Agenda

• Overview
• Schedule
• Corridor Screening Process
• Parameters
• Potential Strategies
• Current Activities
• Next Steps
Overview – MLIP

- Previous Atlanta Regional Managed Lanes System Plan (MLSP) Goals:
 - Protect mobility
 - Maximize person/vehicle throughput
 - Minimize environmental impacts
 - Provide a financially feasible system
 - Design and maintain a flexible infrastructure for varying lane management
Overview – MLIP

- Update MLSP as part of Managed Lanes Implementation Plan (MLIP) to:
 - Build upon previous MLSP goals
 - Reflect current funding constraints
 - Identify feasible locations for managed lane projects
 - Redefine and reprioritize projects from the previous plan based on current and future needs
 - Prioritize list of managed lane projects and accompanying financing strategies (P3 and traditional funding sources)

- Incorporate preliminary recommendations into RTP and TIP update, as appropriate during 2013
Overview – OPS

• Identify bottleneck areas
• Identify and evaluate potential low-cost improvements
• Document a prioritized list of operational projects
Study Area

- All limited access facilities in metro Atlanta
 - Interchanges
 - Up to 5 selected arterials within the interchange area of influence
<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>D</td>
<td>J</td>
</tr>
<tr>
<td>Coordination and Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needs Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of Alternative Strategies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridor Screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Potential Improvements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Feasibility Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Preliminary) Recommendations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Corridor Screening Process

- Recurring vs. nonrecurring congestion locations
- Physical limitations in median and/or shoulder
- Estimated benefit
- New capacity (i.e. shoulder lanes or reversible lanes during the peaks) evaluated as part of MLIP
- Operational improvements evaluated as part of OPS

Step 1: Initial screening based on distance of congestion

Step 2: Evaluate constructability – can it be priced?

Step 3: Estimate maximum travel time savings

Priced Managed Lane Projects

Bottleneck Operational Improvements
Planning Assumptions

• MLIP
 – All new capacity will likely be tolled
 – Remove HOV2+ to HOT3+ conversions from Atlanta MPO’s Transportation Improvement Program (TIP)
 – Eliminate assumptions of long-term concession agreements

• OPS
 – Can be implemented within 6 months to 5 years
 – Low cost
Potential Strategies

- Added Corridor Capacity
- Improved Design Geometrics
- Intelligent Transportation Systems (ITS)
- Freight
- Demand Management & Policy Considerations
Potential Strategies

• Added Corridor Capacity
 – Bottleneck Mitigation
 – Managed Lanes
 – Reversible Lanes (e.g. moveable barriers)
 – Drivable / Hard Shoulder Running
Potential Strategies

• Roadway Geometrics
 – Roundabouts
 – Diverging Diamonds Interchanges
 – Loop Ramps
 – Ramp Configuration
 – Channelization
 – Innovative Intersections
 – Minimum Intersection / Interchange & Ramp Spacing
 – Improvements to Median
 – Crash Investigation Sites
Potential Strategies

- Intelligent Transportation Systems (ITS)
 - Traveler Information Systems
 - Quick Response Incident Clearance
 - Roadside & Motorist Assistance
 - ITS Support Infrastructure
 - CCTV Cameras / Traffic Flow Monitoring
 - Signal Operation & Management
 - Variable Speed Limits
 - Queue Warning
 - Dynamic Merge Control
 - Ramp Metering / Flow Control
Potential Strategies

• Freight
 – Commercial Vehicle Geometric Accommodations
 – Truck Lane Restrictions

• Demand Management & Policy Considerations
 – Demand Management Strategies
 – Variable / Dynamic Pricing
 – Variable / Dynamic Ramp Closures
 – Vehicle Eligibility / Occupancy
Non-Traditional Options

• Shoulder Lanes
• Moveable Barriers
• Variable Speed Limits
Shoulder Lanes – Considerations

- Shoulder depth
- Shoulder width
- Bridge spans and pillar locations
- Entrance / exit ramp locations and volumes
- Additional signage
- Refuge sites (incidents and emergency access)
- Segment length
Shoulder Lanes – Case Studies

• Washington State - US 2
 – 1.5 miles during PM only
• Minneapolis
 – 3.0 miles during AM & PM
 – Use left shoulder
 – Region wide bus shoulders
• UK M42 Highway
 – 10 miles
 – Shoulders used in conjunction with variable speed limits
• Netherlands
 – Use left and right shoulder
Shoulder Lanes – Lessons Learned

- Capital costs vary dramatically based on existing infrastructure
- Develop overall active traffic management (ATM) system concept
- Pre-determine enforcement roles/processes, incident response, training, public outreach and education
- Regularly spaced video cameras to check for obstacles
- Regularly spaced emergency refuge areas with proper signing
Moveable Barriers – Considerations

- Directional split of traffic and number of lanes
- Median and/or shoulder widths
- Borrow inside lane or shoulder for reverse direction and/or widen to the median
- Bridge spans and pillar locations
- Additional signage
- Capital and Operating & Maintenance costs
- Logistics of reversible lanes
- Segment length
- Estimated benefit (travel time savings)
Moveable Barriers – Case Studies

- Honolulu H-1 Freeway
 - 12 mile HOV system during AM only
- Dallas Thornton Freeway/I-30
 - 5.2 mile managed lane during AM & PM
 - SOVs can use during incidents
- Colorado I-70
 - 13.5 mile EB Sundays

Source: Barrier Systems
Moveable Barriers – Lessons Learned

• Enforcement (if operated as a managed lane)
• Public education
• Dependable contractor
• Spare parts inventory
• Aggressive preventative maintenance
• Adequate staffing for enforcement, traffic incident management, and maintenance
• Consider multiple access points
Variable Speed Limits – Considerations

• Availability of ITS infrastructure
• Overhead signs vs. shoulder and median signs
• Enforcement
• Regulatory vs. advisory
• Coordination with existing signs
Variable Speed Limits – Case Studies

• Washington State
 • I-5 & I-90
• Minneapolis
 • Smart Lanes initiative
• UK M42 Highway
 • 10 mile
 • Variable speed limits used in conjunction with shoulder lanes
• Netherlands
 • In operation since 1981
Variable Speed Limits – Lessons Learned

• Provides congestion relief if speeds are adjusted prior to delays occurring
• Capital costs vary dramatically (signage, technology, emergency refuge areas)
• Develop overall active traffic management (ATM) system
• Pre-determine enforcement roles and processes, incident response, personnel training, public outreach and driver education plan
Current Activities

• Initial windshield survey to identify existing roadway characteristics
 – Shoulder width and pavement type
 – Horizontal clearances
 – Current lane widths
 – Median type and widths
• Analyzing directional splits and traffic volumes
Directional Traffic Split – AM

Source: ARC Plan2040 2010 network
Directional Traffic Split – PM

Source: ARC Plan2040 2010 network
Next Steps

• Complete windshield survey and directional split analysis
• Post-process speed and volume data
• Determine needs (identify bottleneck areas)
• Complete corridor screening process
• Evaluate projects
• Recommend list of projects
• Develop financial plan for managed lane projects
• Coordinate with ARC throughout the process
Kyle Mote, GDOT Project Manager
(404) 631-1987
kmote@dot.ga.gov