2) CD-ROMs or DVDs containing:
 1) all electronic design files, electronic calculations, etc.
 2) .tiff images of each plan sheet – one sheet per file
 3) .pdf containing the entire plan set
 b. One (1) hard copy of the design databook, and drainage calculations
 c. Two (2) full-size set of bond prints
 d. Two (2) half-size set of bond prints
 e. An estimated summary of quantities and detailed estimate shall be provided in the final As-Built plans

The Contractor shall be responsible for all production and delivery of materials needed for Department review. Both a member of the design team, who is a Professional Engineer, and a member who is a Registered Surveyor, licensed to practice engineering in the State of Georgia shall seal the As-Built plans.

All files are to conform to the criteria for the design platform of choice (CAiCE or InRoads) found in the Department’s Electronic Data Guidelines (EDG), most current version, found at: http://www.dot.state.ga.us/doingbusiness/PoliciesManuals/roads/Pages/default.aspx.

9. Ownership of Documents: The Contractor agrees that all reports, drawings, studies, specifications, survey notes, estimates, maps, computations, computer files and other data, prepared by or for it under the terms of this Agreement shall be delivered to the Department to become and remain the property of the Department upon termination or completion of the work. The Department will have the right to use this information without
restriction or limitation and without compensation to the Contractor other than that provided for in this agreement.

Any use of these documents by the Department on any Project other than this one will be done without warranty by the Contractor/Design Consultant Team.

10. Insurance: In addition to the insurance requirements covered elsewhere, the Contractor shall have insurance coverage of the following types and amounts:

a. Valuable Papers: Insurance in an amount sufficient to assure the restoration of any plans, drawings, field notes or other similar data relating to the work covered by the Project is required. Insurance is to be maintained in full force and effect during the life of this Agreement.

b. Professional Liability (Errors and Omissions): Insurance in an amount not less than one million dollars ($1,000,000) per claim (with a maximum of $250,000 deductible per claim) during the agreement term and for a period of at least five (5) years after this Agreement is closed is required. Such a policy is to cover all of the Contractor's professional liabilities, whether occasioned by the Contractor, his employees, subcontractors or other agents, arising out of services performed under or in accordance with this Agreement.

11. Publication and Publicity: Articles, papers, bulletins, reports or other materials reporting the plans, progress, analyses or results and findings of the work conducted under this Agreement shall not be presented publicly or published without prior approval in writing from the Department. All releases of information, findings and recommendations shall include a disclaimer provision to be included in all published reports on the cover and title page in the following form:

"The opinions, findings and conclusions in the publication are those of the author(s) and not necessarily those of the Department of Transportation, State of Georgia or the Federal Highway Administration."

Any information concerning the Project, including conduct, results or data gathered or processed, released by the Contractor without prior approval from the Department will constitute grounds for termination without indemnity to the Contractor. Information released by the Department or by the Contractor with prior written approval is to be regarded as public information and no longer subject to the restrictions of this Agreement. Information required to be released by the Department under the Georgia Open Records Act, Section 50-18-70, et seq., O.C.G.A., the restrictions and penalties mentioned set forth herein shall not apply. Any request for information directed to the Contractor, pursuant to the Georgia Open Records Act, is to be redirected to the Department for further action.

12. Copyrighting: The Contractor and the Department agree that any papers, interim reports, forms and other material which are a part of work under this Agreement are to be deemed a "work made for hire", as such term is defined in the Copyright Laws of the United States. As a "work made for hire", all copyright interests in said works shall vest in the Department upon creation of the copyrightable work. If any papers, interim reports, forms or other material which are a part of work under the Agreement are deemed by law not to be a "work made for hire", any copyright interests of the Contractor are hereby assigned completely and solely to the Department. Publication rights to any works produced under this Agreement are reserved by the Department.

13. Patent Rights: If patentable discoveries or inventions shall result from work described herein, all rights accruing from such discoveries or inventions shall be the sole property of the Contractor. However, the Contractor agrees to and does hereby grant to the Department, an irrevocable, non-exclusive, non-transferable and royalty-free license to practice each invention in the manufacture, use and disposition according to law of any
article or material and in use of any method that may be developed as a part of the work under this Agreement.

B. Roadway

1. Preparation of Construction Plans

a. General Criteria: The Contractor shall be familiar with and use the most current design criteria at the time of letting, as determined by the Department, American Association of State Highway and Transportation Officials (AASHTO) Design Manuals for Arterial Streets, Rural, Urban and Interstate Highways, including those standards adopted by AASHTO and approved by the Secretary of Commerce, as provided by Title 23, United States Code, Section 109 (b), with the Department’s Standards, Procedures, Plans, Specifications and Methods, with Federal Highway Administration procedures relating to plan review and approval, and shall produce plans in accordance therewith.

Design work for inside interstate rights of way shall conform to the interstate standards. Design for work outside interstate right of way shall conform to AASHTO design standards for the appropriate classification and speed design. Several Design Exceptions have already been approved for this Project. Any additional deviation from these design criteria shall require a written design exception or variance, depending on the violation, to be approved prior to incorporating it into the work.

In addition to the references listed above, the following references shall be used as a minimum in the development of this Project:

1) Electronic Data Guidelines (EDG) – current version at time of letting for the design platform of choice (CAiCE or InRoads)

2) Plan Presentation Guide (PPG) – current version at time of letting for the design platform of choice (CAiCE or InRoads)

3) GDOT Design Policy Manual – current version at time of letting

4) Manual on Uniform Traffic Control Devices (MUTCD) by the U.S. Department of Transportation, Federal Highway Administration -FHWA" – current version at time of letting

5) Manual on Drainage Design for Highways by the Georgia Department of Transportation - current version at time of letting

6) Roadway and Bridge Standard Plans as of July, 2006 by the GDOT Road and Airport Design Office. Design and plan preparation shall also be in accordance with the Certification Acceptance authorized by 23 USC 117(a) for Administering Federal Aid Projects Not On Interstate System, dated June 1, 1990.
7) Guidelines for Processing Design Data in CAiCE (http://www.dot.state.ga.us/doingbusiness/PoliciesManuals/roads/software/Pages/CAiCEDocumentation.aspx) or InRoads Design Guidelines (http://www.dot.state.ga.us/doingbusiness/PoliciesManuals/roads/software/Pages/INROADS.aspx) — current version at time of letting.

8) GDOT Construction Standards and Details - current versions at time of letting

9) Pay Item Index by the GDOT State Transportation Office Engineer - current version at time of letting

10) Utility Accommodation Policy and Standards by the GDOT Utilities Office - current version at time of letting

11) GDOT Signing and Marking Design Guidelines – current version at time of letting

12) Traffic Signal Design Guidelines – current versions at time of letting

13) Other manuals of guidance which are standard procedures of the Department, (signal design, signing and markings, etc).

The above list is not intended to be all-inclusive. All references to the “current version” shall mean those in effect at time of letting. Any current editions that are written in metric units shall be “soft converted” to U.S. Standards Units. Any rounding shall be to the dimension that shall increase safety.

c. Plan Sizes: Plans for roadway, drainage and utilities shall be reproducible quality drawings on bond paper. They shall have outside dimensions of 36” by 24” with a 2” margin on the left and a ½” margin elsewhere and be produced by a Microstation CADD system.

d. Construction Plan Requirements and Scale: The Plans shall be fully dimensioned in English units; all elevations necessary for construction shall be shown similar to the Department’s normal practice. All plans are to be prepared on the scales according to the Department’s Plan Presentation Guide (PPG), current version at time of letting.

The Contractor shall check all details and dimensions shown on the plans before they are submitted to the Department for review. Topography shall remain fully legible when plans are reduced in size, but shall be less prominent and readily distinguishable from the proposed work. Profile sheets shall have the existing ground line dashed and the required profile in a solid line. All other plan sheets (utility, erosion control, signing & marking, etc.) shall be the same scale and sheet layout as its corresponding roadway plan sheet. Retaining wall plans shall be per the Bridge Department’s Standards.

e. Construction Plans Organization and Sheet Index: Construction plans shall be assembled according to the Department’s Plan Presentation Guide (PPG), current version at time of letting.

The total sheets shown in the Index shall be the total number of sheets in the plans. Plans shall be assigned temporary sheet numbers by using the sequence prefix followed by a three-digit number per the PPG. These numbers are to be placed in small blocks in the lower right corner of the sheet.

f. Computations: All design computations and computer printouts shall be neatly recorded on 8 ½” by 11”, fully titled, numbered, indexed, dated and signed by the designer/Project manager and checker. The computer files and two copies of the computations fully checked and appropriately bound, shall be submitted to the Department with the plans. A complete tabulation of the drainage analysis along with
the calculations used to determine the size of drainage structures shall be submitted to the Department.

g. **Plan Print Requirements:** The Contractor shall furnish all the prints necessary for the development of the preliminary and final construction plans and specifications. All prints shall be clear and legible.

h. **Supplementary Information on Construction Plan Preparation:** All of the sheet descriptions and others required for completeness of the plans shall conform to the Department’s Plan Presentation Guide.

i. **Traffic Flow Diagrams:** The Contractor shall update these sheets to provide the current design and opening year traffic data information needed to determine design criteria. The sheets are not required to be to a scale, but the drawing shall show and represent the alignment of the overall Project. Two sets of diagram shall be prepared, one which shows the Average Daily Traffic (ADT) and the other showing the peak Design Hourly Volumes (DHV).

j. **Typical Sections:**
 1) Typical sections shall show dimensions (medians, travel-lanes, shoulders, slopes, ditches, etc.) from the construction centerline. Locate and label the roadway profile grade line for both existing and proposed. Label appropriate items as to type and thickness. All slope controls shall be specified on each typical section. Typical sections are being provided by the Department in the Costing Plans.
 2) Typical sections shall indicate the spread rates for Asphaltic Concrete and thickness for Graded Aggregate Base to be used on the Project, and/or PCC.
 3) Any special conditions shall be shown as details on the typical section sheets. However, if these items are covered by a Georgia Standard or a construction detail, then a note shall be included referring to the standard or detail.
 4) The scale of each typical section may and should differ between the horizontal and the vertical in order to more clearly show the division between separate layers of the structure of the pavement. However the typical sections shall be drawn to a scale and thus are proportionally accurate.
 5) Roadway plans shall meet the established speed design within the limits of this Project as shown in the current versions, at time of letting, of the AASHTO Roadside Design Guide and the MUTCD.
 6) Any substandard guardrail within the limits of construction is to be replaced under this contract. Where construction exists only on one side, only the guardrail on the construction side shall adhere to this requirement.

k. **Construction Plan Sheets:** Construction plan sheets shall be in accordance with the Plan Presentation Guide including, but not limited to, the following: existing topography, construction centerline, curve data, edge of pavements, medians, drainage, bridges, and Project limits.

l. **Roadway Profile Sheets:** The roadway profiles shall be in accordance with the Plan Presentation Guide including, but not limited to, the following: existing ground line, existing elevations, proposed ground line, proposed elevations, PVC, PVT, PVI, LVC, K Value, high points, low points, existing structures, and proposed structures.

m. **Cross Section Sheets:** Cross section sheets shall be developed in accordance with the Plan Presentation Guide.
n. **Staging Plan Sheets:** Staging plan sheets shall be in accordance with the Plan Presentation Guide including, but not limited to, the following: existing topography, construction centerline, curve data, edge of pavements, medians, drainage, bridges, and Project limits.

o. **Staging Profile Sheets:** The staging profiles shall in accordance with the Plan Presentation Guide including, but not limited to, the following: existing ground line, existing elevations, proposed ground line, proposed elevations, PVC, PVT, PVI, LVC, K Value, high points, low points, existing structures, and proposed structures.

p. **Staging Cross Section Sheets:** Cross sections are to be developed to show and correspond to the Staging Plan Sheets. The cross sections are to show the travel paths of the vehicles, and status of the grading associated with that stage of construction. These cross sections are for the purpose of identifying conflicts with utilities, grading, and staging plan sheet sequencing.

q. **Drainage Profile Sheets:** Drainage profiles shall be shown for all proposed drainage structures. Existing drainage profiles shall be shown if pipe and structures are to be retained and when a proposed drainage system connects to it. Drainage structures shall be fully detailed and dimensioned.

All drainage structures located in a designated floodway shall be sized to comply with FEMA regulations. FEMA structures require the use of a computer analysis approved by FEMA, usually HEC-2 analysis, to remodel the flood plain and in order to document that the 100-year storm does not rise more than 1.0 foot total. If the published floodway is altered, all the necessary maps and computer printouts shall be included in the drainage analysis and the Contractor shall ensure that all FEMA and Local Government requirements are satisfied. All other guidelines and computation sheets are in the "Manual on Drainage Design for Highways". The Contractor shall submit all final drainage computations.

r. **Sound Barrier Envelopes and Plans:** Sound barrier envelopes and plans sheets shall be in accordance with the Plan Presentation Guide (PPG) and current Department practices.

s. **Erosion and Sediment Control Sheets:** The Contractor shall not begin any land disturbing activities until the Control of Soil Erosion and Sedimentation Plan has been accepted by the Engineer; the NOI has been successfully submitted to EPD by the Department; EPD has issued a letter to the Department indicating the plan "does meet" current NPDES requirements; and the required waiting period of 14 days is observed.

The Erosion Sedimentation and Pollution Control Plans (ESPCP) shall be prepared in accordance with current Department practice, and in accordance with the requirements set forth in the NPDES General Permit No. GAR1000002 [August 2008]. NPDES General Permit Guidance may be found at: http://www.dot.state.ga.us/doingbusiness/PoliciesManuals/roads/Pages/DesignPolicies.aspx.

