Alternate Pavement Type Bidding

April 11, 2011
Macon Area Office
Overview

• Make You Aware of Current Process
 • Design
 • PTS – Pavement Type Selection
• Share Future Plans
 • MEPDG (DARWin-ME)
• Describe Alternate Pavement Type Bidding
• Share Way to Get Industry Input
Design Process

• AASHTO Interim Guide for Design of Pavement Structures
• Design Policy Manual
 • Chapter 10 – Pavement Design
• Pavement Design Software minor revision
AASHO Road Test

Loop 5
- Test Tangent
- Rigid
- Steel I-Beam
- Prestressed Concrete
- Flexible

Loop 6
- Test Tangent
- Rigid
- Steel I-Beam
- Reinforced Concrete
- Flexible
Asphalt Design

• Total Thickness based on Traffic, Soils, Location
• GDOT Standard Pavement Section

SN = SN_{HMA} + SN_{Base}
Concrete Design

• PCC Thickness based on Traffic, Soils, Location
• GDOT Standard Pavement Section

• Thickness from Nomograph
Concrete Design

Concrete Elastic Modulus, \(E_c \) (10^6 psi)

Effective Modulus of Subgrade Reaction, \(k \) (pci)

Mean Concrete Modulus of Rupture, \(S_e \) (psi)

Examples:
- \(k = 72 \) psi
- \(E_c = 5 \times 10^6 \) psi
- \(S_e = 650 \) psi
- \(J = 3.2 \)
- \(C_d = 1.0 \)

Load Transfer Coefficient, \(J \)

Drainage Coefficient, \(C_d \)

Geometric Data:
- \(S_e = 0.29 \)
- \(R = 95\% \) (\(Z_R = 1.645 \))
- \(\Delta PSI = 4.2 - 2.5 = 1.7 \)
- \(W = 5.1 \times 10^6 \) (18 kip/ESAL)

Solution:
- 0.100 inches (nearest half-inch from segment 2)

Truss Diagram:

Graphs and Equations:

\[
\log_{10} N = 2.88 + 7.35\log_{10}(D+1) - 0.06 + \frac{1.624 \times 10^{-7}}{D+1} - 1.5 \left(\frac{\Delta PSI}{4.5 - 1.5} + (4.22 - 0.32c_r) \log_{10} \right) + \frac{c_c c_d}{25.63 c_d} \left(\frac{0.75 - 1.132}{0.75 - (c_d/2)^{0.25}} \right)
\]
Pavement Type Selection

• Pavement Evaluation

• Pavement Type Selection Process
 – LCCA: Life-Cycle Cost Analysis
 – Decision Matrix
Pavement Evaluation - Existing Roadways

• Gather Historical Information
 – Existing Type of Pavement
• Review Concept for the Project
• Gather Existing Condition of Pavement
Life-Cycle Cost Analysis

- Possible Typical Section Alternates
 - Rehabilitation, Reconstruction, or New Construction
- Typical Sections Developed Using Design Process
- Typical Sections Compared Using LCCA
Life-Cycle Cost Analysis

• Economic Analysis over Time
 – Initial Cost
 – Maintenance Timing and Cost
 – Salvage Value
 – User Cost
 – Analysis Period
 – NPV – Net Present Value
LCCA – 40 year analysis period

- **Initial Construction**
- **Maintenance**
- **Salvage**

- Asphalt
- Concrete
LCCA

Compare Net Present Value (NPV) of alternates

Results used in Pavement Type Selection Process
Pavement Type Selection

• Additional Factors
 • Ease of Repairing/Maintaining
 • Constructability
 • Construction Time
 • Expected Life
 • Other

• Decision Matrix
 • Weighting Factors
Decision Matrix

<table>
<thead>
<tr>
<th>Weight</th>
<th>Decision Factor 1</th>
<th>Decision Factor 2</th>
<th>Decision Factor 3</th>
<th>Decision Factor 4</th>
<th>TOTAL SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decision Matrix

<table>
<thead>
<tr>
<th>Weight</th>
<th>Initial Cost</th>
<th>Maint Cost</th>
<th>Annual Cost</th>
<th>Other Factors</th>
<th>TOTAL SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 1</td>
<td>60 30</td>
<td>50 12.5</td>
<td>80 8</td>
<td>50 7.5</td>
<td>58.00</td>
</tr>
<tr>
<td>Alt 2</td>
<td>50 25</td>
<td>75 18.75</td>
<td>70 7</td>
<td>70 10.5</td>
<td>61.25</td>
</tr>
<tr>
<td>Alt 3</td>
<td>40 20</td>
<td>75 18.75</td>
<td>60 6</td>
<td>80 12</td>
<td>56.75</td>
</tr>
<tr>
<td>Alt 4</td>
<td>30 15</td>
<td>100 25</td>
<td>50 5</td>
<td>90 13.5</td>
<td>58.50</td>
</tr>
</tbody>
</table>
Decision Analysis

• Weighting Factors
 – Relative (weighted) importance of factors considered in selection process
 – Sum of all weighting factors must equal 100

• Typical Section recommended based on final score
Future

Pavement Design

Today

Alternate Pavement Bidding

Group Meets monthly

Publish Process

Let AB Project

Nov 2011

Implement MEPDG
Research Underway

• MEPDG (DARWin-ME) – Related Research
 • CTE Determination
 • Traffic Load Spectra
 • Calibration and Validation for Georgia - Pending
Alternate Pavement-Type Bidding

• Pavement Type Selection Guide
 – National Guide in Development
 – Includes Chapter on Alternate Pavement-Type Bidding
Alternate Pavement Type Bidding

<table>
<thead>
<tr>
<th>Alabama</th>
<th>Kentucky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>Michigan</td>
</tr>
<tr>
<td>Colorado</td>
<td>Montana</td>
</tr>
<tr>
<td>Idaho</td>
<td>Ohio</td>
</tr>
<tr>
<td>Indiana</td>
<td>Pennsylvania</td>
</tr>
<tr>
<td>Kansas</td>
<td>North Carolina</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Missouri</td>
</tr>
<tr>
<td>Louisiana</td>
<td></td>
</tr>
</tbody>
</table>
GDOT Alternate Bidding

• Will consider projects when Decision Matrix scores are close
• Will consider projects that can be let without any type of A + B factors

• Bidding to be similar to current alternate base and alternate shoulder type bidding, i.e. only one alternate can be bid
Type of Potential Projects

• Reconstruction
• New Construction

• Not
 • Pavement Preservation
 • Widening that does not require reconstruction
Next Steps

1. Convene Small Group for Follow-up
 • Association representatives (1-2)
 • Input to Design Policy Manual Chapter 10.3 – Pavement Type Selection
 • Review of Specifications

2. Publish as GDOT Policies/Procedures

3. Place Alternative Bid in Let project
Timeline

Industry Meeting
Today

Goal: Sept 2011

Group Meets monthly

Publish Chapter 10.3

Let Project

Nov 2011

1st project:
West Cleveland Bypass – Phase I
Comments or questions can also be sent to:

altpavbid@dot.ga.gov