Getting Started:
Synchro 8

Version 1.0
09/20/2013
Table of Contents

I. Introduction
II. Scenario Manager
III. Import the Background Image
IV. Build the Network
V. Edit the Node
 1. Node
 2. Lane
 3. Volume
 4. Signing
 5. Timing
VI. Optimization
 1. Optimize the Individual Signals
 2. Optimize the Network
VII. Reporting
Introduction to the Synchro 8 Getting Started Guide

This guide will provide a basic understanding of how to use the Synchro 8 software package. This guide was designed to walk a user through the necessary steps to create a network simulation from opening the software for the first time to the printing the traffic analysis reports.

The project used in this example is a rural project in Murray County, GA. The project encompasses three types of traffic controls; two way stop, all way stop and traffic signal.

Please contact Tiffany Turner (tturner@dot.ga.gov) if you have any questions, suggestions about this guide or if you notice any errors or discrepancies in this guide.
Setting the Scenario Manager

1. Click the **Options** tab in the Menu Bar and select **Scenario Manager**

2. Enter the following
 a. **Description** = PI/Project Name/County Data
 b. **Date** = the date of analysis
 c. **Time** = leave blank
 d. **Alternative** = the alternative being analyzed (existing, no build, build, Alt B, dual lefts, etc…)
 e. **Timing Plan** = enter the year and time for the traffic data (2013 AM, 2036PM)
 f. **Analyst** = your name or initials
 g. Click **OK**
Importing the Background Image

1. Select **Select Backgrounds** from the **File** tab in the Menu Bar.
2. Click **Use Bing™ Aerials**
3. Enter the nearest city (or address, destination, etc…) in the search bar and click the blue arrow.
4. Use the controls within Bing to center the project area in the window.
 a. Once complete click **Set Reference**.
 b. Place the purple thumbnail in the lower left corner of the project area
 c. Select **OK**
5. Click **Set Boundaries**
 a. Click **Set 1st Boundary Point** and set a corner point.
 b. Click **Set 2nd Boundary Point** and set the opposite corner point.
6. Click **Preview Selection**
7. Click **Save selection > As single file**
8. Click **OK**
9. The background image is loaded
1. Draw the main line corridor.
 a. Click the **Mapping** tab
 b. Click the **Add a link** button
 c. Click and hold outside of the background image and drag along the main corridor to a point outside of the image past the end of the corridor.

 Note: The link will be straight. Curvature will be added later

 Note: The links will not appear red in Synchro. This is for visibility in the guide
2. Click the **Zoom** Tab on the floating menu and click the **zoom area** to zoom into the area around the first intersection.
3. Click **Mapping > Add a link** to add the cross street. (repeat the click/hold/drag process)

An intersection is created when you drag one link over another link. (notice the green squares at each corner).
4. Move this intersection to match the background by selecting **Mapping > Move Node**
5. Repeat steps 3 & 4 to create the entire network
6. To add curvature
 a. Right click on the link and select **Add Curvature**
b. Click and hold the square and drag to match the link to the existing alignment

NOTE: each “end” of the link can be curved. Experiment by adjust both ends
7. Repeat Step 6 wherever curvature is needed
Edit a Node

I. Complete the **Node Window**

1. Double click the Node (intersection) and Select the **Node** Button

2. Select the **Screen** Button
3. For **Unsignalized** intersections
 a. **Description:** Intersection Name
 b. **Control Type**
 i. **Unsig**
 • stop or yield control of one or all approaches
 ii. **Roundabouts**
 • based on HCM 2010 method. Models single and multi-lane roundabouts and calculates delays and queues
 • use the HCM 2010 setting

4. For **Signalized intersections**
 a. **Description:** enter intersection name
 b. **Control Type**
 i. **Pretimed**
 • runs a fixed cycle with no detectors
 • *use for isolated intersections where the minor road volume is low*
 ii. **Semi-Actuated-Uncoordinated**
 • detectors located on minor approach. Recalls the main street through phases to max values and services the minor road when a vehicle is detected. Not coordinated because the cycle length can vary each cycle.
 • *use for isolated higher volume intersections where the minor road traffic is moderate*
 iii. **Actuated uncoordinated**
 • detectors located on all approaches, fully actuated. All phases have a minimum green time but are serviced when a vehicle is detected, no recall maximums are set. The cycle length may vary each cycle.
 • *Use for an isolated intersection where the major and minor roads have similar traffic volumes*
 iv. **Actuated coordinated**
 • All phases except for the assigned coordinated phases are fully actuated. The signal operates on a fixed cycle length allowing any unused time in the cycle to be given back to the main line
II. Select and complete the **Lane Window**

1. **Lanes and Sharing**: select the configuration of each approach. If a turn lane is shared select it from the through lane drop-down.