In addition, the plans shall be designed in accordance with the current version of Georgia Soil and Water Conservation Commission’s Manual for Erosion and Sediment Control in Georgia (Green Book).

Erosion and Sediment Control Plans detail the erosion control devices to be used. These devices include, but are not limited to, sediment traps, floating silt retention barriers, check dams, silt fence (types A, B & C), bailed straw ditch checks, brush barriers and slope drains. Additional plan sheets are required for each stage of construction. Additional plan sheets are also required to illustrate phased installation.
of erosion measures. All required sediment and erosion control items, including but not limited to installation and maintenance, shall be paid for under CONSTRUCTION COMPLETE.

As contained within the Department's standard ESPCP General Notes (dated 8-26-2008 or more current), the Contractor shall remove all references to the following statement: "The Erosion Sedimentation and Pollution Control Plan (ESPCP) is provided by the Department."

t. **Signing and Marking and Signalization Requirements:** Prepare signing, signalization and marking plans in accordance with the Manual of Uniform Traffic Control Devices (MUTCD), and any applicable AASHTO or Department standards and guidelines that are current at time of letting. Prepare plan sheets to show all permanent roadway signs and pavement markings as they appear upon completion of the Project. Place emphasis on designing clear directional signage and coordinating sign placement with roadway features, structures, sight distances and driver awareness. All signs that are impacted by the Project shall be replaced and shall meet current standards.

Signing and marking plan sheets are included in the costing plans. They have been reviewed and revised per comments in the Costing Plan Review Report. Microstation J files for the signing and marking, as well as the Costing Plan Review Report can be obtained through the ftp site described in Section 999.2.A.
C. Bridges and Structures

1. Design Specifications and Guidelines:
 c. Use “Basic Drawings” where possible. Basic drawings and cells can be downloaded at the following internet address: http://www.dot.ga.gov/doingbusiness/PoliciesManuals/roads/software/Pages/BridgeEngineeringPrograms.aspx.
 d. Use MicroStation/J (or MicroStation V8i, if applicable) to prepare plans in accordance with the Office of Bridge and Structural Design’s MicroStation Customization. These files include a folder structure that is required to be on C:\Drive along with the “Bentley” folder. Access the Bridge MicroStation Customization files at the internet address: http://www.dot.ga.gov/doingbusiness/PoliciesManuals/roads/software/Pages/MicroStation.aspx.

2. Wall Foundation Investigation: The Department will supply wall foundation investigations for information only. If the Contractor proposes a new location for these structures from those shown in the Costing Plans, and the Department determines that additional investigations are required as a result of the change, then the investigation and reporting shall be prepared in accordance with the following:
 a. General:
 1) Perform field and laboratory testing and analysis, and prepare a report with foundation recommendations for the walls. Work is to be performed by qualified and experienced firms that are pre-qualified with the Georgia DOT in Area Class 6.02.
 2) Perform work in accordance with AASHTO Standards and in general conformance with the Department’s Geotechnical Engineering Bureau Foundation Drilling and Sampling Guidelines. Comply with all applicable Federal and State requirements.
 b. Field Investigation:
 1) Drill a minimum of one boring at each wall. Drill additional borings as necessary. Perform the following, as applicable:
 (a) Notify property owners prior to accessing their properties.
 (b) Obtain locations and clearance for all utilities within the area of the borings.
 (c) Provide traffic control and lane closures in accordance with the Georgia DOT Specifications.
 (d) Clearing and preparation of the boring site.
 (e) Obtaining and transporting water to the site.
 (f) Foundation drilling and sampling of soil and rock.
(g) Obtaining accurate survey elevations.
(h) Site cleanup, erosion control, and restoration.

2) Fill portions of all drill holes with drill cuttings after completion of drilling that are not subject to excavation for construction. Top off all drill holes through pavements with cold mix asphalt (unless subject to excavation) to the same depth as the existing pavement. Remove all drill cuttings, muddy water, slurry, and other debris deposited on pavements, paved shoulders, and other travel ways immediately when the areas shall be subject to traffic after the completion of drilling. Calculate elevations to an accuracy of one tenth (0.1) of a foot.

3) Do not provide copies of boring logs, plans, or field test reports to property owners or other parties without the permission of the State Geotechnical Engineer.

c. Laboratory Testing:

1) Perform laboratory testing on samples obtained from the field in accordance with applicable methods of AASHTO, ASTM, or GDT test procedures. Use a laboratory that possesses current AASHTO certification.

2) Furnish laboratory results as part of the Final Report.

d. Final Analysis and Report:

1) Perform a geotechnical analysis for this Project and prepare geotechnical recommendations in the form of a final report to the Department’s State Geotechnical Engineer for review, prior to foundation construction. Base the final report on the information collected from the field investigation, the plans, specifications, results of laboratory tests, and the analysis of all other available information.

2) Stamp and sign the final reports by a Professional Engineer registered in the State of Georgia. Provide copies of the final report to the State Geotechnical Engineer.

3) Prepare the reports in general conformance to the Department’s Geotechnical Engineering Bureau Report Preparation Guidelines, Georgia DOT Specifications, and in conformance with good engineering practice. Incorporate the following recommendations and additional recommendations as applicable

(a) Foundation types and allowable loads.
(b) Footing elevations.
(c) Pile minimum and estimated tip elevations.
(d) Drilled caisson tip elevations.
(e) Foundation installations in rock.
(f) Embankment construction, settlement, and slope angles.
(g) Treatment of groundwater conditions.
(h) Treatment of poor soil conditions.
(i) Construction effects on adjacent structures and remedies for any potential problems.

4) In the Final Report, include (as applicable) copies of boring logs, field notes, laboratory and field test results or summaries, photographs, special provisions, details and drawings, and other related information. Correct final reports with
errors and omissions, as determined by the State Geotechnical Engineer. Resubmit the corrected report at no additional cost to the Department.

5) Acceptance of the work by the Department will not relieve the Contractor of the responsibility for subsequent correction of errors or for the costs associated with work caused by negligent errors or omissions from work performed by the Contractor.

3. Plan Submittals
 a. Preliminary Plans: Preliminary Layout (if required, see below) and Preliminary Wall Plans
 b. Construction Plans: Submit complete wall plans
 c. Shop Drawings.
 d. Submit one (1) copy of the design calculations for each scheduled submittal.

4. Preliminary Wall Plans
 a. Retaining wall envelopes and conceptual locations have been provided in the Costing Plans. Prepare Preliminary Wall Plans in accordance with the following guidelines:
 1) The wall locations and recommended wall types are as follows:
 (a) Wall 1 – I-20 EB CD/I-20 Eastbound (Station 68+65 to Station 1187+75)
 Cast-in-place concrete and MSE (Mechanically Stabilized Earth), Side barrier and sound barrier required along approximately 360’ of MSE wall. Additionally, this wall will require permanent shoring to allow for the use of lightweight fill on top of the culvert at Cobbs Creek.
 (b) Wall 2 - I-20 Eastbound (Station 1201+23 to Station 1214+05) - MSE
 (c) Wall 3 – Wesley Chapel EB Off (Station 17+00 to Station 20+95.43) - Cast-in-place concrete or soil nail. If a soil nail wall is utilized the anchors shall not extend beyond the limits of the right of way.
 (d) Wall 4 – I-20 EB CD/ I-20 Eastbound (Station 129+89.75 to Station 1245+00)
 - Cast-in-place concrete - Median Barrier, Type 22 (Ga. STD. 4940) and Side Barrier, Type 6-C (Ga. STD. 4948C)
 (e) Wall 5 – Wesley Chapel EB On (Station 39+75 to Station 49+25) - Cast-in-place concrete or soil nail. If a soil nail wall is utilized the anchors shall not extend beyond the limits of the right of way.
 (f) Wall 6 - I-20 Eastbound (Station 1259+85 to Station 1264+80) - Cast-in-place concrete or MSE
 (g) Wall 7 – I-20 Eastbound (Station 1322+25 to 1326+50) – type to be determined by Contractor – Possible types include cast in place concrete or tie-back
 2) Alternate wall types are permissible as approved by the Department. Modular block type walls will not be permitted.
 3) An elevation view or wall envelope of the proposed wall drawn to a scale of 1:10 and indicating the following data:
 (a) Beginning and end wall stations.
(b) Elevations on top of wall parapet, coping, or traffic barrier at the beginning and end of wall, at profile break points, and at least every 50 feet along the wall.

(c) Bottom of wall (top of footing) elevation necessary to maintain minimum berm requirements.

(d) Original ground profile.

(e) Proposed ground profile.

(f) Stations and offsets to ends of walls and locations where wall changes direction.

(g) Stations and elevations along top and bottom of wall.

4) Roadway cross-sections in the vicinity of the wall that will indicate the existing and final slope behind the wall.

5) Typical sections for MSE walls shall include:
 (a) Limit of special backfill (1'-0" beyond end of reinforcement)
 (b) Reinforcement
 (c) Facing
 (d) Coping, parapet or barrier
 (e) Back-slope and fore-slope
 (f) Leveling Pad
 (g) Bridge abutment
 (h) Additional select backfill behind bridge abutment
 (i) Concrete ditches

6) Project Plan and Profile sheets which indicate the following:
 (a) Limits of right-of-way.
 (b) Superelevation data.
 (c) Horizontal and vertical alignment data.
 (d) Horizontal offsets to face of retaining wall.
 (e) Location and type of overhead signs which may be near retaining walls.
 (f) Location of roadway lighting which may be near or attached to the retaining wall.
 (g) Location and size of any drainage structures which will affect the retaining walls.

7) Any construction sequence requirements that will affect the construction of the walls and which will have to be accounted for in the preparation of retaining wall plans.

5. Final Wall Plans
 a. Additional Wall Design Criteria
 1) In addition to the requirements for Preliminary Wall Plans, the Final Wall Plans will require:
 (h) Wall Notes prepared with Georgia DOT Bridge Notes Program.
(i) Design Data

(j) Wall Quantities

2) MSE Walls are to be constructed in accordance with Section 627 of the GDOT Specifications.

3) Tie Back Walls are to be constructed in accordance with Section 617 of the GDOT Specifications.

4) Soil Nail Walls are to be constructed in accordance with Section 628 of the GDOT Specifications.

5) Concrete Retaining Walls are to be constructed in accordance with Section 500 of the GDOT Specifications.

6) Use the following in the design and construction of the walls:

(a) Wall 1 – I-20 EB CD/I-20 Eastbound (Station 68+65 to Station 1187+75) - Side barrier and sound barrier required along approximately 360’ of MSE wall
 - Soil Unit Weight, $\gamma = 120$ pcf
 - Angle of effective internal friction, $\varphi = 28$ degrees
 - Cohesion, $C = 0$ psf
 - Coefficient of sliding friction, $\mu = 0.35$
 - Maximum allowable bearing pressure = 3000 psf (for MSE wall)
 - For an MSE Wall, if the calculated bearing pressure exceeds the maximum allowable design pressure, build wall to a height equivalent to the maximum allowable design pressure and wait a period of 30 days. After this waiting period, the construct wall to final height.

(b) Wall 2 - I-20 Eastbound (Station 1201+23 to Station 1214+05)
 - Soil Unit Weight, $\gamma = 120$ pcf
 - Angle of effective internal friction, $\varphi = 28$ degrees
 - Cohesion, $C = 0$ psf
 - Coefficient of sliding friction, $\mu = 0.35$
 - Maximum allowable bearing pressure = 3000 psf (for MSE wall)
 - For an MSE wall, if the calculated bearing pressure exceeds the maximum allowable design pressure, build wall to a height equivalent to the maximum allowable design pressure and wait a period of 30 days. After this waiting period, the construct wall to final height.

(c) Wall 3 – Wesley Chapel EB Off (Station 17+00 to Station 20+95.43)
 - Soil Unit Weight, $\gamma = 120$ pcf
 - Angle of effective internal friction, $\varphi = 30$ degrees
 - Cohesion, $C = 0$ psf
 - Coefficient of sliding friction, $\mu = 0.40$
 - Maximum allowable bearing pressure = 3000 psf

(d) Wall 4 – I-20 EB CD/ I-20 Eastbound (Station 1230+52 to Station 1241+53)
• Soil Unit Weight, γ = 120 pcf
• Angle of effective internal friction, φ = 28 degrees
• Cohesion, C = 0 psf
• Coefficient of sliding friction, μ = 0.35
• Maximum allowable bearing pressure = 3000 psf

(e) Wall 5 – Wesley Chapel EB On (Station 39+75 to Station 49+25)
• Soil Unit Weight, γ = 120 pcf
• Angle of effective internal friction, φ = 28 degrees
• Cohesion, C = 0 psf
• Coefficient of sliding friction, μ = 0.35
• Maximum allowable bearing pressure = 3000 psf

(f) Wall 6 - I-20 Eastbound (Station 1259+85 to Station 1264+80)
 a) Soil Unit Weight, γ = 120 pcf
 b) Angle of effective internal friction, φ = 28 degrees
 c) Cohesion, C = 0 psf
 d) Coefficient of sliding friction, μ = 0.35
 e) Maximum allowable bearing pressure = 3000 psf (for MSE wall)
 f) For an MSE wall, if the calculated bearing pressure exceeds the maximum allowable design pressure, build wall to a height equivalent to the maximum allowable design pressure and wait a period of 30 days. After this waiting period, the construct wall to final height.

