Method to Estimate Sediment Storage Volume for Rock Filter Dams and Stone Check Dams

$$
V_{1}=\frac{1}{27}\left[\frac{W_{1} S_{p} L_{1}{ }^{2}}{2}+\frac{S_{p}{ }^{2}}{6 S_{x f}} L_{1}{ }^{3}+\frac{S_{p}{ }^{2}}{6 S_{x b}} L_{1}{ }^{3}\right]
$$

Rock filter dams and stone check dams are of like shape, so their storage volume equations are identical. Note from Figure-1 below, the total volume: $V_{t}=V_{1}+V_{2}$. Note that $V_{1} \gg V_{2}$. Although V_{2} is negligible, it can be calculated similarly.
V_{1} - Sediment storage volume above ditch (yd^{3}).
W_{1} - Ditch bottom width (ft).
S_{p} - Profile slope of ditch ($\mathrm{ft} / \mathrm{ft}$).
L_{1} - Distance sediment can be stored from the toe of dam (ft).
$S_{x f}$ - Ditch foreslope (ft/ft).
$S_{x b}$ - Ditch backlope ($\mathrm{ft} / \mathrm{ft}$).
$S_{c d}$ - Check dam face slope ($\mathrm{ft} / \mathrm{ft}$).
d - Sediment storage height of dam (ft) where $S_{p} L_{1} \leq d$.
a - Horizontal distance of ditch foreslope (ft).
b - Horizontal distance of ditch backslope (ft).

Figure-1: Profile View of the Ditch - (Not to Scale)

Office of Design Policy \& Support
Jon Griffith, P. G. , P. E. , \& Dylan Eagleton

Figure-2: Cross-Section View of the Ditch at Toe of Rock Filter Dam $\left(A_{1}\right)$ - (Not to Scale)

Figure-3: Spacing Between Rock Filter Dams and Stone Check Dams

To prevent backwater, as a general rule, do not space rock filter dams so the top of the downstream dam is higher than the bottom of the upstream dam.

Derivation of Sediment Storage Formula

$A_{1}=W_{1} d+\frac{1}{2} d a+\frac{1}{2} d b$
$a=\frac{d}{s_{x f}} \quad$ and $\quad b=\frac{d}{s_{x b}}$
$A_{1}=W_{1} d+\frac{d^{2}}{2 S_{x f}}+\frac{d^{2}}{2 s_{x b}}$
$d=S_{p} L$
$A_{1}=W_{1} S_{p} L+\frac{S_{p}{ }^{2} L^{2}}{2 S_{x f}}+\frac{S_{p}{ }^{2} L^{2}}{2 S_{x b}}$
$V_{1}=\int_{L_{o}=0}^{L_{1}}\left(W_{1} S_{p} L+\frac{S_{p}{ }^{2} L^{2}}{2 S_{x f}}+\frac{S_{p}{ }^{2} L^{2}}{2 S_{x b}}\right) \mathbf{d} L$
$\left.V_{1}=\frac{W_{1} S_{p}{ }^{2} L^{2}}{2}+\frac{S_{p}^{2} L^{3}}{6 S_{x f}}+\frac{S_{p}^{2} L^{3}}{6 S_{x b}}\right]_{0}^{L_{1}}$
$V_{1}=\frac{1}{27}\left[\frac{W_{1} S_{p} L_{1}{ }^{2}}{2}+\frac{S_{p}{ }^{2}}{6 S_{x f}} L_{1}{ }^{3}+\frac{S_{p}{ }^{2}}{6 S_{x b}} L_{1}{ }^{3}\right]$
Office of Design Policy \& Support
Jon Griffith, P. G. , P. E. , \& Dylan Eagleton