2. **Traffic Volume**: enter the DHV for the movement

3. **Street Name**: enter the street name for the selected approach

4. **Link Distance**: DO NOT CHANGE*

5. **Link speed**: enter the speed limit

6. **Lane Width**: enter lane width

7. **Grade %**: enter once per approach (use – {neg} for downslopes)

8. **Storage Length**: enter the storage length in feet for turn bays. If the lane extends to the previous intersection enter “0”

9. **Storage Lane #**: this should be populated by the lanes and sharing input, however it is good to check this field. (if the lanes extends to previous intersection the field will have a “0”)

10. **Right Turn Channelized**: ONLY change if you have a channelized right turn lane (not just a striped median)

 - None: no right turn channelization
 - Yield: no phase is assigned. RTOR only
 - Stop: same as yield
 - Free: 100% green time
 - Signal: movement is controlled by the signal

Repeat for all approaches by selecting the arrows

If the link length here is incorrect, check the scale of the background image. If a background image was not used adjust the length by lengthening the link graphic on the map screen.
III. Select and complete the **Volumes** Settings Window

1. **Lanes and Sharing**: already entered in Lane Window
2. **Traffic Volume**: already entered in Lane Window
3. **Peak Hour Factor**:
 a. 0.92 for urban
 b. 0.88 for rural
4. **Heavy Vehicles**: enter % heavy vehicles

Repeat for all approaches by selecting the arrows
IV. Select and complete the Signing Window

1. Sign Control
 a. select stop or yield for the minor street
 b. select free for the major street (unless it’s a four way stop)

2. Median width:
 a. used for two-stage gap acceptance calculations.
 The median storage is determined by the median width divided by the vehicle length
 b. if a value is enter the median is assumed to be raised unless the TWLTL box is checked
 c. this is applied to the minor leg (the traffic that will NOT the leg the median is on)

3. TWLTL Median
 a. check the box if there is a TWLTL
 b. the assumed storage is 2 vehicles

4. Right Turn Channelized: keep at none
V. Select and complete the **Timing Window** (for signalized intersections only)

<table>
<thead>
<tr>
<th>TYPING SETTINGS</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>VBL</th>
<th>VBT</th>
<th>VBR</th>
<th>NBL</th>
<th>NET</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
<th>PED</th>
<th>HOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanes and Sharing (FRL)</td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (gph)</td>
<td>120</td>
<td>100</td>
<td>20</td>
<td>35</td>
<td>75</td>
<td>70</td>
<td>20</td>
<td>120</td>
<td>60</td>
<td>105</td>
<td>100</td>
<td>25</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Turn Type</td>
<td>Prot — Prot Sand Perm — Perm Perm — Perm Perm — Perm</td>
<td></td>
</tr>
<tr>
<td>Protected Phases</td>
<td>Prot 2 2 6 6 -- --</td>
<td></td>
</tr>
<tr>
<td>Permitted Phases</td>
<td>Prot 2 2 6 6 -- --</td>
<td></td>
</tr>
<tr>
<td>Detecting Phases</td>
<td>Prot 2 2 6 6 -- --</td>
<td></td>
</tr>
<tr>
<td>Switch Phase</td>
<td>Prot 2 2 6 6 -- --</td>
<td></td>
</tr>
<tr>
<td>Loading Phase (s)</td>
<td>20 100 100 100 100 100 100</td>
<td></td>
</tr>
<tr>
<td>Landing Point (s)</td>
<td>0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Minimum Initial (s)</td>
<td>4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0</td>
<td></td>
</tr>
<tr>
<td>Minimum Split (s)</td>
<td>8 0 20 0 8 0 20 0 20 0 20 0 20 0 20 0</td>
<td></td>
</tr>
<tr>
<td>Total Split (s)</td>
<td>10 0 20 0 9 0 20 0 20 0 20 0 20 0 20 0</td>
<td></td>
</tr>
<tr>
<td>Yellow Time (s)</td>
<td>3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5</td>
<td></td>
</tr>
<tr>
<td>All Red Time (s)</td>
<td>0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td>
<td></td>
</tr>
<tr>
<td>Loss Time Adjust (s)</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Logging Phase?</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>Allow Lead/Lag Optimizer?</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>Recall Mode</td>
<td>Max Max Max Max Max Min Min Min Min</td>
<td></td>
</tr>
<tr>
<td>Speed Limit (mph)</td>
<td>30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30</td>
<td></td>
</tr>
<tr>
<td>Adjusted Eff (Green %)</td>
<td>6.0 17.1 5.0 16.1 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7</td>
<td></td>
</tr>
<tr>
<td>Adjusted Volume (C) Ratio</td>
<td>0.13 0.36 0.11 0.34 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27</td>
<td></td>
</tr>
<tr>
<td>Volume to Capacity Ratio</td>
<td>0.60 0.40 0.21 0.37 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34</td>
<td></td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>34.9 12.7 23.4 20.4 15.5 2.2 24.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Queue Delay (s)</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>Total Delay (s)</td>
<td>34.9 12.7 23.4 20.4 15.5 2.2 24.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Level of Service</td>
<td>C B C C B A A A A</td>
<td></td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>17.3 20.5 11.5 15.2</td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C B C C B A A A A</td>
<td></td>
</tr>
<tr>
<td>Queue Length 50th (ft)</td>
<td>35 62 10 118 34 64 0</td>
<td></td>
</tr>
<tr>
<td>Queue Length 95th (ft)</td>
<td>100 88 33 121 60 121 54</td>
<td></td>
</tr>
<tr>
<td>Stops (mph)</td>
<td>100 30 36 147 100 5 105 30</td>
<td></td>
</tr>
<tr>
<td>Fuel Used (gph)</td>
<td>7.25 2.47 9 9 9</td>
<td></td>
</tr>
<tr>
<td>Dendritic Vehicles (100)</td>
<td>0 0 0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