(g) Wall 7 – I-20 Eastbound (Station 1322+25 to 1326+50)
 g) Soil Unit Weight, γ = 120 pcf
 h) Angle of effective internal friction, φ = 28 degrees
 i) Cohesion, C = 0 psf
 j) Coefficient of sliding friction, μ = 0.35
 k) Maximum allowable bearing pressure = 3000 psf

7) The design parameters for the Georgia DOT Standard cast-in-place retaining walls may differ from what is recommended in the Wall Foundation Investigation and shown this specification. When using the Georgia DOT Standard cast-in-place retaining walls, the engineer shall ensure that the walls are adequately designed. Modifications to the wall design and details due to the design parameters for the particular site are the responsibility of the Contractor.

6. Shop Drawings

Provide shop drawings in accordance with Georgia DOT Specifications. The Contractor’s engineer, who is responsible for the design, shall review, sign and seal all shop drawings. After being signed and sealed by the Contractor’s design engineer, the Department will review the shop drawings for conformance with the plans and specifications. Allow the Department a 30 day review period upon receipt of the shop drawings for each submittal.
D. Utilities

1. The Contractor shall have the responsibility of coordinating the Project construction with all utilities that may be affected. Coordinating responsibilities shall include but not be limited to the following:

 a. The Contractor shall initiate early coordination with all Utility Owners located within the Project limits. All Utility Coordination shall be performed to GDOT standards by a prequalified firm in Area Class 3.10 - Utility Coordination. Refer to the following website for a list of current prequalified firms:

 http://www.dot.state.ga.us/doingbusiness/consultants/Pages/default.aspx

 The Contractor shall be responsible for the cost of Utility Coordination. Coordination shall include, but shall not be limited to, contacting each Utility Owner to advise of the proposed Project; supplemental verification of the locations of existing utility facilities (including the employment of additional Overhead/Underground Subsurface Utility Engineering investigations (SUE) as described in section 999.3.D.3.c of this specification); and determining requirements for the relocation or adjustment of facilities.

 b. The Department and/or the Utility Owner shall be responsible for the cost of utility relocation (this may change according to the details contained in the MOUs), where they hold a property interest, and in accordance with the Department's "Utility Accommodation Policy and Standards Manual". Details are provided in the attached Memorandum of Understanding (MOU) executed between the Department and each Utility Owner.

 c. The Contractor shall endeavor to design the Project to avoid conflicts with utilities when feasible, and minimize impacts where conflicts cannot be avoided (See Section 999.3.D.2.c). The Contractor shall submit to the Department a SUE Utility Impact Analysis (UIA) in the Department’s prescribed format within 90 days of notice to proceed (see TABLE 4-1: REVIEWS).

 d. The Contractor shall coordinate and conduct a preliminary review meeting with the Utility Owners to assess and explain the impact of the Project. The Department's Project Manager, District Construction Engineer (or designee), and District Utilities Engineer (or designee) shall be included in this meeting. Knowledge of the Project environmental -Commitments/ Requirements” (Green Sheets) is essential for Utility Owners during their design phase. The Contractor shall provide the Environmental Commitments table, and any re-evaluation with all Utility Owners. Also, during the preliminary review meeting Utility Owners are particularly interested in the status of Right of Way acquisition and its direct effect on their relocation design. The Contractor shall develop a status report of the Right of Way acquisition process, for Utility Owners use in planning for relocations. The Contractor shall record the minutes for this meeting and distribute to all attendees for their review and concurrence.

 e. The Contractor shall research the property interests of each Utility Owner’s facilities. If there is a dispute over property interests with a Utility Owner, the Contractor shall be responsible for resolving the dispute. The Contractor shall meet with the Department's District Utilities Engineer (or designee) to present the property interests information gathered. This information must be sufficient for the District Utilities Engineer (or designee) to certify the extent of the Utility Owner’s property interests. The Department shall have final approval authority as to the Contractor's determination of whether the Utility Owner has property interests.

 f. The Contractor shall prepare and submit to the Department a Preliminary Utility Status Report within 160 days after the Notice to Proceed has been given for the
contract (See TABLE 4-1: REVIEWS). This report shall include a listing of all Utility Owners located within the Project limits and a recommendation as to the extent of each Utility Owner's property interests. This report shall include copies of easements, plans, or other supporting documentation that substantiates any property interests of the Utility Owners. The report shall also include a preliminary assessment of the impact to each Utility Owner.

g. Depending on the provisions stipulated in the Memorandum of Understanding (MOU – See Attached) between the Department and each Utility Owner the Contractor shall be responsible for one of the following Design Activities:

1) The Contractor shall provide Utility Owners with design plans and Preliminary Utility Plans as soon as the plans have reached a level of completeness adequate to allow them to fully understand the Project impacts. The Utility Owner will use the Contractor’s design plan for preparing Utility Relocation Plans, cost estimates, and respective Utility Adjustment Schedules (UAS). If a party other than the Utility Owner prepares Utility Relocation Plans, there shall be a concurrence box on the plans where the Utility Owner signs and accepts the Utility Relocation Plans as shown.

2) The Contractor shall prepare all engineering design, plans, technical specifications, cost estimates, and utility adjustment schedules required to perform the necessary utility relocations. The Contractor shall certify to the Department that the design package listed above has been reviewed and accepted by the each respective Utility Owner.

h. The Contractor shall be responsible for collecting the following from each Utility Owner that is located within the Project limits: Certified Utility Relocation Plans including a letter of "no cost" where the Utility Owner does not have a prior right; Utility Agreements, certificates of eligibility, including cost estimate and Utility Relocation plans where the Utility Owner has a property interest; Letters of "no conflict" where the Utility Owner's facilities will not be impacted by the Project. The Contractor shall prepare and submit to the Department a Utility Retention Request for any utility which is to remain under the roadway within the construction limits.

i. The Contractor shall be responsible for determining if the Department has agreed to pay for in-kind relocations according to any approved Utility-Aid assistance package for publicly (government) owned utilities found within the Project’s limits (See the Department’s (Policies & Procedures) TOPPS Policy #6863-11 for additional information regarding Utility-Aid). If the Department has approved Utility-Aid: it is the Contractor’s responsibility to assemble the necessary information including any Utility Agreements in a final and complete form and in such a manner that the Department may approve the submittals with minimal review. Failure to submit such required Utility Agreements prior to the beginning of construction shall fully transfer the utility owner’s obligations, as stated in the subject Utility-Aid assistance package, to the Contractor. Deductions to reimburse the Department for such obligations may be made from any current partial payment of the Lump Sum price.

j. The Contractor shall review all Utility Relocation Plans and Utility Agreements, Utility Estimates and certificates of eligibility to ensure that relocations comply with the Departments “Utility Accommodation Policy and Standards Manual”. The Contractor shall review the utility plans to identify that there are no conflicts with the proposed highway improvements, and ensure that there are no conflicts between each of the Utility Owner's relocation plans. The Contractor shall show all existing and proposed utilities on the cross sections and drainage profiles.
k. The Contractor shall compile, and submit to the Department all SUE deliverables, Utility Relocation Plans, SUE Utility Impact Analysis, Utility Adjustment Schedules, Utility Agreements, Utility Estimates (if estimates are provided by the utility owners), and Letters of "no conflict," as set forth above for the Project. The Contractor is expected to assemble the information included in the Utility Agreements and Utility Relocation Plans in a final and complete form and in such a manner that the Department may approve the submittals with minimal review. The Contractor shall schedule a meeting with the Department's District Utilities Office and the State Subsurface Utilities Engineer (or designee) for a SUE Kick-Off meeting within 15 days of the Notice to Proceed to gain a full understanding of what is required with each submittal. The Utility Owners shall not begin their Utility Relocation work until authorized in writing by the Department.

l. Each Utility Agreement and Utility Relocation Plan submitted shall be accompanied by a certification from the Contractor and the Utility Owner stating that the proposed relocation will not conflict with the proposed highway improvement and will not conflict with another Utility Owner's relocation plan.

m. Depending on the provisions stipulated in the Memorandum of Understanding (MOU – See Attached) between the Department and each Utility Owner the Contractor shall be responsible for one of the following construction activities:

1) The Contractor shall be responsible for coordinating the work of its subcontractors and the various Utility Owners. The resolution of any conflicts between Utilities and the construction of the Project shall be the responsibility of the Contractor. No additional compensation will be allowed for any delays, inconveniences, or damage sustained by the Contractor or its subcontractors due to interference from utilities or the operation of relocating utilities.

2) The Contractor shall be responsible for performing all utility removal, relocation, and adjustments required to accommodate the proposed Project. This shall include any required inspection, permitting, testing and monitoring to ensure that the work is properly performed to the certified design package. The resolution of any conflicts between Utilities and the construction of the Project shall be the responsibility of the Contractor. No additional compensation will be allowed for any delays, inconveniences, or damage sustained by the Contractor or its subcontractors due to interference from utilities or the operation of relocating utilities.

n. During the construction of the Project, the Contractor shall designate, prior to beginning any work, a Worksite Utility Coordination Supervisor (WUCS) who shall be responsible for initiating and conducting utility coordination meetings and accurately recording and reporting the progress of utility relocations and adjustment work. Also, the WUCS shall prepare an Emergency Response Plan for the purpose of planning, training, and communicating among the agencies responding to the emergency. The WUCS shall be the primary point of contact between all of the Utility companies, the Contractor and the Department. The WUCS shall recommend the rate of reoccurrence for utility coordination meetings and the Engineer will have the final decision on the regularity for utility coordination meetings. In no case will utility coordination meetings occur less than monthly until controlling items of utility relocations and adjustment milestones are completed. The WUCS shall contact each of the utility companies for the purpose of obtaining information including, but not limited to, a Utility Adjustment Schedule for the controlling items of utility relocations and adjustments. The WUCS shall notify the appropriate utility company and/or utility subcontractors and the Department of the status of controlling items of relocations and adjustment milestones as they are completed. The WUCS shall furnish the
Engineer, for approval, a Progress Schedule Chart, prior to beginning Construction unless otherwise specified, which includes the utility companies controlling items of work and other information in accordance with Section 108.03 or elsewhere in the Contract documents. Duties and Responsibility of the Worksite Utility Coordination Supervisor, (WUCS):

1) **Qualifications:** The WUCS shall be an employee of the Prime Contractor, shall have at least one year experience directly related to highway and utility construction in a supervisory capacity and have a complete understanding of the Georgia Utilities Protection Center operations, and shall be knowledgeable of the High-voltage Safety Act and shall be trained on the Georgia Utility Facility Protection Act (GUFPA). The Department does not provide any training on GUFPA but will maintain a list of the Georgia Public Service Commission certified training programs developed by other agencies. Currently the following companies offer approved GUFPA training programs:

 Associated Damage Consultants
 Phone: 706.234.8218 or 706.853.1362

 Georgia Utility Contractors Association
 Phone: 404.362.9995

 Georgia Utilities Protection Center
 Phone: 678.291.0631 or 404.375.6209

 H B Training & Consulting
 Phone: 706.619.1669 or 877.442.4282 (Toll Free)

The Prime Contractor is responsible for obtaining the GUFPA training for their employees.

Questions concerning the Georgia Public Service Commission GUFPA training program shall be directed to:

 Georgia Public Service Commission
 244 Washington St. SW
 Atlanta, GA 30334-5701
 404.463.9784

2) **Ticket Status:** During the utility coordination meetings the WUCS shall collect and maintain the Ticket Status information to determine the status of all locate requests within the Project limits. This information will be used to assure those planning to use mechanized equipment to excavate or to work within the Project limits are prepared to begin work when they have reported or estimated beginning work. At points where the Contractor’s or utility company’s operations are adjacent to or conflict with overhead or underground utility facilities, or are adjacent to other property, damage to which might result in considerable expense, loss, or inconvenience, work shall not commence until all arrangements necessary for the protection thereof have been made.

3) **Notice:** The names of known utility companies and the location of known utility facilities shall be shown on the Plans, or listed in the Subsurface Utility Engineering Investigation if performed or in the Special Provisions; and the WUCS shall give 24-hour notice to such utility companies before commencing work adjacent to said utility facilities which may result in damage thereto. The WUCS shall further notify utility companies of any changes in the Contractor’s work schedules affecting required action by the utility company to protect or
adjust their facilities. Notice to the utility companies by the Department of the Award of Contract, under Subsection 105.06, shall not be deemed to satisfy the notice required by this paragraph. Furthermore, this 24-hour notice shall not satisfy or fulfill the requirements of the Contractor as stated in Chapter 9 of Title 25 of the Official Code of Georgia Annotated, known as the “Georgia Utility Facility Protection Act”.

4) **Agenda:** The WUCS shall cooperate with the companies of any underground or overhead utility facilities in their removal and relocations or adjustment work in order that these operations may progress in a reasonable manner, that duplication of their removal and relocations or adjustment work may be reduced to a minimum, and services rendered by those parties will not be unnecessarily interrupted. To promote this effort the WUCS shall prepare an agenda for the utility coordination meetings and circulate same in advance of the meeting to encourage input and participation from all of the utility companies. The agenda will be prepared by an examination of the Project site and may include photographs of potential/actual utility conflicts.

5) **Emergency Response Plan:** The WUCS shall prepare and submit to the Department an Emergency Response Plan no later than 30 days prior to beginning construction. The WUCS shall clearly mark and highlight the gas, water and other pressurized pipeline shut-off valves and other utility services including overhead switch locations on the utility plans; and prepare a chart to indicate the location of each site (Street address or intersections), the utility company or operator of the facility with emergency contact information and the working condition of the device to facilitate prompt shut-off. The WUCS shall post the Emergency Response Plan in an area readily accessible by the Department. In the event of interruption to gas, water or other utility services as a result of accidental breakage or as a result of being exposed or unsupported, the WUCS shall promptly notify the appropriate emergency officials, the Georgia Utilities Protection Center and the appropriate utility facility company or operator, if known. Until such time as the damage has been repaired, no person shall engage in excavating or blasting activities that may cause further damage to the utility facility.

6) **Submission:** Provisions for reporting all utility coordination meetings, the progress of utility relocation and adjustment work milestones and ticket status information shall be reported on a form developed by the WUCS and will be distributed by the WUCS to all of the utility companies as milestones are met and shall be included as part of the Project records. These reports shall be delivered to the Engineer for review, on a monthly basis. The WUCS shall immediately report to the Engineer any delay between the utility relocation and adjustment work, the existing Utility Adjustment Schedule, or the proposed Utility Adjustment Schedule so that these differences can be reconciled.

7) **Utility Adjustment Schedule:** The purpose of the Utility Adjustment Schedule is to provide the Contractor with the pertinent information, including any utility staging required, dependent activities, or joint-use coordination that is required for the creation of a progress schedule chart that is feasible. A suitable Utility Adjustment Schedule form is available from the Department for the WUCS to circulate to utility companies for any proposed Project construction staging. The WUCS shall submit the Progress Schedule Chart in accordance with Section 108.03 and the proposed Utility Adjustment Schedules from all utility companies to the Engineer for review and approval.
o. At the time the Contractor notifies the Department that the Contractor deems the Project to have reached Final Completion, the Contractor shall certify to the Department that all Utilities have been identified and that those Utility Owners with property interests or other claims related to relocation or coordination with the Project have been relocated or their claims otherwise satisfied or shall be satisfied by the Contractor.

p. The Contractor shall show the final location of all utilities on the As-Built drawings for the Project as stated in Section 999.3.A.8.

q. In addition to the above, the Contractor shall comply with all provisions set forth under subsection 107.21 of the Georgia Department of Transportation’s Specifications, Construction of Transportation Systems, current edition.

r. The Contractor shall be responsible for determining if the Department has agreed to a Project Framework Agreement (PFA) with Local Government or, additional Specific Activity Agreements (SAA) within the Project’s limits (See the Department’s (Policies & Procedures)TOPPS Policy #7120-3 for additional information). If the Department has approved a PFA or SAA; it is the Contractor’s responsibility to assemble the necessary information including any Utility Agreements in a final and complete form and in such manner that the Department may approve the submittals with minimal review. Failure to submit such required Utility Agreements prior to the beginning of construction shall fully transfer the obligations, as stated in the subject PFA or SAA package, to the Contractor. Deductions to reimburse the Department for such obligations may be made from any current partial payment of the Lump Sum price.

2. General

a. By Georgia Statues, utilities whether public or privately owned, aerial or underground, are permitted by the Department and local governments to be accommodated within the public right of way. To this end, the Contractor shall design/build a Project that will accommodate and minimize impacts to all existing utilities and new utilities to be constructed concurrently with the Project. The selection of typical section features, horizontal alignment, and location of storm sewer lines are design elements that can sometimes be varied without violating safety standards, and accepted design principles. Design/construction techniques that minimize or avoid utility conflicts may involve increased upfront costs; however, those costs are offset by savings during construction, in addition to the total cost savings for the Project (the Department or local government) and the respective utility owners.

c. The Utility Plans are used as the primary tool to identify and resolve utility related conflicts/issues prior to beginning the construction of a Project. Also, when these plans are properly prepared as indicated in this Special Provision; they will support the vital coordination required between the Contractor and the Utility Owner during construction. Existing utility information shown on the utility plans for this Project have been obtained from an Overhead/Subsurface Utility Engineering (SUE) Investigation (please refer to 999.3.D.3.c. for more information on SUE). This existing utility information has been provided by the Department for the Contractor’s use in the design and construction of this Project. However, the Contractor shall be responsible for supplementing this utility information for utilities that have been installed after the Overhead/Subsurface Utility Engineering (SUE) Investigation was
performed. Known utilities and contacts are shown in the Costing Plans Package. This information shall be verified by the Contractor.

d. Utility plan sheets are comprised of completed roadway plan sheets but shall contain more detailed information featuring existing and proposed utility facilities. Specific requirements for Utility Plans are detailed below.

3. Required Information

a. Preliminary Utility Plans

1) Preliminary Utility Plan sheets are typically comprised of preliminary roadway plan sheets with the inclusion of all existing utility facility locations (overhead & underground) found within a Project’s limits. Determining the location of the existing utilities shall be accomplished through an Overhead/Subsurface Utility Engineering Investigation. The "degree of effort" exerted on the part of the Department and the Utility Owner varies with the type and location of the utility. The Department has classified these "degrees of effort" into different Quality Levels of information. Please refer to 999.3.D.3.c. for definitions of these Quality Levels.

2) Preliminary Utility Plans shall be produced and used by the Contractor in the utility coordination/relocation design activities outlined here and under Section 999.1. The following minimum information shall be shown on the Preliminary Utility Plans:

(a) Construction centerlines with Project stations and begin/end Project limits.
(b) Curb and gutter or edge of pavement (proposed and existing)
(c) Road and street names
(d) Existing and Required Right of Way limits, property lines, environmentally sensitive area limits, and property owners.
(e) All proposed and existing easements (including existing utility easements)
(f) Proposed and existing drainage structures/features (excluding drainage text)
(g) Proposed construction limits (C/F lines)
(h) Topographical planimetrics (i.e. existing buildings/structures, existing tree/vegetation limits)
(i) All proposed bridges, walls, other structures and landscape hardscapes.
(j) All proposed and existing strain poles (signal, sign, lighting)
(k) Utilities Legend
(l) Miscellaneous General Notes
(m) Existing overhead and underground utilities found within the Project’s limits, including size and material if known.
(n) Sanitary sewer manhole top, and invert elevations. Sanitary Sewer pipe flow directions
(o) Railroad mainline and spur tracks with their respective property/easement limits
(p) Project Survey control point locations
(q) SUE specific General Notes
(r) Utility Pole Data Table
b. Final Utility Plans

1) Final Utility Plans consist of all the elements provided for in the Preliminary Utility Plans, but also show all proposed utility adjustments required to accommodate the Project.

2) The proposed utility information shall either be provided to the Contractor by each of the respective Utility Owners. Refer to this section to determine how proposed utility relocation design information is to be provided. In either case the Contractor shall compile and incorporate this information into the Project’s Final Utility Plans.

3) The proposed utility work for this Project shall either be performed by the Utility Owner or their designated contractor, or included as part of the Project's construction contract. Refer to Section 999.1.C or to the Memorandum of Understanding (MOU) to determine who is responsible for the proposed utility relocation work for this Project.

4) In either case, the Final Utility Plans shall clearly show all existing, proposed, temporary, and relocated utilities on the plans and clearly indicate the disposition of all existing utilities: for example, "To be removed", "To be Adjusted", "To be Abandoned", "To Remain", "To be Relocated", etc. The plans shall also clearly define utility work as to which is to be done by the Contractor and which is to be done by others. Utilities to be relocated (or removed, or installed) prior to construction shall be labeled on the plans as "To be relocated (or removed or installed) by others prior to Project construction".

5) When proposed utility work is included as part of the Project’s contract, it is necessary for a Summary of Quantities to be included within the Final Utility Plans. The Summary of Quantities shown in the Final Utility plans shall be prepared in the same basic format as indicated in Section 999.3.B.

6) Where extensive or complex utility work is proposed to be performed, separate Utility Relocation Plan Sheets for that specific utility may be required to ensure plan legibility/constructability. The Contractor shall determine whether separate Utility Relocation Plans are needed. However, after review of the plans, the Engineer may require these additional sheets or drawing inserts to be included in the Project plan package.

7) In addition to the information required for the Preliminary Utility Plans, the Final Utility Plans shall include the following:

(a) All proposed and temporary utility facilities with annotation describing nature of work.

(b) Miscellaneous General Notes required for coordination of utility facilities with roadway construction.

(c) Proposed water and sanitary sewer plan/profiles.

(d) Summary of Quantities for contract items (if applicable).

(e) Any proposed utility easements.

(f) Any miscellaneous proposed utility details.

c. Overhead/Subsurface Utility Engineering (SUE) Investigations
Employ an established engineering technology that can provide precise horizontal and vertical locations of underground and overhead utilities to produce an accurate picture of the underground and overhead utility infrastructure. The existing utility information provided in these investigations includes a description of what "degree of confidence" there is in its accuracy. The Department has classified these "degrees of confidence" into different Quality Levels of information:

1) Quality Level "D" Information - Information obtained solely from a review of utility records and field verification. The comprehensiveness and accuracy of such information is highly limited. Even when existing information for a utility in a particular area is accurate, there are often other underground systems that are not shown on any records. Quality Level "D" may be appropriately used early in the development of a Project to determine the presence of utilities.

2) Quality Level "C" Information - Information obtained to augment Quality Level "D" information. This involves topographic surveying of visible, above-ground utility features (e.g., poles, hydrants, valve boxes, circuit breakers, etc.) and entering the topographic data into the CADD system. Since aerial utility lines are not surveyed, information provided for these facilities is considered Quality Level "C" also. Quality Level "C" may be appropriately used early in the development of a Project and shall provide better data than Quality Level "D" information alone. Designers shall be very cautious when working on Projects using information for underground utilities that is based only on Quality Levels "D" and "C" locates.

3) Quality Level "B" Information - Information obtained through the use of designating technologies (e.g., geophysical prospecting technologies). This is an application using scanning technologies, most of which have very specific capabilities. Applying a variety of techniques is essential to the process of preparing a comprehensive horizontal map of utilities and other underground structures on the site. Designating technologies are capable of providing good horizontal information.

4) Quality Level "A" (Test Hole) Information - Provides the highest level of accuracy of utility locations in three dimensions. This level may apply manual, mechanical or nondestructive (e.g., vacuum excavation) methods to physically expose utilities for measurement and data recording. Quality Levels "B", "C", and "D" locates are incorporated in Quality Level "A" locates.

5) The Contractor shall identify all utility conflict points where verified existing utility information is necessary to avoid/minimize/identify the respective utility conflict. The Contractor shall obtain Quality Level "A" locates at these Project/utility conflict points, and shall coordinate with the Utility Owners and make every effort to avoid existing utility facilities and thereby reduce utility relocations.

6) All Overhead/Subsurface Utility Engineering (SUE) shall be performed to GDOT standards by a prequalified firm in Area Class 5.08. Refer to the following website for a list of current prequalified firms:

http://www.dot.state.ga.us/doingbusiness/consultants/Pages/default.aspx

4. Sheet Layout

a. The Contractor needs to ensure that any information and graphic data that is not necessary to depict the disposition of utilities found within the Project’s limits is removed by turning off the appropriate CADD levels(s) on which the data is stored. This will help ensure that information pertinent to utility facilities can be clearly seen in the Utility Plan sheets. Examples of extraneous information would be items such as horizontal curve data, superelevation data, roadway dimensions, misc. text, etc. All background information such as pavement limits, existing structures, etc. shall be
screened back. Also, the Contractor shall ensure all text, line work, details, and symbols are clear and legible when plans are reduced to ½ size.

b. In order to maintain plan clarity all applicable general notes, tables, and the Utility Legend shall be placed separately from the Utility Plan sheets. A Utility Plan -Cover Sheet" shall be provided for both preliminary and final Utility Plans. A recommended example utility sheet schedule is provided below:

1) Utility Sheet 1 (Cover Sheet) – Utility General Notes, Utility Legend, Miscellaneous Details
2) Utility Sheet 2 (required as needed) – Additional Miscellaneous Details, Pole Data Table
3) Utility Plan Sheets – Utilities shown in plan view with respect to Project.
4) Utility Profile and Cross Sections Sheets - Proposed Utility facility profiles and cross sections (as required)
5) Miscellaneous Utilities Sheets – Miscellaneous proposed utility details (as required).

The above sheet schedule shall also be generally followed for all separate utility relocation plans (i.e. water & sewer plans) included in the Project plans.

5. Miscellaneous Notes and Other Information

a. Note on the Utility Plans whose responsibility it is for utility adjustment. For bridge plans required, the Contractor is to make sure the plans have made accommodations for utility crossings and attachments, if applicable. Any new utility crossings requests shall include the size, weight, and type of utility. In addition, the method of attachment to the bridge shall be fully detailed. Such requests shall be reviewed by the Contractor to ensure adequacy and constructability and final approval shall be obtained by the Contractor from the Department. The Contractor shall follow the approval process within this specification. The Contractor is responsible to ensure that all proposed and existing utilities are coordinated with the respective Project's Construction Staging Plans and Erosion Control Plans.

b. Upon completion of the Utility Relocation Plans, the Contractor needs to ensure that any additional environmental impacts due to utilities are addressed in the Project's environmental document/permit.
999.4 CONSTRUCTION

The Contractor shall construct the Project as per the Project scope and as per the accepted Released for Construction plans in accordance with the Specifications. No construction shall begin on any phase of the work prior to the Department providing written authorization to the Contractor to begin land disturbing activities. Two (2) full size and four (4) half size sets of the Released for Construction plans shall be delivered to the Department’s Area Office at least 1 (one) week prior to the Contractor performing initial land disturbing activities. In addition, the Contractor shall deliver all subsequent Released for Construction plans at least 24 (twenty four) hours before commencing land disturbing activities. All plans submitted to the Area Office for use on construction shall include all applicable Standards and Details required in the Work.

Construction includes, but is not limited to, the following:

A. All clearing and grubbing and grading required in accordance with Sections 201, 202, 205, 206, 208 and 209.

B. All necessary grading and drainage (All proposed pipes shall be concrete) to construct the subgrades, including the removal and replacement of unsuitable material, shoulders and incidental work to include furnishing borrow pits, waste disposal areas and hauling borrow and waste materials as required. The removal and replacement of unsuitable material is the responsibility of the Contractor.