1. **Turn Type**
 a. For left turns
 i. Perm (permitted): turn are permitted after yielding to conflicting movements **green ball**
 ii. Prot (protected): movement is protected by a dedicated signal phase **green arrow**
 iii. Permitted + Protected (pm+pt) - movement is protected during a portion of the phase and permitted during the rest of the phase **green arrow followed by green ball**
 iv. Split – left and thru traffic share a protected phase. Usually when there’s a left/thru lane
 v. Dallas Permitted (D. Pm) – **ignore**
 vi. Dallas Permitted plus protected (D.P+P) – **ignore**
 vii. N/A – **ignore**
 viii. Custom – **ignore**
b. For right turns
 i. Permitted (Perm) – must yield to pedestrians *green ball*
 ii. Protected (Prot) – movement is protected (no pedestrian conflict) *green arrow*
 iii. Overlap (over) – movement is given a green arrow during the compatible left turn movement of the intersecting street
 iv. Permitted + Protected (pm+ov) – movement must yield to pedestrians during the thru phase but is protected during the compatible left turn phase.
 v. Protected + Overlap (pt+ov) – movement is protected. the green arrow overlaps from the thru phase into the compatible left phase
 vi. Free – only to be used when the free turn lane has an acceleration lane downstream and is not controlled by the signal

2. **Yellow Time**

 Calculate using the following equation

 \[
 y = \frac{1.47V}{20 + 64.4g} + 1.0
 \]

 where \(V \) = approach speed (mph) and \(g \) = grade (ex. -3% = -.03)

3. **Red time**

 Calculate using the following equation

 \[
 R = \frac{W + 20}{1.47V}
 \]

 where \(W \) = width of the stop line to far side no-conflict point (ft) and
 \(V \) = speed of vehicle, mph
Optimize the Network

1. Optimize Each Intersection
 a. Double click on a node to select it
 b. Go to Optimize> Intersection Splits
 c. Go to Optimize> Intersection Cycle Length

2. Optimize the Network
 a. Go to Optimize> Network Cycle Lengths
 b. Go to Optimize> Network Cycle Offset
Reporting

In order to more easily identify the reports after printing it is helpful to set up a useful header

1. Go to **File > Create Report** (or Ctrl-R)
2. Click the **Header** Button
3. Set up the **Header/Footer** by selecting the fields from the drop down
For Reports

1. Go to **File > Create Report** (Ctrl R)

![Create Report dialog box]

2. Select **Reports**
 - For Signals > **HCM 2010 Signalized** > Summary
 - For Roundabouts > **HCM2010 Roundabout** > Detail
 - For All way stop control > **HCM2010 AWSC** > Detail
 - For Two way stop control > **HCM2010 TWSC** > Detail