C. All necessary culvert extensions including the removal and replacements of headwalls, aprons and rip rap. Existing culverts shall be analyzed for structural sufficiency for new fills. Where it is found that the existing culvert is not structurally sufficient, the deficient portion of culvert shall be removed and replaced utilizing appropriate excavation and shoring as needed. Alternate methods of construction, including lightweight fill as defined in section 999.1.C, may be submitted to the Department for approval.

D. All necessary base construction, milling, leveling, asphalt paving and concrete paving to construct the pavement structure.

E. Removal of all curbs, drainage structures, pavements, bases and sub-bases, or other obstructions within the rights of way as necessary to construct the roadway section.

F. All signing, interstate signage including sign structures, signalization, pavement marking, raised pavement markers, and guardrail.

G. All equipment and materials stored on the Project shall be stored outside of the active clear zone.

H. Errors and omissions are the responsibility of the Contractor to correct and at the expense of the Contractor.

I. No existing materials removed from the Project shall be reused. The Contractor shall coordinate the removal and disposal of all Signing and ATMS items with the Department. All remaining material shall be disposed of properly by the Contractor in accordance with all Local, State and Federal laws.

J. Preparation of As-Built Construction Plans.
999.5 MEASUREMENT AND PAYMENT

The Work required under this Specification shall not be measured separately for payment unless otherwise specified. Payment for the items listed below, complete and accepted, shall be made at the Lump Sum price bid. Payment shall be full compensation for furnishing all materials, labor, tools, equipment, superintendence, mailing charges, removal and replacement of unsuitable material and other incidentals. It shall also be made for performing all work specified, including but not limited to, designing, detailing, producing construction plans (preliminary and final, electronic and hard copy), meeting with the Department, processing the NOI and complete construction. For all asphaltic concrete, when materials or construction are not within the tolerances specified in Sections 400 and 402, deductions shall be made in accordance with the applicable requirements of Sections 106, 400 and 402. The deduction will be determined by the following formula:

\[
\text{Deduction (per ton)} = (1 – \text{Pay Factor}) \times \frac{\text{Assumed Unit Price/Ton}}{\text{Ton}}
\]

(See Chart Below)

<table>
<thead>
<tr>
<th>Material</th>
<th>Assumed Unit Price/Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic Concrete 12.5 mm Superpave</td>
<td>$53.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm Superpave with Polymer</td>
<td>$76.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 19 mm Superpave</td>
<td>$55.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 25 mm Superpave</td>
<td>$53.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm SMA</td>
<td>$85.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm leveling</td>
<td>$49.00</td>
</tr>
</tbody>
</table>

The Contractor shall provide a detailed estimate with the Release for Construction plans. Partial payments of the Lump Sum price shall be made on monthly statements based on an accepted schedule of values and detailed estimate. The Contractor shall develop a schedule of values with sufficient breakdown for each of the following items:

- DESIGN COMPLETE
- CONSTRUCTION COMPLETE

The schedule for values shall include a rational basis for partial payments of the Lump Sum bid based on the completed portion of the item and definitive activities. The schedule for values shall be submitted to the Engineer and no payments shall be made until the schedule of values is accepted.

No payment for mobilization will be made until the Department issues written authorization that plans are released for construction. Payment for mobilization shall not exceed 2.5% of the overall bid price for Construction Complete. The Contractor shall submit a detailed breakdown of mobilization in the proposed schedule of values for acceptance.

Contractor shall work with the Engineer to establish estimated earthwork, asphalt, and concrete quantities, as this will determine the frequency of required testing by the Department.

At the end of each calendar month, the Contractor shall provide the Department with a certification showing the percent complete for each item of work. The Contractor shall include a breakdown and supporting documentation, to include the Design Consultant’s monthly invoice, in sufficient detail to substantiate the percent complete certified.

Payment shall be made under:

- Item 999-2010 - DESIGN COMPLETE ... per Lump Sum
- Item 999-2015 - CONSTRUCTION COMPLETE per Lump Sum
AMENDMENT TO ADVERTISED CONTRACT

CONTRACT I.D. NUMBER: B13922-11-000-0

GEORGIA PROJECT NUMBER: 0009542

PCN: 0009542.01000

COUNTY: DEKALB

AMENDMENT NUMBER: 1

LETTING DATE: JANUARY 21, 2011

LETTING NUMBER: 001

THE FOLLOWING CHANGES ARE HEREBY MADE TO THIS CONTRACT. THE BIDDER IS RESPONSIBLE FOR MAKING ANY NECESSARY CHANGES IN INK IN THE PROPOSAL. BIDDER SHALL ACKNOWLEDGE THIS AMENDMENT BY CHECKING THE APPROPRIATE SPACE ON THE PROPOSAL SIGNATURE PAGE.

REVISE TO READ:

<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>ITEM DESCRIPTION</th>
<th>QUANTITY & UNITS</th>
<th>UNIT PRICE</th>
<th>BID AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>158-1000 TRAINING HOURS</td>
<td>10000 HR</td>
<td>$0.80</td>
<td>$- - . - -</td>
</tr>
</tbody>
</table>

1. Delete Proposal Page 15 from the proposal, and Substitute the attached revised/added page 15 in the proposal.

2. Delete Special Provision Section 107-Legal Regulations and Responsibility to the Public, dated September 27, 2010, from the proposal, and Substitute the attached Special Provision Section 107-Legal Regulations and Responsibility to the Public, 2 pages, dated November 17, 2010, in the proposal.

3. Add the attached Special Provision Section 412-Bituminous Prime, 4 pages, dated August 24, 2010, to the proposal.

4. Proposal Page 648, Special Provision Section 999-Design-Build Project; Revise Subsection 999.1.C.6. to read as follows:

"At the Snapfinger Creek Bridge on I-20 Eastbound, the Contractor shall remove all existing asphaltic concrete pavement down to the existing concrete bridge deck. The Contractor shall take precautions to protect the concrete deck from damage caused by removal of the asphalt. Any damage that occurs as a result of the contractor’s work shall be repaired at no additional cost to the Department. The Contractor shall seal the existing
AMENDMENT TO ADVERTISED CONTRACT (continued):

dock joints using Watson, Bowman & Acme Wabo Expandex Asphaltic Plug Joint System; D.S. Brown Matrix 502 Asphaltic Expansion Joint, or approved equal, installed per manufacturer’s specifications. Asphaltic concrete pavement shall be inlaid per the Plan Typical Sections, or as approved by the Department, not to exceed the depth of the existing asphalt surfacing.”

5. Proposal Page 653, Special Provision Section 999-Design-Build Project;
Revise Subsection 999.1.E.4. to read as follows:

“In the event that the Environmental Commitments Table for the approved CE is different from the draft Commitments Table provided in Section 999.1 of the Design Build Proposal, the Department will consider this a changed condition and therefore the Contractor (or the Department) will be entitled to an appropriate adjustment in contract price.”

0009542, Plans

1. Delete Plan Sheets 5 and 12 from the plans, and Substitute the attached plan sheets 5 and 12, dated 11/24/10, in the plans.

DAVID E. HOGE
STATE TRANSPORTATION OFFICE ENGINEER
REQUEST FOR ELIGIBILITY TO BID

GEORGIA DEPARTMENT OF TRANSPORTATION
OFFICE OF CONSTRUCTION BIDDING ADMINISTRATION
600 West Peachtree St., N.W.
Atlanta, GA 30308
Email contacts: esimmons@dot.ga.gov
anstewart@dot.ga.gov
GDOT NUMBERS: (404)631-1945 Main Office CBA Fax
(404)631-1070 Sales Office Fax

LETTING DATE: ____________________________

GDOT VENDOR CODE: _______________________

COMPANY NAME: ___________________________

CONTACT PERSON: __________________________

EMAIL ADDRESS: ____________________________

FOR OPTIMUM SERVICE, KEEP GDOT UP-TO-DATE WITH YOUR CONTACT INFORMATION
(Mailing Address, Phone No., Fax No., E-mail Address, Primary Contact Person, etc.)

Indicate below the three digits of the Call Order Number, and your bidding status

B = Bidding Prime

(Example: 1.) 001 B 2.) 006 B 3.) 018 B etc.)

1. [] 5. [] 9. []
2. [] 6. [] 10. []
3. [] 7. [] 11. []
4. [] 8. [] 12. [] 13. []
14. [] 15. []
16. []

Complete this form to Request For Eligibility To Bid. The deadline to submit this form to GDOT, Office of Construction Bidding Administration is no later than 12:00 p.m. on the day preceding the letting. **Failure to submit this document will result in ineligibility to bid.
Add the following to Subsection 107.23:

G. Protection of Federally Protected Species

The following conditions are intended as a minimum to protect these species and its habitat during any activities that are in close proximity to the known location(s) of these species. When there is a conflict between the General Provisions and the Special Provisions, these Special Provisions will govern the work.

1. The Contractor shall advise all project personnel about the potential presence and appearance of the federally protected barn swallow (Hirundo rustica), cliff swallow (Petrochelidon pyrrhonota), and eastern phoebe (Sayornis phoebe). All personnel shall be advised that there are civil and criminal penalties for harassing, harming, pursuing, hunting, shooting, wounding, killing, capturing, or collecting these species in knowing violation of the Migratory Bird Treaty Act of 1918. Pictures and habitat information will be provided to the Contractor at the preconstruction conference and shall be posted in a conspicuous location in the project field office until such time that Final Acceptance of the project is made.

2. Work on box culvert(s) shall take place outside of the breeding and nesting season of phoebes and swallows, which begins April 1 and extends through August 31, unless exclusionary barriers are put in place to prevent birds from nesting in box culverts. Exclusionary barriers may be overlapping strips of flexible plastic (also called “PVC Strip Doors” or “Strip Curtains”) or an alternate material proposed by the Contractor and approved by the Project Engineer prior to installation. Exclusionary barriers may be installed on the box culvert(s) prior to March 1 or after August 31, but in no time in between this period. Exclusionary barriers are not a guaranteed method of preventing migratory birds from nesting in culverts and work schedules shall take into account the possibility that barriers will not be successful. The following steps shall be followed if exclusionary barriers are to be used:

 a. The project ecologist shall be notified by phone (404) 631-1100 of the decision to install exclusionary barriers in culverts and the date of the proposed installation prior to the installation of any exclusionary devices.

 b. The box culverts shall be checked for nests prior to the placement of exclusionary barriers. If nests are present, they shall be inspected to ensure that eggs or birds are not present. If the nests are found to be occupied, construction activities associated with the culvert shall be postponed until after August 31 when the breeding season is complete.

 c. Exclusionary barriers shall be installed on both the inlet and outlet openings of the box culverts. Barriers shall be installed prior to March 1 and left in place until August 31 or until the culvert work is complete, whichever occurs first. If the exclusionary barriers fail to prevent nesting (i.e., birds are able to bypass barriers and build nests), construction activities associated with the culverts shall be postponed until after August 31.
d. During construction, exclusionary barriers shall be inspected daily for holes or other defects that impair their ability to exclude migratory birds from entering the culvert(s). Any holes shall be immediately repaired.

3. In the event any incident occurs that causes harm or that could be detrimental to the continued existence of the barn swallow, cliff swallow, and eastern phoebe along the project corridor, the Contractor shall report the incident immediately to the Project Engineer who in turn will notify the State Environmental Administrator at (404) 631-1101 and the Environmental Compliance Manager at (404) 463-1048. All activity shall cease pending consultation by the Department with the U. S. Fish and Wildlife Service and the Federal Highway Administration.

4. The Contractor shall keep a log detailing any sightings or injury to barn swallows, cliff swallows, and eastern phoebes in or adjacent to the project until such time that Final Acceptance of the project is made. Following project completion, the log and a report summarizing any incidents and/or sightings with these species shall be submitted by the Contractor to the:

a. Project Engineer;

b. U.S. Fish and Wildlife Service, Brunswick Field Office, 4270 Norwich Street, Brunswick, Georgia 31520;

c. State Environmental Administrator, Georgia Department of Transportation, Office of Environmental Services, 600 West Peachtree Street NW, Atlanta, Georgia 30308;

d. Georgia Department of Natural Resources, Wildlife Resources Division, Ncngame Wildlife Regional Office, 116 Rum Creek Drive, Forsyth, GA 31029; and

e. Federal Highway Administration, Georgia Division, 61 Forsyth Street, S.W., Suite 17T100, Atlanta, Georgia 30303-3104.

5. All costs pertaining to any requirement contained herein shall be included in the overall bid submitted unless such requirement is designated as a separate Pay Item in the Proposal.
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SUPPLEMENTAL SPECIFICATION
Section 412—Bituminous Prime

Delete Section 412 and substitute the following:

412.1 General Description
This work includes preparing and treating an existing surface with bituminous material and blotter material, if required. Treat the surface according to these Specifications and conform to the lines shown on the Plans or established by the Engineer.

412.1.01 Definitions
General Provisions 101 through 150.

412.1.02 Related References
A. Standard Specifications
 Section 424—Bituminous Surface Treatment
 Section 821—Cutback Asphalt

B. Referenced Documents
 General Provisions 101 through 150.

412.1.03 Submittals
General Provisions 101 through 150.

412.2 Materials
Unless otherwise specified, select the types of bituminous materials. The Engineer will determine the grade of materials to be used. The Specifications for the bituminous materials include:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt, RC-30, RC-70, RC-250 or MC-250, MC-30, or MC-70</td>
<td>821.2.01</td>
</tr>
<tr>
<td>Blotter Material (Sand)</td>
<td>412.3.05.G.3</td>
</tr>
</tbody>
</table>

412.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

412.3 Construction Requirements

412.3.01 Personnel
General Provisions 101 through 150.

412.3.02 Equipment
Provide equipment that is in good repair, including at least the following units that meet the requirements of Subsection 424.3.02, "Equipment."
• Pressure distributor
• Power broom and blower
• Aggregate spreader (if required)
• Pneumatic-tired roller

412.3.03 Preparation

See Subsection 412.3.05.B, “Condition of Surface.”

412.3.04 Fabrication

General Provisions 101 through 150.

412.3.05 Construction

Prime the following bases and other areas:

• Cement or lime stabilized bases or sub-bases, regardless of pavement thickness
• Soil or aggregate bases or sub-bases on which bituminous surface treatment will be placed
• Soil or aggregate bases or sub-bases on which less than 5 in (125 mm) total thickness of hot mix asphaltic concrete will be placed

Prime is not required on driveway construction and paved shoulders.

A. Weather Limitations

Do not apply bituminous prime under any of these conditions:

• Surface is wet.
• Air temperature is below 40 °F (4 °C) in the shade.
• Rain is imminent.
• Weather conditions may prevent proper prime coat construction.

B. Condition of Surface

Ensure that the surface to which the prime is to be applied has been finished to the line, grade, and cross section specified.

Ensure that the surface is uniformly compacted and bonded. Correct surface irregularities according to the Specifications for the construction being primed.

C. Cleaning

Remove from the road loose material, dust, caked clay, and other material that may prevent bonding of the prime with the surface. Use power sweepers or blowers the full width of the prime and 2 ft (600 mm) more on each side. Where necessary, sweep by hand.

D. Moisture

Ensure that the surface is only slightly damp. If the surface is too wet, allow it to dry. If it is too dry, the Engineer may require that it be sprinkled lightly just before priming.

E. Temperature and Surface Texture

The surface texture and condition of the surface determine the bituminous material grades to be used.

The following table shows the bituminous material grades and application temperatures as they are applied to various surface textures.

<table>
<thead>
<tr>
<th>Base Texture</th>
<th>Tight</th>
<th>Average</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and grade</td>
<td>MC-30</td>
<td>RC-70 or MC-70</td>
<td>RC-250 or MC-250</td>
</tr>
<tr>
<td>Application temperature °F (°C)</td>
<td>60-120 (27-49)</td>
<td>105-180 (41-82)</td>
<td>145-220 (63-104)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

The Engineer will determine the temperature for applying bituminous prime within the limits shown above.

Heat and apply bituminous materials as specified in Subsection 424.3.05.D, “Heating Bituminous Material” and Subsection 424.3.05.E, “Applying Bituminous Material.”

F. **Amount and Extent of Prime**

The Engineer will determine the exact amount of bituminous material to be used within minimum and maximum rates of 0.15 to 0.30 gal/yd² (0.7 to 1.4 liters/m²). Apply the specified amount as follows:

1. Apply the determined amount uniformly and accurately. Ensure that the amount applied to any 0.5-mile (800 m) section is within 5 percent of the amount specified.
2. Apply the prime the full width of the proposed wearing surface that will be superimposed plus 6 in (150 mm) more on each side.

G. **Protection, Curing, and Maintenance**

Do the following after priming the surface:

1. **Close to Traffic**

 Do not allow traffic on the primed surface. Leave the surface undisturbed until the prime thoroughly cures and does not pick up under traffic.

2. **Roll**

 If the surface becomes soft after it is primed, roll the surface longitudinally with a pneumatic-tired roller at no more than 6 mph (10 kph) until the surface is firmly set.

3. **Blot**

 If necessary to prevent the prime from being picked up, spread clean, dry, sharp sand over the surface by hand or mechanically. Apply sand only to places that are tacky and use the least amount needed to prevent pick up. No extra payment for this work or material will be made.

4. **Open to Traffic**

 After rolling and sanding (if required), open the primed surface to ordinary traffic subject to the conditions in Subsection 412.3.05.G.1, “Close to Traffic.”

5. **Curing and Maintenance**

 The primed surface is properly cured when it has penetrated the base sufficiently to not be picked up or displaced by traffic. Temperature and weather conditions may increase curing time. Insure the primed surface has cured to the satisfaction of the Engineer prior to its being covered by other construction.

 Maintain the prime coat and the primed surface course until it is covered by other construction. Repair potholes, scabs, and soft spots prior to covering with other construction. Remove excess bituminous material.

412.3.06 Quality Acceptance

General Provisions 101 through 150.

412.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

412.4 Measurement

Bituminous material for prime is not measured for separate payment.

412.4.01 Limits

General Provisions 101 through 150.
412.5 Payment
Bituminous material for prime is not paid for separately. The cost to clean the surface, furnish, haul and apply materials including water and sand, roll, and perform repairs and maintenance is included in the Unit Price bid for each individual Base Item.

412.5.01 Adjustments
General Provisions 101 through 150.

Office of Materials and Research
AMENDMENT TO ADVERTISED CONTRACT

CONTRACT I.D. NUMBER: B13922-11-000-0
GEORGIA PROJECT NUMBER: 0009542
PCN: 0009542.01000
COUNTY: DEKALB
AMENDMENT NUMBER: 2
LETTING DATE: JANUARY 21, 2011
LETTING NUMBER: 001

THE FOLLOWING CHANGES ARE HEREBY MADE TO THIS CONTRACT. THE BIDDER IS RESPONSIBLE FOR MAKING ANY NECESSARY CHANGES IN INK IN THE PROPOSAL. BIDDER SHALL ACKNOWLEDGE THIS AMENDMENT BY CHECKING THE APPROPRIATE SPACE ON THE PROPOSAL SIGNATURE PAGE.

1. Delete Proposal Pages 3, 444 through 447, 650, 651, 663, 683, and 692 from the proposal, and Substitute the attached revised/added pages 3, 444 through 447, 650, 651, 663, 683, and 692 in the proposal.

0009542, Plans

1. Delete Plan Sheets 5, 7 through 15, 26, 43, and 235 from the plans, and Substitute the attached plan sheets 5, 7 through 15, 26, 43, and 235, dated 1/5/11, in the plans.

DAVID E. HOGE
STATE TRANSPORTATION OFFICE ENGINEER
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

CONTRACT ID : B13922-11-000-0
DESIGN BUILD PROJECT CONSISTING OF 4.730 MILES OF
CONSTRUCTION OF COLLECTOR-DISTRIBUTOR (CD) LANES,
MODIFICATION OF GENERAL PURPOSE LANES AND RAMP IMPROVEMENTS
ON I-20/SR 402 BEGINNING AT I-285/SR 407 AND EXTENDING TO
PANOLA RD (CR 5150).
(FCS)

PROPOSAL GUARANTY : 5%

DBE GOAL : 12.00 %

<table>
<thead>
<tr>
<th>SITE</th>
<th>COMPLETION DATE</th>
<th>CONTRACT TIME</th>
<th>LIQUIDATED DAMAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>07/31/13</td>
<td>COMPLETION DATE</td>
<td>AVAILABLE DAYS</td>
</tr>
<tr>
<td>COMPLETE CONTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>AVAILABLE DAYS</td>
<td>90 CALENDAR DAYS</td>
<td></td>
</tr>
<tr>
<td>FAIL TO COVER MILLED AREAS - SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>AVAILABLE DAYS</td>
<td>180 CALENDAR DAYS</td>
<td></td>
</tr>
<tr>
<td>FAIL TO COMPLETE STRIPING - SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>AVAILABLE DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO REPLACE TRAFFIC LOOPS - SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>AVAILABLE DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO REOPEN LANES - SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>AVAILABLE DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO RESPOND AND REMOVE INCIDENTS - SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>AVAILABLE DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO ADHERE TO OUTAGE RESTRICTIONS - SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>AVAILABLE DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO RESPOND AND REPAIR ITS SYSTM-SEE SPEC PROV SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>120 CALENDAR DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO SUBMIT UTILITY CONFLICT MATRIX - SEE SPE PRO SEC 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>120 CALENDAR DAYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIL TO SUBMIT PRELIMINARY UTILITY REPORT - SEE SP RP SE 108</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTICE TO BIDDERS
If a DBE goal is specified, the bidder shall submit with this bid proposal a list of all proposed DBE participants. A form for this purpose is provided in this proposal. Please refer to the following specifications:

102.07 Rejection of Proposals
Disadvantaged Business Enterprise Program (Special Provision)

BIDDERS SHALL ENTER ALL UNIT PRICES, MAKE ALL EXTENSIONS AND TOTAL THE BID.

REVISED/ADDED 3
WHEREAS the DEPARTMENT proposes to undertake a design-build project hereafter referred to as PROJECT to I-20 EB from I-285 to CR 5151/Panola Rd CD System, Georgia, by contract through competitive bidding procedures; and,

WHEREAS the DEPARTMENT will accomplish the PROJECT through a Design Consultant, Design Consultant Team and/or Contractor hereafter referred to as CONTRACTOR; and,

WHEREAS, where OWNER has property rights ("Prior Rights") at the location of the PROJECT, OWNER will provide written evidence as to said prior rights within the area and will provide written documentation of prior rights relating to any individual crossing or Utility Facility, at the location of the PROJECT; and

WHEREAS, OWNER acknowledges that, generally, absent a showing of prior rights, the costs of relocation, protection, removal, or adjustment performed by OWNER shall be borne by OWNER; and

WHEREAS, pursuant to O.C.G.A. § 32-6-170(b), DEPARTMENT is authorized to pay or participate in the payment of the costs of relocation, protection, or adjustment of OWNER'S facilities where DEPARTMENT has made the determination that (i) such payments are in the best interest of the public and necessary in order to expedite the staging of the design-build project; and (ii) the costs of the removal, relocation, protection, or adjustment of such facilities are included as part of the Contract between the Department and the Department's roadway contractor for the design-build project; and

1. Type of Utility

OWNER has the following utility facilities which may need to be adjusted or relocated as a result of the proposed PROJECT:

Type of facility or facilities of OWNER:

- Domestic water mains and distribution lines and associated appurtenances
- Sanitary Sewer facilities and/or Storm Drainage System
- Electrical Distribution (overhead and underground) wires, poles, etc.
- Electrical Transmission (overhead and underground) wires, poles, etc.
- Natural Gas Distribution Facilities (underground)
- Natural Gas Transmission Facilities (underground)
- Petroleum Pipeline (underground)
- Telecommunications facilities and equipment
- Cable TV facilities
- Street Lighting
- Internet Data Service
- Other Facilities (Description)
2. New Utility Facilities Proposed (Betterment)

OWNER desires the following to be installed as new additional facilities within the PROJECT. Insert here or attach a detailed description of proposed new additional utility installations:

NA

3. Assignment of Responsibilities for Design and Construction

This MEMORANDUM OF UNDERSTANDING and the following shall serve as a basis for assignment of responsibilities and costs for the DEPARTMENT to enter into a Standard Utility Agreement (SUA) or Contract Item Agreement (CIA), if necessary, with OWNER once the PROJECT is awarded to the CONTRACTOR. For a PROJECT implementation, GDOT will not have in its possession exact costing plans to be utilized to determine exact locations of the removal, relocation, protection, or adjustment. However, Overhead/Subsurface Utility Engineering (SUE) investigations plans exist providing the best information and signifying the layout of known existing facilities. Please use these plans for developing the final determination of services as indicated below. The CONTRACTOR developed plans will be provided to the OWNER for after the design build project is awarded by GDOT which shall be used by the CONTRACTOR as the final basis for the SUA or CIA.

OWNER hereby intends to:

A. OWNER, at the DEPARTMENT'S cost, will provide the following services for the properties for which it has established prior rights (check to signify):

Design X
Construction X

B. OWNER, for any removal, relocation, protection, or adjustments that do not have prior rights will allow their facilities to be placed into the DEPARTMENT'S contract for the following services pursuant to O.C.G.A. § 32-6-170(b). The DEPARTMENT will add the removal, relocation, protection, or adjustment costs to the overall PROJECT's cost. The OWNER will be responsible for all design work cost (check to signify):

Construction X

C. OWNER, at OWNER'S cost, will provide the following services (check to signify):

Design
Construction ___
The following is hereby mutually agreed to and understood by both parties:

1. The identification of existing facilities including preparation of Overhead/Subsurface Utility Engineering (SUE) investigations plans will be accomplished by the DEPARTMENT prior to award of the PROJECT and thereafter supplemented by the CONTRACTOR.

2. The CONTRACTOR shall coordinate reviews of the utility relocation information and obtain acceptance from the OWNER and DEPARTMENT when required. However, the OWNER shall apply for and obtain any required permits from the DEPARTMENT and perform any final design or proprietary design needed to administer its own relocation work if the work will not be included in the PROJECT (list any work not included in the PROJECT in space provided above). If the preliminary plans indicate that no conflict exists, and the OWNER concurs with this information, the OWNER shall provide a letter of “no conflict” to the CONTRACTOR.

3. The CONTRACTOR will research the property interest of each OWNER and present the findings to the DEPARTMENT and OWNER for approval. The CONTRACTOR will coordinate resolution of any disputed items. The plans and estimate for the utility work shall be subject to approval of both the DEPARTMENT and the OWNER prior to construction. If the OWNER chooses to include the subject utility work in the PROJECT and the research indicates that no property interest exists, the OWNER did not indicate Section 3B above, and the OWNER cannot refute this finding with evidence that would substantiate the property interest in legal proceedings, the OWNER shall provide confirmation in writing that OWNER will reimburse the DEPARTMENT for any adjustment or relocations necessary; and an agreement will be prepared and executed in accordance with the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual”. If the OWNER chooses to perform its own relocations and the OWNER holds no property interest as stated above, the OWNER shall confirm in writing that the OWNER will relocate its own facilities at no cost to the DEPARTMENT and the CONTRACTOR.