3. Select a **Scope**
 - **Single Intersection** > produces the report for a select intersection
 - **Zone** > ignore
 - **Entire Network** > produces the report for all the applicable intersections in the network

4. Select **Preview** to view the report
5. Select **Print** to print the report

![Report Preview window]
For Two Way Stop Control intersections

1. Select **HCM 2010 TWSC** report
2. Choose either **Single Intersection** or **Entire Network**
3. Double check input data in the **Movement** section
 a. Volume
 b. Peak Hour Factor
 c. Heavy Vehicles %
4. Review the **Intersection** Delay
5. Review **Approach** Results
 a. HCM Control Delay (s)
 b. HCM LOS
6. Review **Lane** Results
 a. HCM Lane VC Ratio
 b. HCM Control Delay (s)
 c. HCM Lane LOS
 d. HCM 95\(^{th}\) percentile queue (veh)

Notes:
- There is not an overall Intersection LOS (see the HCM 2010 for the reasoning)
- **Confirm** that the Queue Length does not exceed the provided storage length or back into the upstream intersection.
- Consider the delay and LOS for each movement not just the minor leg approach. The major left turns can impact the mainline through traffic.
7. Select **HCM 2010 AWSC** report
8. Choose either **Single Intersection** or **Entire Network**
9. Double check input data in the **Movement** section
 a. Volume
 b. Peak Hour Factor
 c. Heavy Vehicles %
10. Review the **Intersection** Results
 a. Intersection Delay
 b. Intersection LOS
11. Review **Approach** Results
 a. HCM Control Delay (s)
 b. HCM LOS
12. Review **Lane** Results
 a. HCM Lane VC Ratio
 b. HCM Control Delay (s)
 c. HCM Lane LOS
 d. HCM 95th percentile queue (veh)

Notes:
- If the v/c ratio is of a lane is greater than one the LOS will be a F regardless of delay
- The LOS on the approach and intersection level is based solely on delay
- **Confirm** that the Queue Length does not exceed the provided storage length or back into the upstream intersection.
- Consider the delay and LOS for each movement not just the minor leg approach. The major left turns can impact the mainline through traffic.
For Signalized intersections

1. Select **HCM 2010 Signalized** report (select summary)
2. Choose either **Single Intersection** or **Entire Network**
3. Double check input data in **Movement** section
 a. Lane Configurations
 b. Volume
4. Review the lane and approach output in the **Movement** section
 a. Lane Group Delay
 b. Lane Group LOS
 c. Approach Delay
 d. Approach LOS
5. Review the **Intersection Summary**
 a. HCM 2010 Control Delay
 b. HCM 2010 LOS

Notes:
- Consider the delay and LOS for each movement and not just the overall intersection. An overall “good” LOS/delay does not mean that the delay is well balanced.
- Check the Cycle Length to make sure it is not excessive (<180s)
For Arterials:

1. Select **Other > Arterial Level of Service** from **Select Reports**
2. Select an arterial under **Options**
3. Review the Output
 a. Flow speed = free flow speed (speed limit)
 b. Running Time = the time it would take to drive the segment
 c. Signal Delay = the Synchro delay for the through lane group (will match control delay for the intersection)
 d. Travel Time = the running time plus the signal delay
 e. Arterial Speed = the distance divided by travel time
 f. Arterial LOS = based on speed and arterial class

<table>
<thead>
<tr>
<th>Arterial Level of Service: EB Main Street</th>
<th>1232006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Street</td>
<td>Arterial Class</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1st St</td>
<td>II</td>
</tr>
<tr>
<td>2nd St</td>
<td>II</td>
</tr>
<tr>
<td>3rd St</td>
<td>II</td>
</tr>
<tr>
<td>4th St</td>
<td>II</td>
</tr>
<tr>
<td>5th St</td>
<td>II</td>
</tr>
<tr>
<td>Total</td>
<td>II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arterial Level of Service: WB Main Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Street</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>5th St</td>
</tr>
<tr>
<td>4th St</td>
</tr>
<tr>
<td>3rd St</td>
</tr>
<tr>
<td>2nd St</td>
</tr>
<tr>
<td>1st St</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Notes:
- The arterial LOS report is based on information in the HCM 2000.
- Only works with signalized arterials. The arterial can contain stop controls but will not work with arterials that do not contain signals. Works best with arterials that begin and end with signals.
- Focus on the Arterial Speed and the Travel Time as indicators of how the arterial is operating.