4. All construction engineering and contract supervision shall be the responsibility of the DEPARTMENT and the CONTRACTOR to ensure that all utility work included in the PROJECT is accomplished in accordance with the PROJECT’s plans and specifications. The CONTRACTOR will consult with the OWNER before authorizing any changes or deviations which affect the OWNER’s facility.

5. For Utility work included in the PROJECT, the CONTRACTOR shall ensure that the construction and installation of the OWNER’S facilities is performed by a contractor prequalified/registered with both the DEPARTMENT and the OWNER. The CONTRACTOR shall contact the OWNER to obtain the current list of the OWNER’S prequalified Contractors.

6. For Utility work included in the PROJECT’s contract, the OWNER or the OWNER’S Consultant shall have the right to visit and inspect the work at any time and advise the CONTRACTOR and the DEPARTMENT’S Engineer of any observed discrepancies or potential issues. The DEPARTMENT agrees to notify the OWNER when all utility work is completed and ready for final inspection by the OWNER.

7. Upon Maintenance Acceptance or Final Acceptance of the utility work included in the contract and upon certification by the DEPARTMENT’S Engineer and the OWNER, that the work has been completed in accordance with the plans and specifications, the OWNER will accept the adjusted, relocated, and additional facilities and will thereafter operate and maintain said facilities located within the PROJECT right of way subject to the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect without further cost to the DEPARTMENT or it’s CONTRACTOR.
8. For the purpose of utility coordination, relocation and reimbursement matters, the OWNER shall cooperate with the CONTRACTOR in the same manner as if coordinating directly with the DEPARTMENT in accordance with the laws of the State of Georgia, the DEPARTMENT’S "Utility Accommodation Policy and Standards Manual, current edition" and any agreements in effect between the DEPARTMENT and OWNER. The OWNER agrees to cooperate in good faith with the CONTRACTOR and to respond to all requests for information or meetings required to reach a resolution of any disputed items.

The Memorandum of Understanding will be incorporated into the project contract by reference or Exhibit.

APPROVED FOR THE OWNER BY:

[Signature]

MBR Engineering Design AGC CGC

(Date) 1/5/11

APPROVED FOR THE DEPARTMENT BY:

[Signature]

JEFF BAKER TB

(Date) 1/7/11

STATE UTILITIES ENGINEER

REVISED/ADDED 447
22. The Contractor shall install the overhead sign structures and all signing and marking as shown in the Costing Plans. Overhead signs along Interstate 20 shall be installed in accordance with Department and 2009 MUTCD design guidelines (or most current edition). See the Costing Plans for location and type of sign installations, removals, and replacements.

23. The Contractor shall replace existing high mast lighting facilities impacted by this Project per current Department guidelines and coordinate energy service with the appropriate power company.

24. The Contractor shall install all ATMS/ITS systems and equipment as shown in the Costing Plans.

25. Level 1 ITS deployment will be included in this Project. The contractor shall replace or upgrade existing facilities.

26. The Contractor shall install conduit and single mode fiber optic cable as shown in the costing plans in accordance with GDOT standards and specifications. Refer to applicable Special Provisions.

27. The Contractor shall install CCTV, microwave radar detection, and changeable Message signs. Refer to applicable Special Provisions. The Contractor shall coordinate and engineer power service to all devices according to GDOT standards.

28. The overhead sign and changeable message sign structures shall be placed during the pacing of traffic.

29. The Contractor shall splice new installed fiber to existing fiber optic cables on I-20, Wesley Chapel Road, and Panola Road as shown in the Costing Plans. The Contractor shall be responsible for producing device allocation tables detailing how the new devices will communicate with the Hub I and the TMC. Contractor shall coordinate with GDOT Office of Traffic Operations to obtain splicing charts/allocation tables for the existing fiber along I-20, as well as device names for installed CCTV cameras, microwave radar detection units, and changeable message signs.

30. Install ATMS conduit across the existing I-20 bridge over Snapfinger Creek. Bore under the approach slab and through the end wall of the bridge and suspend the conduit from the bridge deck and between the beams. If the conduit will not fit under the edgebeams, coring through the edgebeams will be necessary. Do not damage any of the main reinforcing steel in the edgebeams if coring is required. Repair damage at no additional cost to the Department. Submit details for ATMS attachment to the Engineer for review and approval.

31. The Contractor shall provide a minimum of 10 portable changeable message signs to be used as directed by the Engineer.

32. The pavement design shall be based on the approved pavement design as follows:

<table>
<thead>
<tr>
<th>Paving for I-20 Auxiliary and CD Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Lanes</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>12.5 mm PEM, GP 2 ONLY, INCL POLYMER-MODIFIED BITUM MATL & H LIME</td>
</tr>
<tr>
<td>RECYCLED 12.5 mm SMA, GP 2 ONLY, INCL POLYMER-MODIFIED BITUM MATL & H LIME</td>
</tr>
<tr>
<td>RECYCLED 19 mm SUPERPAVE, GP 1 OR 2, INCL BITUM MATL & H LIME</td>
</tr>
<tr>
<td>RECYCLED 25 mm SUPERPAVE, GP 1 OR 2, INCL BITUM MATL & H LIME</td>
</tr>
</tbody>
</table>

Page 6 of 48

REVISED/ADDED 6/30
33. The contractor shall place PEM along I-20 mainline and CD, along with appropriate striping throughout the Project limits.

34. Asphalitic curb shall be installed behind guardrail when the fill height exceeds 10 feet. When asphalitic curb is installed behind guardrail, the Contractor shall use concrete spillways with down drains or concrete flumes to drain.

35. Existing pavement inside the construction limits that will no longer be used shall be obliterated, graded to drain and grassed.

36. Memorandums of Understanding (MOU) will be provided for utility work. See section 999.3.D.

37. The Contractor shall install detention facilities at any outfall where the roadway construction produces a 10 percent or greater increase in peak flow volume for the design year storm event and has a disturbed area of 5 acres or more. Additionally, any outfall locations where the receiving channel is located in or leads to a wetland or environmentally protected habitat will require detention facilities.

Detention facilities shall be designed and constructed per detention requirements as dictated in the Georgia DOT Manual on Drainage Design for Highways, most current version. The location of any detention facilities and their construction limits shall be contained within existing right of way. Due to right of way restrictions, it is anticipated that alternate methods of detention such as in-line pipe detention, vaults, or ditch check retention may be required, and must be submitted for approval by the Department.

Ensure proposed detention plans are coordinated with Georgia DOT to ensure that the planned feature can be cleaned and maintained.

38. Design Exceptions have been submitted and were approved for the following design features:
 a. Inside shoulder width on mainline I-20 eastbound throughout the Project
 b. Horizontal clearance to obstruction on the inside shoulder on mainline I-20 eastbound throughout the Project
 c. Outside shoulder width on mainline I-20 eastbound at the Snapfinger Creek Bridge
 d. Horizontal clearance to obstruction on the outside shoulder on mainline I-20 eastbound at the Snapfinger Creek Bridge
<table>
<thead>
<tr>
<th>Submittal Description</th>
<th>Format</th>
<th>Quantity</th>
<th>Delivery Date*</th>
<th>Review Period*</th>
<th>Review Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis of Design</td>
<td>HC, PDF</td>
<td>3, 1</td>
<td>NTP+7</td>
<td>14</td>
<td>Accepted by Engineer</td>
<td></td>
</tr>
<tr>
<td>Schedule – including review times</td>
<td>HC, PDF</td>
<td>3, 1</td>
<td>NTP+14</td>
<td>14</td>
<td>Accepted by Engineer</td>
<td></td>
</tr>
<tr>
<td>QC/QA Plan</td>
<td>HC, PDF</td>
<td>3, 1</td>
<td>NTP+14</td>
<td>14</td>
<td>Accepted by Engineer</td>
<td></td>
</tr>
<tr>
<td>Worksite Utility Control Supervisor</td>
<td>HC, PDF</td>
<td>3, 1</td>
<td>PAS</td>
<td>21</td>
<td>Accepted by Engineer</td>
<td></td>
</tr>
<tr>
<td>Worksite Erosion Control Supervisor Qualifications</td>
<td>HC, PDF</td>
<td>3, 1</td>
<td>PAS</td>
<td>21</td>
<td>Accepted by Engineer</td>
<td></td>
</tr>
<tr>
<td>Traffic Control Supervisor Qualifications</td>
<td>HC, PDF</td>
<td>3, 1</td>
<td>PAS</td>
<td>21</td>
<td>Accepted by Engineer</td>
<td></td>
</tr>
<tr>
<td>Construction Traffic Control Plan</td>
<td>FS, HS, PDF</td>
<td>3,3</td>
<td>PAS</td>
<td>21</td>
<td>See Specification 150</td>
<td></td>
</tr>
<tr>
<td>Traffic Management Plan</td>
<td>HC, PDF</td>
<td>3, 1 PDF</td>
<td>PAS</td>
<td>21</td>
<td>Accepted by Engineer</td>
<td>FHWA to perform concurrent review.</td>
</tr>
<tr>
<td>Preliminary Plans (including all roadway plan components, erosion control plans, signing and marking, ITS, signal plans)</td>
<td>HS, PDF</td>
<td>6, 1</td>
<td>PAS</td>
<td>45</td>
<td>Accepted by Engineer</td>
<td>Incl overhead sign details/clearance diagrams. FHWA to perform concurrent review of plans. Department to review, quantify environmental impacts and amend permit.</td>
</tr>
<tr>
<td>Final Plans (including all roadway plan components, erosion control plans, signing and marking, ITS and signal plans)</td>
<td>HS, PDF</td>
<td>6, 1</td>
<td>PAS</td>
<td>30</td>
<td>Accepted by Engineer</td>
<td>FHWA to perform concurrent review of plans.</td>
</tr>
<tr>
<td>Notice of Intent (NOI) with final/signed Erosion Control Plans</td>
<td>HS, PDF</td>
<td>3,1</td>
<td>PAS</td>
<td>NA</td>
<td>EPD letter stating plans do not contain deficiencies.</td>
<td>The Department will submit NOI Package to EPD. The Contractor shall be responsible for addressing any plan changes required by EPD and to EPD's satisfaction.</td>
</tr>
</tbody>
</table>
k. The Contractor shall compile, and submit to the Department all SUE deliverables, Utility Relocation Plans, SUE Utility Impact Analysis, Utility Adjustment Schedules, Utility Agreements, Utility Estimates (if estimates are provided by the utility owners), and Letters of "no conflict," as set forth above for the Project. The Contractor is expected to assemble the information included in the Utility Agreements and Utility Relocation Plans in a final and complete form and in such a manner that the Department may approve the submittals with minimal review. The Contractor shall schedule a meeting with the Department's District Utilities Office and the State Subsurface Utilities Engineer (or designee) for a SUE Kick-Off meeting within 15 days of the Notice to Proceed to gain a full understanding of what is required with each submittal. The Utility Owners shall not begin their Utility Relocation work until authorized in writing by the Department.

l. Each Utility Agreement and Utility Relocation Plan submitted shall be accompanied by a certification from the Contractor stating that the proposed relocation will not conflict with the proposed highway improvement and will not conflict with another Utility Owner's relocation plan.

m. Depending on the provisions stipulated in the Memorandum of Understanding (MOU — See Attached) between the Department and each Utility Owner the Contractor shall be responsible for one of the following construction activities:

1) The Contractor shall be responsible for coordinating the work of its subcontractors and the various Utility Owners. The resolution of any conflicts between Utilities and the construction of the Project shall be the responsibility of the Contractor. No additional compensation will be allowed for any delays, inconveniences, or damage sustained by the Contractor or its subcontractors due to interference from utilities or the operation of relocating utilities.

2) The Contractor shall be responsible for performing all utility removal, relocation, and adjustments required to accommodate the proposed Project. This shall include any required inspection, permitting, testing and monitoring to ensure that the work is properly performed to the certified design package. The resolution of any conflicts between Utilities and the construction of the Project shall be the responsibility of the Contractor. No additional compensation will be allowed for any delays, inconveniences, or damage sustained by the Contractor or its subcontractors due to interference from utilities or the operation of relocating utilities.

n. During the construction of the Project, the Contractor shall designate, prior to beginning any work, a Worksite Utility Coordination Supervisor (WUCS) who shall be responsible for initiating and conducting utility coordination meetings and accurately recording and reporting the progress of utility relocations and adjustment work. Also, the WUCS shall prepare an Emergency Response Plan for the purpose of planning, training, and communicating among the agencies responding to the emergency. The WUCS shall be the primary point of contact between all of the Utility companies, the Contractor and the Department. The WUCS shall recommend the rate of reoccurrence for utility coordination meetings and the Engineer will have the final decision on the regularity for utility coordination meetings. In no case will utility coordination meetings occur less than monthly until controlling items of utility relocations and adjustment milestones are completed. The WUCS shall contact each of the utility companies for the purpose of obtaining information including, but not limited to, a Utility Adjustment Schedule for the controlling items of utility relocations and adjustments. The WUCS shall notify the appropriate utility company and/or utility subcontractors and the Department of the status of controlling items of relocations and adjustment milestones as they are completed. The WUCS shall furnish the
999.5 MEASUREMENT AND PAYMENT

The Work required under this Specification shall not be measured separately for payment unless otherwise specified. Payment for the items listed below, complete and accepted, shall be made at the Lump Sum price bid. Payment shall be full compensation for furnishing all materials, labor, tools, equipment, superintendence, mailing charges, removal and replacement of unsuitable material and other incidentals. It shall also be made for performing all work specified, including but not limited to, designing, detailing, producing construction plans (preliminary and final, electronic and hard copy), meeting with the Department, processing the NOI and complete construction. For all asphaltic concrete, when materials or construction are not within the tolerances specified in Sections 400 and 402, deductions shall be made in accordance with the applicable requirements of Sections 106, 400 and 402. The deduction will be determined by the following formula:

\[
\text{Deduction (per ton)} = (1 - \text{Pay Factor}) \times \text{Assumed Unit Price/Ton} \quad \text{(See Chart Below)}
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>Assumed Unit Price/Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic Concrete 12.5 mm Superpave</td>
<td>$53.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm Superpave with Polymer</td>
<td>$76.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 19 mm Superpave</td>
<td>$55.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 25 mm Superpave</td>
<td>$53.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm SMA</td>
<td>$85.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm leveling</td>
<td>$49.00</td>
</tr>
<tr>
<td>Asphaltic Concrete 12.5 mm PEM</td>
<td>$77.00</td>
</tr>
</tbody>
</table>

The Contractor shall provide a detailed estimate with the Release for Construction plans. Partial payments of the Lump Sum price shall be made on monthly statements based on an accepted schedule of values and detailed estimate. The Contractor shall develop a schedule of values with sufficient breakdown for each of the following items:

- DESIGN COMPLETE
- CONSTRUCTION COMPLETE

The schedule for values shall include a rational basis for partial payments of the Lump Sum bid based on the completed portion of the item and definitive activities. The schedule for values shall be submitted to the Engineer and no payments shall be made until the schedule of values is accepted.

No payment for mobilization will be made until the Department issues written authorization that plans are released for construction. Payment for mobilization shall not exceed 2.5% of the overall bid price for Construction Complete. The Contractor shall submit a detailed breakdown of mobilization in the proposed schedule of values for acceptance.

Contractor shall work with the Engineer to establish estimated earthwork, asphalt, and concrete quantities, as this will determine the frequency of required testing by the Department.

At the end of each calendar month, the Contractor shall provide the Department with a certification showing the percent complete for each item of work. The Contractor shall include a breakdown and supporting documentation, to include the Design Consultant's monthly invoice, in sufficient detail to substantiate the percent complete certified.

Payment shall be made under:

- Item 999-2010 - DESIGN COMPLETE .. per Lump Sum
- Item 999-2015 - CONSTRUCTION COMPLETE per Lump Sum

REvised/ADDED 692
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION
Project No. 0009542
DeKalb County

Section 108 – Prosecution and Progress

Subsection 108.08: Add the Following:

C. Intermediate Completion Schedule

An overall Completion Date is established for this Project of July 31, 2013.

Additional Liquidated Damages that may be assessed are as follows:

1. Cover Milled Area

 Failure to cover each milled area up through SMA Asphalt, before opening to traffic, will result in the assessment of Liquidated Damages at a rate of $5,000.00 per calendar day.

2. Permanent Striping Placement

 Failure to ensure placement of permanent striping does not begin until thirty (30) calendar days after completion of the final surface course and completion within ninety (90) calendar days after completion of the final surface course will result in the assessment of Liquidated Damages at a rate of $1,000.00 per calendar day.

3. Traffic Loop Replacement

 Failure to replace Traffic Loops and have operational within the designated time as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $500.00 per hour or any part thereof.

4. Lane Closures

 Failure to reopen lanes as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $5,000.00 per hour or any part thereof.

5. Wrecker Service

 Failure to respond to and remove incidents as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $1,000.00 per hour or any part thereof.

6. ITS System

 Failure to adhere to outage restrictions as specified in Section 150.11 will result in the assessment of Liquidated Damages at a rate of $500.00 per hour or any part thereof.

7. ITS System Contractor Response during Warranty Period

 Failure to respond to and repair the System as specified in Section 150.11 will result in the assessment of Liquidated Damages in the amount of $600 per day or any part thereof.

8. Utility Conflict Matrix
Failure to submit to the Department a Utility Conflict Matrix in the Department's prescribed format within 180 days of Notice to Proceed shall result in assessment of liquidated damages in rate of $1,000.00 per calendar day until the matrix has been received.

 Failure to submit to the Department a Preliminary Utility Status Report within 120 days after the Notice to Proceed has been given for the contract shall result in assessment of liquidated damages in rate of $1,000.00 per calendar day until the report has been received.

These rates are cumulative and in addition to Liquidated Damages that may be assessed in accordance with Subsection 108.08 for failure to complete the overall project.
Station Range Typical Section 5
1-20 Mainline Eastbound
STA 1265+00.00 TO STA 1265+80.00

Station Range Typical Section 6
1-20 Mainline Eastbound
STA 1304+31.80 TO STA 1304+26.89

Typical Section No. 5
5 Lane Super-Elevated Section

Typical Section No. 6
Sapfing Creek Bridge

Costing Plans

Arcadis
Infrastructure, Environment, Buildings
AMENDMENT TO ADVERTISED CONTRACT

CONTRACT I.D. NUMBER: B13922-11-000-0

GEORGIA PROJECT NUMBER: 0009542

PCN: 0009542.01000

COUNTY: DEKALB

AMENDMENT NUMBER: 3

LETTING DATE: JANUARY 21, 2011

LETTING NUMBER: 001

THE FOLLOWING CHANGES ARE HEREBY MADE TO THIS CONTRACT. THE BIDDER IS RESPONSIBLE FOR MAKING ANY NECESSARY CHANGES IN INK IN THE PROPOSAL. BIDDER SHALL ACKNOWLEDGE THIS AMENDMENT BY CHECKING THE APPROPRIATE SPACE ON THE PROPOSAL SIGNATURE PAGE.

1. **Delete** Proposal Pages 452 through 455 from the proposal, **and Substitute** the attached revised/added pages 452 through 455 in the proposal.

DAVID E. HOGE
STATE TRANSPORTATION OFFICE ENGINEER
Whereas the DEPARTMENT proposes to undertake a design-build project hereafter referred to as PROJECT to I-20 EB from I-285 TO CR 5151/PANOLA RD, CD SYSTEM, Georgia by contract through competitive bidding procedures; and,

Whereas the DEPARTMENT will accomplish the PROJECT through a Design Consultant, Design Consultant Team and/or Contractor hereafter referred to as CONTRACTOR; and,

Whereas, where OWNER has property rights ("Prior Rights") at the location of the PROJECT, OWNER will provide written evidence as to said prior rights within the area and will provide written documentation of prior rights relating to any individual crossing or Utility Facility, at the location of the PROJECT; and

Whereas, OWNER acknowledges that, generally, absent a showing of prior rights, the costs of relocation, protection, removal, or adjustment performed by OWNER shall be borne by OWNER; and

Whereas, pursuant to O.C.G.A. § 32-6-170(b), DEPARTMENT is authorized to pay or participate in the payment of the costs of relocation, protection, or adjustment of OWNER’S facilities where DEPARTMENT has made the determination that (i) such payments are in the best interest of the public and necessary in order to expedite the staging of the design-build project; and (ii) the costs of the removal, relocation, protection, or adjustment of such facilities are included as part of the Contract between the Department and the Department’s roadway contractor for the design-build project; and

1. **Type of Utility**

OWNER has the following utility facilities which may need to be adjusted or relocated as a result of the proposed PROJECT:

Type of facility or facilities of OWNER:

- [X] Domestic water mains and distribution lines and associated appurtenances
- [] Sanitary Sewer facilities and/or Storm Drainage System
- [] Electrical Distribution (overhead and underground) wires, poles, etc.
- [] Electrical Transmission (overhead and underground) wires, poles, etc.
- [] Natural Gas Distribution Facilities (underground)
- [] Natural Gas Transmission Facilities (underground)
- [] Petroleum Pipeline (underground)
- [] Telecommunications facilities and equipment
- [] Cable TV facilities
- [] Street Lighting
- [] Internet Data Service
- [] Other Facilities (Description) ___
2. New Utility Facilities Proposed (Betterment)

OWNER desires the following to be installed as new additional facilities within the PROJECT.
Insert here or attach a detailed description of proposed new additional utility installations:

NONE

3. Assignment of Responsibilities for Design and Construction

This MEMORANDUM OF UNDERSTANDING and the following shall serve as a basis for assignment of responsibilities and costs for the DEPARTMENT to enter into a Standard Utility Agreement (SUA) or Contract Item Agreement (CIA), if necessary, with OWNER once the PROJECT is awarded to the CONTRACTOR. For a PROJECT implementation, GDOT will not have in its possession exact costing plans to be utilized to determine exact locations of the removal, relocation, protection, or adjustment. However, Overhead Subsurface Utility Engineering (SU/E) investigations plans exist providing the best information and signifying the layout of known existing facilities. Please use these plans for developing the final determination of services as indicated below. The CONTRACTOR developed plans will be provided to the OWNER for after the design build project is awarded by GDOT which shall be used by the CONTRACTOR as the final basis for the SUA or CIA.

OWNER hereby intends to:

A. OWNER, at the DEPARTMENT’S cost, will provide the following services for the properties for which it has established prior rights (check to signify):

 Design
 Construction

B. OWNER, for any removal, relocation, protection, or adjustments that do not have prior rights will allow their facilities to be placed into the DEPARTMENT’S contract for the following services pursuant to O.C.G.A. § 32-6-170(b). The DEPARTMENT will add the removal, relocation, protection, or adjustment costs to the overall PROJECT’s cost. The OWNER will be responsible for all design work cost (check to signify):

 Construction X

C. OWNER, at OWNER’S cost, will provide the following services (check to signify):

 Design
 Construction

REVISED/ADDED 9/53
The following is hereby mutually agreed to and understood by both parties:

1. The identification of existing facilities including preparation of Overhead Subsurface Utility Engineering (SUE) investigations plans will be accomplished by the DEPARTMENT prior to award of the PROJECT and thereafter supplemented by the CONTRACTOR.

2. The CONTRACTOR shall coordinate reviews of the utility relocation information and obtain acceptance from the OWNER and DEPARTMENT when required. However: the OWNER shall apply for and obtain any required permits from the DEPARTMENT and perform any final design or proprietary design needed to administer its own relocation work if the work will not be included in the PROJECT (list any work not included in the PROJECT in space provided above). If the preliminary plans indicate that no conflict exists, and the OWNER concurs with this information, the OWNER shall provide a letter of “no conflict” to the CONTRACTOR.

3. The CONTRACTOR will research the property interest of each OWNER and present the findings to the DEPARTMENT and OWNER for approval. The CONTRACTOR will coordinate resolution of any disputed items. The plans and estimate for the utility work shall be subject to approval of both the DEPARTMENT and the OWNER prior to construction. If the OWNER chooses to include the subject utility work in the PROJECT and the research indicates that no property interest exists, the OWNER did not indicate Section 3B above, and the OWNER cannot refute this finding with evidence that would substantiate the property interest in legal proceedings, the OWNER shall provide confirmation in writing that OWNER will reimburse the DEPARTMENT for any adjustment or relocations necessary; and an agreement will be prepared and executed in accordance with the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual”. If the OWNER chooses to perform its own relocations and the OWNER holds no property interest as stated above, the OWNER shall confirm in writing that the OWNER will relocate its own facilities at no cost to the DEPARTMENT and the CONTRACTOR.

4. All construction engineering and contract supervision shall be the responsibility of the DEPARTMENT and the CONTRACTOR to ensure that all utility work included in the PROJECT is accomplished in accordance with the PROJECT’s plans and specifications. The CONTRACTOR will consult with the OWNER before authorizing any changes or deviations which affect the OWNER’s facility.

5. For Utility work included in the PROJECT, the CONTRACTOR shall ensure that the construction and installation of the OWNER’s facilities is performed by a contractor prequalified registered with both the DEPARTMENT and the OWNER. The CONTRACTOR shall contact the OWNER to obtain the current list of the OWNER’s prequalified Contractors.

6. For Utility work included in the PROJECT’s contract, the OWNER or the OWNER’s Consultant shall have the right to visit and inspect the work at any time and advise the CONTRACTOR and the DEPARTMENT’S Engineer of any observed discrepancies or potential issues. The DEPARTMENT agrees to notify the OWNER when all utility work is completed and ready for final inspection by the OWNER.

7. Upon Maintenance Acceptance or Final Acceptance of the utility work included in the contract and upon certification by the DEPARTMENT’S Engineer and the OWNER that the work has been completed in accordance with the plans and specifications, the OWNER will accept the adjusted, relocated, and additional facilities and will thereafter operate and maintain said facilities located within the PROJECT right of way subject to the DEPARTMENT’S “Utility Accommodation Policy and Standards Manual, current edition” and any agreements in effect without further cost to the DEPARTMENT or its CONTRACTOR.
For the purpose of utility coordination, relocation and reimbursement matters, the OWNER shall cooperate with the CONTRACTOR in the same manner as if coordinating directly with the DEPARTMENT in accordance with the laws of the State of Georgia, the DEPARTMENT'S "Utility Accommodation Policy and Standards Manual, current edition" and any agreements in effect between the DEPARTMENT and OWNER. The OWNER agrees to cooperate in good faith with the CONTRACTOR and to respond to all requests for information or meetings required to reach a resolution of any disputed items.

The Memorandum of Understanding will be incorporated into the project contract by reference or Exhibit.

APPROVED FOR THE OWNER BY:

[Signature]
(Date)
(Title)

APPROVED FOR THE DEPARTMENT BY:

[Signature]
(Date)

STATE UTILITIES ENGINEER

REVISED/ADDED 455